
A Productivity Centered Application Performance Tuning
Framework

S. Sbaraglia H. Wen S. Seelam I. Chung G. Cong K. Ekanadham D. Klepacki
IBM T.J. Watson Research Center
Yorktown Heights, NY 10598, USA

{ssbarag, hfwen, sseelam, ihchung, gcong, eknath, klepacki}@us.ibm.com

ABSTRACT
In response to the productivity challenge of the U.S.
DARPA HPCS initiative, we have developed a methodol-
ogy that provides an extremely simple and pain-free inter-
face through which scientists can collect rich performance
data from selected parts of an execution, digest the data
at a very high level, and plan for improvements. This pro-
cess can be easily repeated, each time refining the selection
of parts of the application and revising the granularity of
data collected, until complete insight is gained about bot-
tlenecks. A distinct feature of our approach is that the
framework is independent of the features being examined.
Recognizing that the features to be examined change with
systems/applications and also with depth at which an aspect
is being examined, our framework provides an easy interface
to continually add new features for examination. Further-
more, many different features can be collected simultane-
ously and examined in a non-interfering manner. Finally,
all this is accomplished without changing the source code in
any manner. We believe that this is an ideal platform for
building knowledge-based repositories for automatic perfor-
mance tuning, which is the subject of our future study.

In this paper, we describe our productivity centered frame-
work for application performance tuning. It comprises of
three features: an unique source code and binary instrumen-
tation feature, a versatile user-interface that brings all the
sophisticated capabilities of the binary instrumentation to
the user at a higher level of abstraction, and the functional-
ity to collect different dimensions of performance data. The
results of execution are all in terms of source level names
and at no point does the scientist needs to worry about low-
level details of instrumentation. We believe that it is this
ability, of deciphering performance impacts at source level,
that leads to high productivity of scientists to understand,
direct and tune the behavior of the computing system.

Categories and Subject Descriptors
C.4 [Computer System Organization]: Performance of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Valuetools ’07, October 23-25, 2007, Nantes, France
Copyright 2007 ICST 978-963-9799-00-4.

Systems—Measurement Techniques

General Terms
Measurement, Performance

Keywords
Performance Tuning, Performance Tool

1. INTRODUCTION
Performance tuning of High Performance Computing (HPC)

applications is an iterative task during which the user goes
through the following sequence of steps:

1. selection of performance data to be collected: In the
initial stages of the performance tuning process, users
collect performance data at coarser granularity to un-
derstand CPU, memory, message-passing communica-
tion and I/O characteristics of the application. In the
later stages, the granularity and the level of details of
the data collected is increased to further examine one
or few characteristics of the application that have the
most promise in terms of performance improvements.
Back of the envelope calculations based on known pa-
rameters of the system and the application are often
used to evaluate a characteristic in terms of its promise
and in detailed examination.

2. selection of a data collection tool: Based on the char-
acteristic of promise, the desired granularity, and the
required level of detail, users pick an appropriate data
collection tool. There exists many tools to pick from
but each tool has its own intricate way of instrument-
ing the application and producing the desired perfor-
mance data. The challenge here is identifying an ap-
propriate tool, understanding its working behavior, and
understanding the necessary modifications to the ap-
plication so that the tool generates the desired data.

3. instrumentation of the application: Each of the tools
require some modifications to the application or the
manner in which it is being executed, at the least.
Some require modifications to the source code, some
operate on the binary of the application but must be
executed in a particular way, and some require relink-
ing of the application with their libraries. Modifica-
tions to the source code often entails a tedious and
error-prone process of rewriting parts of the applica-
tion with calls to the appropriate Application Pro-
gramming Interfaces (API) of the selected tool, while

ensuring the correctness of the application. In addition
such modifications require recompilation of the appli-
cation. The challenge here is that the effort required,
in terms of exploiting the power of the tool, for instru-
menting an application varies from tool to tool and
also varies depending on the level of details desired.

4. execution of the instrumented application and genera-
tion of performance data: The instrumented applica-
tion is executed on the target platform as required by
the performance tool. Each performance tool gener-
ates performance data in a predefined format that is
often specific to the tool. The challenge here is that
the data generated by different tools is likely to be in
different formats, which makes it difficult to compare
performance data across tools in a single unified envi-
ronment.

