
The software architecture of the OsMoSys Multisolution
Framework

F. Moscato
Dip. di Informatica e

Sistemistica
Univ. di Napoli Federico II

francesco.moscato@unina.it

F. Flammini
Dip. di Informatica e

Sistemistica
Univ. di Napoli Federico II

frflammi@unina.it

G. Di Lorenzo
Dip. di Informatica e

Sistemistica
Univ. di Napoli Federico II

giusy.dilorenzo@unina.it

V. Vittorini
Dip. di Informatica e

Sistemistica
Univ. di Napoli Federico II

vittorin@unina.it

S. Marrone
Dip. di Ingegneria della

Informazione
Seconda Univ. di Napoli

stefano.marrone@unina2.it

M. Iacono
Dip. di Studi Europei

e Mediterranei
Seconda Univ. di Napoli

mauro.iacono@unina2.it

ABSTRACT
The use of multi-formalism techniques is very appealing in
modeling complex systems since they allow for building of
complex models by integrating or composing sub-models
specified by different formalisms. Hence, the most suitable
formalism may be used according to the evaluation goals,
the level of abstraction of the sub-models and the nature of
the sub-systems. Each formalism is usually coupled with ef-
ficient solution methods, thus multi-solution approaches are
needed to solve multi-formalism models whose analysis in-
volves different techniques and tools. In this paper the soft-
ware architecture of the OsMoSys Multi-solution Framework
(OMF) is presented. OMF was born to provide the sup-
port needed to allow for loosely coupled cooperation among
heterogeneous analysis techniques and tools, and automates
the tasks that must be performed to solve complex multi-
formalism models. OMF does not require that heteroge-
neous models are translated into a common formalism in
order to be solved, nor that the available tools are modified
to be integrated in the framework, but it achieves multi-
solution by orchestration.

Categories and Subject Descriptors
I.6 [Computing Methodologies]: Simulation and Mod-
eling—Simulation Support Systems; C.4 [Computer Sys-

tems Organization]: Performance of Systems—Modeling
techniques

General Terms
Design, Performance, Reliability, Verification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Valuetools ’07, October 23-25, 2007, Nantes, France
Copyright 2007 ICST 978-963-9799-00-4.

Keywords
System Modeling, Multiformalism, Multisolution, Orchestra-
tion

The work of F.Moscato has been supported by the S.Co.P.E.
project http://www.scope.unina.it/progetto/default.aspx

1. INTRODUCTION
The growing complexity of real world systems increases

the need for effective design strategies to fulfill the require-
ments and reduce the development costs. An interesting
approach to achieve this goal is moving resources from the
verification and validation phases to the early stages of sys-
tems development in order to obtain better specifications, on
which it is possible to investigate design properties. At this
aim, the application of formal methods in the development
cycle is advocated also by international standards. Never-
theless, the study of a complex system needs to cope with
complexity and the heterogeneity of its subsystems. Com-
plexity and heterogeneity can be faced through a divide-
et-impera strategy, by using compositional modeling tech-
niques, exploiting at best system decomposition in function-
alities, subsystems and/or different aspects of the system it-
self. Multi-formalism multisolution approaches allow to op-
erate on each aspect of the system by using the most appro-
priate modeling formalism and the best solution technique.
Hence, they seem to be a flexible way to model complex
systems, but require the availability of proper and powerful
modeling methodologies and tools.

In this paper we introduce the software architecture of the
OsMoSys Multi-solution Framework (OMF). OMF is part
of the OsMoSys (Object-baSed multiformalism MOdeling of
SYStems) research project, whose goal is the definition of
a methodology and the realization of a software environ-
ment for the development and the analysis of multiformal-
ism models. OMF is born to provide the support needed
to a loosely coupled cooperation among heterogeneous anal-
ysis techniques and tools and to automate the tasks that
must be performed to solve complex multiformalism models.
ŞMulti-solutionŤ in OsMoSys means to solve a model - built
by composing more sub-models - according to a well defined
solution process which involves the execution of more solu-
tion or analysis tools (solvers). The execution order of the

solvers and the data dependencies among them are defined
in the solution process that is described by means of a work-
flow language. In other words, OMF achieves multisolution
by orchestration of solvers.

The paper is organized as follows. Related work is dis-
cussed in Section 2. Section 3 briefly describes the OsMoSys
research project and places OMF in its context. The OMF
software architecture is then presented in Section 4. In Sec-
tion 5 an example is used to describe how a multiformal-
ism model is solved and analyzed by means of the proposed
architecture. Finally, Section 6 draws some concluding re-
marks.