5. visualization and analysis of the collected data: Each
of the existing performance tools offers some kind of
visualization tools and presents the collected perfor-
mance data for further analysis by the user. The two
underlying challenges here are not necessarily with any
specific tool but they are with the combination of the
tools that are often required for tuning. First, when
multiple tools are used in the analysis of an applica-
tion, there exists no support for presenting the data in
a centralized manner. Second, the existing tools often
render performance data from only one execution of
the application, they offer little support for a compar-
ative analysis across multiple executions, which is often
performed due to limitations on different performance
metrics that can be collected in a single execution.

During the last step, the analysis of the performance data
may stimulate the analyst to gather different performance
data or to aggregate the collected data differently. The in-
strumentation is then fine-tuned and all the steps are re-
peated, but each of these repetitions may potentially re-
quire a different tool. This process is continued until a per-
formance bottleneck is successfully isolated, at which point
the necessary modifications to the application’s source code,
runtime environment, or system configuration may be made.

For higher productivity, performance analysts need an ef-
ficient and integrated environment which allows them to ef-
fectively iterate the performance tuning cycle. Some of the
key requirements of such integrated framework are:

1. the environment should free the user from the error-
prone process of repeatedly modifying the source code,

2. it should give users the control over the granularity of
the instrumentation and the data collection process in
order to support profiling of large applications,

3. it should correlate the performance data with the source
code, and present the information in an easily under-
stood, interactively-browsable form to speed up the
search of performance problems,

4. it should allow easy comparisons of performance data
across multiple executions and across multiple granu-
larity.

In response to the productivity challenge of the U.S. DARPA
HPCS [1] initiative, we have developed a methodology that

addresses the various challenges in the iterative tuning pro-
cess and goes beyond them to improve user productivity. It
simplifies tuning process and it can support automation of
the performance tuning cycle. In this paper, we describe our
productivity centered platform for application performance
tuning. It consists of three core features: (1) a versatile
source code, performance metrics, and performance data vi-
sualization and analysis GUI, (2) a unique source code and
binary instrumentation functionality, and (3) the capabili-
ties to collect various dimensions of performance data (CPU,
message passing, threads, memory and I/O) and provide
performance data at the granularity of the entire application
down to every single instruction executed by the processor
and its impact on the state of machine. The combination of
these features provides a unified framework for performance
analysis that helps speed up and simplify the tuning process.

The remainder of this paper is organized as follows: in
Section 2, we describe the architecture of our framework.
Section 3 summarizes our binary instrumentation feature.
Section 4 describes the GUI, the control center of our in-
frastructure. Section 5 gives an example to demonstrate
how our framework leads to high productivity for scientists
to understand and tune their applications. Section 6 dis-
cusses the related work. Section 7 presents the concluding
remarks.

2. OVERVIEW OF THE PRODUCTIVITY CEN-
TERED FRAMEWORK FOR APPLICA-
TION PERFORMANCE TUNING

Our framework is a versatile and productive environment
for performance analysis of sequential and parallel applica-
tions. It provides a common platform for IBM’s mid-range
server offerings, including pSeries, iSeries servers, and Blue
Gene systems, on both AIX and Linux. This section presents
an overview of our framework and its main characteristics
that make it a productivity centered platform for application
performance tuning.

The overall structure of our framework is depicted in Fig-
ure 1. Our framework provides a versatile source code and
performance data visualization and analysis GUI, the biggest
rectangle box in the top of the figure. This interface is the
control center of the entire infrastructure. It depicts what
the user sees and interacts with for instrumentation, exe-
cution, visualization, and analysis of the performance data.
It displays the source program, a menu for different dimen-
sions of performance data and the visualization for the per-
formance data.

Fundamental to our framework is a powerful binary analy-
sis and instrumentation functionality. Section 3 will describe
this in more details.

Another feature of our framework is the capability to col-
lect various dimensions of performance data. From previous
studies with a variety of HPC applications [9, 4, 11, 12, 10,
17], we have found that these five dimensions (CPU, mem-
ory, message passing, threads and I/O) provide an excellent
starting point for a programmer to understand the perfor-
mance behavior of their applications. The dimensions of
performance data provided in our current framework are1:

1. CPU (Hardware Counter Data): The hardware coun-

1The incorporation of profiling I/O activity is currently in
progress.

ters provide comprehensive events that are critical to
performance. The events include the usual timing in-
formation for each process and thread in a parallel ap-
plication, as well as CPU/memory information, such
as the number of misses at each cache level, the num-
ber of floating point instructions executed, the number
of load instructions that caused cache or TLB misses
etc.

2. Message Passing: The performance information in-
cludes the time used by each MPI function call and the
size of the messages exchanged. In addition to a “flat”
view of the MPI performance, the trace data is col-
lected to show the sequence of communication events
on a time-line of the execution.

3. Threads: For parallel applications that use the shared-
memory OpenMP programming paradigm, our frame-
work will collect timing of each parallel thread in each
parallel region, overhead of the parallel constructs, etc.

4. Memory: The memory performance data helps pro-
grammers understand the precise memory references
in scientific programs that are causing poor utilization
of the memory subsystem. Fine-grained information
such as the number of hits and misses in each cache
level for each data structure and for each function is
useful for tuning loop kernels, understanding the cache
behavior of new algorithms, and for investigating how
different parts of a program compete for (and interact
within) the memory subsystem. The information is
presented in a data-centric and control-centric manner
which allows the user to identify the data-structures
(as specified in the source code) that are responsible
for poor memory behavior and further dig down into
the functions where these data structures are being
accessed.

Most of the performance tools may have their own cus-
tomized ways of instrumenting the application to produce
the desired performance data. The tool may require the
modifications of source code in order to monitor the selected
regions of user’s applications. In many such cases, users
have to relink their applications with the performance tool
library. There is no common instrumentation layer among
the performance tools. This causes users to spend excess
efforts to learn and understand the instrumentation mech-
anism for each different performance tool. Moreover, each
performance tool may generate its own performance data
during program execution. Users may need to switch to
different visualization tools for rendering various kinds of
performance data.

The main contribution of our framework is to provide an
environment for application performance tuning. Within the
same GUI, users can select the dimensions of performance
data, control the granularity of performance data, collect
and visualize the performance data. Our framework offers
source code secure, i.e., it eliminates the user injected bugs
and any unintentional changes to source code. In addition,
all interactions at the top level by the users are in the lan-
guage of the source program and all details of binary and
instrumented binary, data collected at the binary level are
all hidden underneath. Thus, the user can relate the results
better with the source program being examined. The results
can be saved and a new specification be quickly composed,

run and the new results can be compared with the previous
results. These are some of the key aspects for productivity.

The main characteristics of our framework are that:

• It offers an integrated environment for simultaneous
investigation of a number of aspects of performance
(e.g. CPU, memory, threads, message passing).

• It requires no source code modifications. The user in-
teracts with our framework by using symbolic names
in the source domain, but all the modifications to the
application are transparently performed on the binary.
As a result, no recompilation of the application is needed.

• It is able to collect data for CPU, message passing,
thread activity and memory, simultaneously in a single
run, thereby significantly reducing the time needed to
profile the application.

• It presents performance data information in a user-
friendly manner that highlights the relation between
the performance metrics and the source code state-
ments.

• It supports iterative tuning by allowing the analyst to
refine the data collection rules and rerun the exper-
iment results. The results of the new execution can
be displayed along with the previous data for direct
comparison.

• It allows the user to select the granularity of data col-
lection. For instance, it is possible, to gather informa-
tion at a function boundary level and later dig down
into the details of selected functions.

• Its design allows for easy extension of new dimension
of performance data and can therefore be easily ex-
panded to address the needs of different programmers
or computing environments.

3. BINARY INSTRUMENTATION IN THE
FRAMEWORK

As shown in Figure 1, the binary instrumentation con-
tains two modules, Binary Analysis System (BAS) and Bi-
nary Instrumentation System (BIS). BAS provides the pro-
gram structure of the executable to the visualization system.
With the knowledge of the program structure, our frame-
work is able to provide an instructive environment for the
instrumentation, control of data collection, and for mapping
performance data to the corresponding source code of the
application. BIS performs the binary instrumentation by
modifying the application executable. Further details of the
functionality of BAS and BIS will be described next.

BAS is a module whose task is to analyze an application
executable provided in binary form and to provide informa-
tion about the statements and variables present in the ap-
plication source code at the time of compilation, the number
and type of instructions present in the application and other
information which can be extracted from the binary. A BAS
is written for a specific machine and for a specific compiler
and it interprets the formats of the binary, instructions, ad-
dresses and the source program information stashed away in
the binary in formats defined by the machine and compiler.
Certain general characteristics are assumed for all architec-
tures and compilers as described below and are used in the
sequel.

1

GUI

Hardware Counter Data

Visualization

Query

Analysis

Instrumented Binary

execution

Binary instrumentation

Message Passing

Threads Memory

Binary Application Binary Analysis
System (BAS)

Binary
Instrumentation
System (BIS)

Binary Instrumentation Layer

I/O

Figure 1: Structure of the Framework

1. The binary contains the code which is a sequence of in-
structions, each having a distinct instruction address.
An instruction contains an opcode which can be repre-
sented as an integer and which specifies the operation
performed by the instruction.

2. All symbols of variables and functions used in the pro-
gram, along with their attributes, such as types and
addresses when they are statically bound can be deci-
phered from the binary executable.

The role of the BAS is to generate a list of files:

1. appname.files: contains a list of source file names used
in the binary.

2. appname.functions: contains a list of all function names
used in the binary and additional information associ-
ated with each function.

3. appname.variables: contains a list of all variable names
used in the binary and additional information associ-
ated with each variable.

4. appname.fcalls: contains information about all func-
tion calls and the instruction address of each branch
to each function.

5. appname.opcodes: contains information about the type
of instructions in the executable.

6. appname.ias: contains a mapping from the instruction
address to the source file and source line.

When the peekperf GUI opens a binary, it makes a request
to the BAS. By processing the BAS files, the peekperf GUI
is able to provide an instructive interface for scientists to
control the instrumentation.

BIS provides a low-level binary modification facility, whose
task is to modify the execution of an application in order to
execute certain actions specified by the user. BIS is written
for a specific machine and for a specific compiler. It takes
the following components as the input.

1. Input Application: An application provided in the form
of a binary executable.

2. bisSpec: A specification of the actions to be executed
which consists of a sequence of action points and
associated action probes.

3. Probe Library: A library which defines action probes.

The output of the BIS is the instrumented version of the
original application. BIS modifies the execution of the in-
put application according to the rules and actions specified
by a bisSpec (whose format is described later). A bisSpec

consists of a sequence of action points and associated action
functions. Whenever the execution reaches an action point
the corresponding action function is invoked. Each invoca-
tion of an action function is implemented as a function call
adhering to the conventions of argument passing laid down
in the Application Binary Interface (ABI) specified by the
compiler. It is further assumed that all the action functions
specified in the bisSpec are present in the input probe li-
brary.

bisSpec ::= actionSpec | actionSpec bisSpec

actionSpec ::= actionPoint actionFunc actionArg

actionOrder EOL

actionPoint ::= instructionAddress

actionFunc ::= string

actionOrder ::= before | after | replace

Semantics of the bisSpec:

1. Each action refers to an instruction (action site) in the
binary code. The instruction at which the action is
taken is determined by the actionPoint, which speci-
fies the instruction address for the instruction.

2. It is possible that an instruction may be associated
with multiple actions. All actions with the same actionOrder
will all be executed in the order in which they are spec-
ified except replace, there can be only one replace
action per instruction.

3. Each action consists of invoking the function identi-
fied by the actionFunc string. This function must be
present in the probe library.

4. The actionOrder determines whether the action takes
place before, after or instead of (replace) the in-
struction at the action site. At an action site, first all
before actions are executed; then either the instruction
at the action site is executed or the sequence of all re-
place actions are executed; and finally all after actions
are executed.

5. An action invokes the function actionFunc as a nor-
mal function. The first argument passed to the ac-
tion function is a pointer to a fixed-size buffer. A BIS
implementation publishes the size of each field in the
buffer. The buffer contains the following fields:

(a) actionArg

(b) actionPoint

(c) binary instruction at the action site

(d) instruction address target of the branch (only if
the instruction at the action site is a branch)

(e) memory address loaded or stored if the instruc-
tion at the action site is a load or store

(f) data loaded if the instruction at the action site
is a load and actionOrder = after. data stored if
the instruction at the action site is a store and
actionOrder = before, 0 otherwise

(g) the first argument arg0, if actionOrder = before
or replace and the instruction at the action site
is a branch instruction. Arg0 is the first argu-
ment determined by applying the conventions of
the ABI as if the instruction was a call to a func-
tion. 0 otherwise.

(h) the first return value result0, if actionOrder =
after and the instruction at the action site is a
branch instruction. Result0 is the first return
value determined by applying the conventions of
the ABI as if the instruction was a call to a func-
tion, 0 otherwise.

(i) the value of the stack pointer, if such a notion
exists in the architecture, 0 otherwise.

The remaining arguments to the action function are
the same as in the original code (meaningful only if
the instruction at the action site is a function call and
actionOrder = before or replace).

The peekperf GUI makes a request to BIS when the instru-
mentation points are determined. peekperf composes the bis-
Sepc file based on the user’s input and pass the bisSpec file
along with a list of probe libraries to the BIS. The BIS then
creates an instrumented version of the original application.

4. A VERSATILE USER-INTERFACE
The peekperf GUI is the control center of our framework.

The entire performance tuning process, from instrumenta-
tion to execution and analysis of data can be conducted from
here. This interface provide three different types of windows
(see Figure 2). The source window shows the source code
files for the selected application (if such source code files
are available). The tool window controls the data collection
and instrumentation. It displays the program structure that
is specifically designed for different aspects of performance

Figure 2: Front-End GUI

data (HPM: hardware counter data, MPI: message passing,
OPENMP: threads, SIGMA: memory). The performance
data window displays the performance data generated by
the instrumented applications. The various options avail-
able for instrumentation and performance data visualization
are described in the next two subsections.

4.1 Program Structure and Control of Data
Collection

By selecting the appropriate tab in the tool window, the
program structure for the selected performance dimension is
displayed. The program structure is described as a hierarchi-
cal tree. For example, the HPM tree represents the function
call sites and the function entry/exit points for the entire
program. Those are predefined instrumentation points for
the collection of hardware counters. Similar tree structure is
provided with each of the tools represented by the different
tabs. In addition, the user may operate on the source win-
dow to define their own instrumentation region. As shown
in Figure 2, the swim.f 101 105 label in the HPM tree is
selected through the source browser window and its defined
region is from line 101 to 105 in the swim.f file. A simi-
lar tree view is designed for each dimension of performance
data. Figure 3(a) shows this view for MPI tool and Fig-
ure 3(b) shows this for OpenMP. The tree view allows the
users to easily select the predefined instrumentation regions.
User-defined instrumentation region will be reflected in the
tree structure after the region is selected through the source
window. Users can efficiently control the data collection by
navigating the tree structure.

The selected instrumentation points will be highlighted in
the tree structure. If the source code file is available, the in-
strumentation regions will be highlighted in the source win-
dow as well. Our infrastructure allows for simultaneous data
collection for different dimensions of performance data (for
example, hardware counters, message passing, and thread
information can all be collected simultaneously in one single

(a)

(b)

Figure 3: Program Structure for MPI and OpenMP

run). Users can cycle through the instrumentation tabs and
properly define all the required performance data. Then the
application is instrumented by accessing the menu.

4.2 Performance Data Visualization
When the instrumented applications are executed, result-

ing performance data is recorded in a set of XML files.
Each XML file is associated with one executing process and
records one dimension of performance data. The XML file
follows a standard specification so that our framework can
render the performance data for different dimensions of per-
formance data and can correlate performance metrics with
the application source code.

In Figure 4, the performance data window shows the hard-
ware counter metrics. When a performance metric is se-
lected, the corresponding statements are highlighted in the
source code window. Therefore, users can immediately re-
late the collected performance information (e.g., timing, num-
ber of cache misses) to the corresponding source code sec-
tions (e.g., loops) of the application. This information is es-
sential to isolate the performance bottlenecks and to guide
the analyst towards understanding whether the application
at hand exhibits inefficiency due to the implementation of
the sequential portions of the algorithm, the memory ac-
cess pattern or the communication aspects. This data is
therefore a first step towards isolating possible bottlenecks
that can be further investigated with the other dimension of
performance data. The interface provides several means of
analyzing the collected data. It is possible to sort and filter
the data, and access detailed metrics for each instrumented
section and for each thread and each process. The metric
browser window in Figure 4 gives more detailed hardware
counter metrics for each process.

Figure 4: Hardware Counter Metrics

In addition to the “flat” view of the performance data, our
performance data visualization also offers the tracer view
for the MPI trace. Our tracer display shows the sequence

of communication events on a time-line of the execution. It
is then possible to graphically identify the communication
pattern and spot possible inefficiencies. As with all the per-
formance data generated in our framework, the trace events
are mapped back to the source code symbols and functions.
For example, when selecting an individual MPI function in
the tracer display, the corresponding MPI function call is
automatically highlighted in the source window (see Figure
5).

Figure 5: MPI Performance Data

A typical performance tuning session would start with the
user collecting the hardware counter metrics and the mes-
sage passing data. This would allow the user to identify the
most computationally expensive functions and detect pos-
sible communication bottlenecks. The analysis would then
be directed towards selected functions, possibly employing
the memory analysis capabilities and the thread profiling
ability. Our framework makes it possible to cycle through
different sets of performance data seamlessly by selecting
different tabs in the tool window. It is possible to incremen-
tally vary the instrumentation to generate more data that
can be compared with previously generated data sets. By
operating in this manner the performance analyst can effec-
tively dig down into the relevant segments of the application
and narrow down any performance inefficiency.

5. USAGE EXAMPLE
In this section, we briefly illustrate how our framework is

used by walking through a simple analysis of ks imp dyn2, a
dynamic QCD with improved staggered quarks of 2 masses
from the MIMD Lattice Computation (MILC) [5]2.

The hardware platform used for this application’s perfor-
mance analysis is a POWER5 [19] processor chip containing
two microprocessor cores. Each core contains a 64MB level1
(L1) instruction cache, a 32KB L1 data cache, two fixed-
point execution units, two floating-point execution units,
two load/store execution units, one branch execution unit,

2This work was in part based on the MILC col-
laboration’s public lattice gauge theory code. See
http://physics.utah.edu/ detar/milc.html

and one execution unit to perform logic operations on the
condition.

The MILC application is executed serially on a single pro-
cessor and we collect only the hardware counter metrics for
this example. To minimize the overhead of instrumentation
and the volume of collected performance data, we instru-
ment limited number of code segments in each iteration. In
the first iteration, we instrumented only the main and the
function calls inside the main function. The code tree struc-
ture displayed in the tool window provides users an efficient
way for this selective instrumentation (Figure 6). After the
instrumentation and the execution, the performance data
is loaded to peekperf as shown in Figure 7. The data dis-
played in the performance data window (bottom left corner,
under WallClock(excl) time) shows that most of the execu-
tion time is spent in the update function (over 90 seconds
out of the 101 seconds of total execution time). Therefore,
in the second iteration, we instrumented only this function
and all its callees. We changed the monitored event set
group to one of the few stall events, the LSU Stalls. These
are the events of interest as they show lost cycles due to
stalling of the processor pipeline, one of the main sources
of performance degradation of HPC applications. Chang-
ing the event set group is easily done through the context
menu of tool window. Figure 8 shows the result of the sec-
ond iteration. The time spent in the update h function call
is about 2/3 of total execution time for the update func-
tion. With the right click of the mouse button on the per-
formance data item, one can see more details of the perfor-
mance metrics associated with this performance data item.
By observing the large number of stalls caused by the LSU
unit (PM CMPLU STALL LSU), the scientist may specu-
late that there is some potential performance problem in
their application due to load/store stalling.

Based on the observation from the second iteration, we
repeat the process and instrument img gauge force,
eo fermion force 3f and the call sites inside the functions.
With further analysis, we identify that img gauge force,
eo fermion force 3f, and su3 matrix-matrix multiplication
functions experience the most stalls. We do not intend to
address the performance tuning techniques in this section.
The walk-through example is to demonstrate how our frame-
work can help scientists understand, direct and tune their
application.

Following the approach described above, scientists can
continue the performance analysis from the GUI and effi-
ciently perform the five steps of the iterative performance
tuning cycle outlined in Section 1.

6. RELATED WORK
In this section, we describe two categories of related work.

First, we describe the related core instrumentation technolo-
gies including binary patching and runtime patching. Then
we describe some performance tools built on top of those
core instrumentation technologies.

6.1 Instrumentation
Similar to our binary instrumentation functionality, per-

formance tools like ATOM [20], and PMaCInst [13] also pro-
vide binary instrumentation functionality. In other words,
those tools instrument the application by rewriting the bi-
nary executable. ATOM was one of popular binary patching
tools. However, it only works only on the Alpha platform

Figure 6: Instrumentation

which is no longer in production. PMaCInst is close to our
binary instrumentation and tries to provide binary instru-
mentation on PowerPC/AIX platform. It provides API to
allow users specify the locations for instrumentation. Our
binary instrumentation uses anchor points to allow instru-
mentation at any binary address.

In addition to binary patching/instrumentation, perfor-
mance tools like Pin [8], Dyninst [7], DPCL [2] provide run-
time instrumentation. During the runtime, the application
image in the memory is modified to accommodate the in-
serted code for instrumentations. Pin provides instrumenta-
tion by using a just-in-time (JIT) compiler. The application
is running on top of Pin, and Pin intercepts the application
with an interruption to perform instrumentation. Dyninst
replaces an instruction from the application with a jump in-
struction to the function call stub and instrumentation code.
DPCL was IBM’s version of Dyninst and now is released to
the public domain. However, these kinds of runtime instru-
mentation usually require system daemons running in the
background. This may be acceptable in most cases, but
does not optimize productivity needs. For DPCL, it cannot
perform instruction-level instrumentation which may meet
most of HPC needs, but not those of HPCS. Our binary in-
strumentation does not require any system daemons running
and is able to perform instruction-level instrumentation.

6.2 Integrated Performance Tool
HPCView [15] presents the performance data collected

and correlate it to program structure information to pro-
duce a performance database. Similar to our visualization
interfaces, it uses hierarchical display for top-down analysis.
In terms of data collection, it uses scripts to automate the

performance data collection process. However, we believe
controlling the data collection through navigating the pro-
gram structure provides a more interactive and user-friendly
process. Their collected performance data is also converted
into XML-based format files which is similar to our frame-
work.

TAU [18] is probably one of the full featured HPC analysis
tools. It provides both manual and automatic source code
instrumentation. It also allows dynamic instrumentation by
using Dyninst. Unlike our framework targeting at interac-
tive performance debugging, TAU’s visualization, ParaProf,
focuses on the presentation and can present performance
data from different data collectors.

SpeedShop [6] is a performance analysis tool for SGI sys-
tems. Its dynamic instrumentation is also based on Dyninst.
It can run performance experiments on an application and
present the results to help users remove performance obsta-
cles. The new design enables users to extend functionality
with their own experiments. The design strategies are sim-
ilar to our framework except it uses the runtime dynamic
instrumentation.

DynTG [14], which uses DPCL for dynamic instrumen-
tation. The functionality of interactive performance tuning
design is similar to our framework except instrumentation
mechanism. It uses performance modules to reconfigure the
data acquisition and provides a source browser that allows
users to insert probes dynamically into the target applica-
tion. Due to the limitation of DPCL, the location that can
be instrumented is limited.

Paradyn [16], which is rewritten on top of the Dyninst, is
able to collect performance data dynamically during the run-

Figure 7: Performance Data Visualization

time. Paradyn provides automatic search for performance
bottlenecks. Its Performance Consultant determines 3W
(where, when, why) of performance problems. In the future,
we plan to improve Our framework for the interactive tun-
ing process to eliminate usersŠ guesswork of manual problem
determination.

Many performance tools like described above are built on
top of the dynamic instrumentation technologies. Dynamic
instrumentation provides flexibility that allows“probes”mod-
ified during runtime (e.g., on or off). However, the instru-
mentation needs to be done every time the executable is
loaded into memory. Our binary instrumentation provides
an alternative so the instrumentation is done only once and
the instrumented binary can be used again. This is espe-
cially useful when the binary executable is large and the
instrumentation process can be time consuming.

7. CONCLUDING REMARKS
In this paper, we describe a new framework for applica-

tion performance tuning that emphasizes productivity. The
GUI framework encompasses the entire performance tun-
ing methodology. This GUI is the single interface for both
instrumentation and analysis, and is the means by which
the programmer selectively chooses the degree of probing.
Furthermore, the GUI is the centralized component that
allows simultaneous analysis of all dimensions of applica-
tion performance analysis (CPU, memory, message passing,
threads, and I/O). The GUI is assisted by a sophisticated
binary instrumentation facility that takes specifications at
the source-level and renders results in terms of source-level
names, without resorting to any changes to the source pro-

grams. By abstracting the details of binary instrumenta-
tion away from the analyst and providing an automated and
quickly repeatable probe-result cycle at the source level, our
framework contributes to increased productivity of the end
user. It takes away the burden of low-level details of instru-
mentation and secures the source code from unintentional
changes.

From our past experience developing performance tools
and dealing with performance tuning experts, we recognize
that a typical analyst, looks at certain patterns in the result
data and initiates further actions. If we can capture the fi-
nal patterns used to diagnose a problem and associate them
with the suggested improvements, we can create an “intel-
ligent” tool that can predict remedies from symptoms. We
plan to extend our system to create knowledge-based repos-
itories for automatic performance tuning, further increasing
the productivity of the user.

Our current and future productivity technologies will be
integrated into our existing framework [3]. Our framework
is currently available on a number of platforms and provides
much of the basic functionality. However, the newer pro-
ductivity technologies HPCS program will be introduced as
this initiative moves forward.

8. REFERENCES
[1] Darpa high productivity computing systems (hpcs).

http://www.darpa.mil/IPTO/programs/hpcs/index.htm.

[2] Dynamic Probe Class Library.
http://sourceforge.net/projects/dpcl/.

[3] IBM Advanced Computing Technology Center.
http://www.research.ibm.com/.

Figure 8: Performance Data Visualization - High Stalls Caused by LSU

[4] IBM Advanced Computing Technology Center MPI
Tracer/Profiler.
http://www.research.ibm.com/actc/projects/mpitracer.shtml.

[5] Mimd lattice computation (milc) collaboration.
http://physics.utah.edu/ detar/milc.html.

[6] Open speedshop.
http://oss.sgi.com/projects/openspeedshop/.

[7] B. Buck and J. Hollingsworth. An api for runtime
code patching. Journal of High Performance
Computing Applications, 14(4), 2000.

[8] R. M. C. K. Luk, R. Cohn et al. Pin: building
customized program analysis tools with dynamic
instrumentation. PLDI, pages 190–200, 2005.

[9] L. DeRose. The hardware performance monitor
toolkit. Proceedings of Euro-Par, pages 122–131,
August 2001.

[10] L. DeRose, K. Ekanadham, J. K. Hollingsworth, and
S. Sbaraglia. Sigma: A simulator infrastructure to
guide memory analysis. Proceedings of
Supercomputing, November 2002.

[11] L. DeRose, B. Mohr, and S. Seelam. An
implementation of the pomp performance monitoring
interface for openmp based on dynamic probes.
Proceedings of the fifth European Workshop on
OpenMP - EWOMP’03, September 2003.

[12] L. DeRose, B. Mohr, and S. Seelam. Profiling and
tracing openmp applications with pomp based
monitoring libraries. Proceedings of the International
Conference on Promotion and Advancement of
Parallel Computing - Euro-Par 2004, 31st August -
3rd September 2004.

[13] L. C. M. Laurenzano, M. Tikir and A. Snavely. The
pmac binary instrumentation library for power pc.
Workshop on Instrumentation and Applications, held
in conjunction with ASPLOS XII, October 2006.

[14] J. C. G. Martin Schulz, John May. Dyntg: A tool for
interactive, dynamic instrumentation. International
Conference on Computational Science, 2005.

[15] J. Mellor-Crummey, R. Fowler, G. Marin, and
N. Tallent. Hpcview: A tool for top-down analysis of
node performance. The Journal of Supercomputing,
23:81–101, April 2002.

[16] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K.
Hollingsworth, R. B. Irvin, K. L. Karavanic,
K. Kunchithapadam, and T. Newhall. The paradyn
parallel performance measurement tools. IEEE
Computer, 28:37–46, November 1995.

[17] S. Sbaraglia, K. Ekanadham, S. Crea, and S. Seelam.
psigma: An infrastructure for parallel application
performance analysis using symbolic specifications.
Proceeding of the European Workshop on OpenMP,
Stockholm., October, 18-22 2004.

[18] S. Shende and A. D. Malony. Tau: The tau parallel
performance system. International Journal of High
Performance Computing Applications, 20(2):287–331,
2006.

[19] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J.
Eickemeyer, and J. B. Joyner. Power5 system
microarchitecture. IBM Journal of Research and
Development, 49(4/5):505–521, July 2005.

[20] A. Srivastava and A. Eustace. Atom: a system for
building customized program analysis tools. PLDI,
pages 196–205, 1994.

	Introduction
	Overview of the Productivity Centered Framework for Application Performance Tuning
	Binary Instrumentation in the Framework
	A Versatile User-Interface
	Program Structure and Control of Data Collection
	Performance Data Visualization

	Usage Example
	Related Work
	Instrumentation
	Integrated Performance Tool

	Concluding Remarks
	References