2. RELATED WORK
The need for tools allowing the application of multiple

solving strategies to models is well documented in literature.
In this Section the main approaches to multiformalism are

briefly described, with particular emphasis on the solution
strategy adopted, due to the scope of this work.

One of the first tools in the multiformalism field is SHAR-
PE [18, 20] which focuses on performance and depend-
ability evaluation. SHARPE supports both multiple solvers
and multiformalism. It allows modular composition of mod-
els and each sub-model is solved by the appropriate solver.
Solvers exchange results by expressing them in exponential
polynomial distribution functions. In SHARPE the solving
process is somehow guided by the modeler, interactively or
via batch files. At the best of our knowledge, SHARPE
does not natively support the extension of the number of
formalisms or solvers it can use, nor needs a dedicated sub-
system for result handling and presentation.

The DEDS toolbox [2] supports multiformalism and mul-
tiple solvers as well. One of the principal feature of the
DEDS toolbox is its design for extension. This is obtained
by the introduction of a high level (text-based) interface for-
mat (namely APNN, Abstract Petri Nets Notation), shared
by all the components of the toolbox architecture. APNN is
the basis for extensions because every solver that is compli-
ant with it can be included in the framework. The language
supports hierarchical models and constructs for exchanging
results between levels, that are translated according to the
applied solver.

The MODEST approach [4] (supported by the tool-suite
MOTOR) is based on a single formalism for systems spec-
ification that is used to write models solved by multiple
solvers. Hence, the language (that is an extended process al-
gebra) has a non-trivial intrinsic complexity and each solver
extracts a simpler model containing the needed information
from the main model. This approach is oriented to keeping
coherence when analyzing a same system specification by
different points of view.

Möbius [8, 19] supports both multiformalism and multi-
ple interacting solvers. The Möbius most elementary model
is the Atomic Model, which is composed by Actions, State
Variables and Properties. Adding the description of the de-
sired reward variables (what is to be evaluated) a Reward
Model is obtained. Models can be composed in order to
exploit modularity and multiformalism, obtaining a Com-
posed Model. A result is obtained as a computed solution
to a reward variable. If a result has to be used for further
computation, then it may capture the interaction between
multiple Reward Models. A Connected Model is an ordered
set of Reward Models and their solution methods. This re-

quires that input parameters to some of the models depend
on the results of other models in the set [8].

This paper focuses on the OsMoSys multisolution approach.
Differently from other frameworks, which are based on “in-
tegrative” approaches, OsMoSys is based on orchestration,
which is very advantageous in terms of flexibility and reuse.
The models solved by means of OMF may be composed by
sub-models expressed through different modeling languages,
the tools used to implement the related solution techniques
are orchestrated in order to perform the model analysis. The
tools are wrapped so that they present the same interface to
the orchestration process, but it is not necessary to modify
them or add specific modules to convert the model definition
to some particular description. The orchestration process is
defined by means of an ad-hoc workflow language and it can
be partially generated from the structure of the composed
model and the information provided by the operators used
to connect the sub-models, as explained in Section 4.

3. INTRODUCTION TO OSMOSYS
In this Section we summarize the main concepts which will

be used in the following. OsMosys provides both a modeling
methodology (OMM) and a software framework.

The OsMoSys Modeling Methodology (OMM) aims at the
definition of a well formalized conceptual framework for the
multi-formalism modeling promoting reuse and extensibil-
ity of complex models. OMM, first introduced in [22], is
based on object orientation concepts and metamodeling. In
OMM different modeling formalisms, (e.g. Petri Net, Fault
Tree, Process Algebra, etc.) may be defined using a meta-
language, named Metaformalism. In the OsMoSys termi-
nology a formalism defined by means of the Metaformalism
is a Model Metaclass (Metaclass for short) and new Meta-
classes can be easily introduced, or defined by inheritance
from existing ones (e.g. a Generalized Stochastic Petri Net
Metaclass may be obtained by inheriting from a Petri Net
Metaclass).

The Metaclass defines the set of element types belonging
to the related formalism (e.g. nodes, edges, actions, etc.)
that a model may include. Each element type has a name
and one or more properties that are used to specify the at-
tributes of the element. For example if we consider the Petri
Net (PN) formalism, an element type of a PN Metaclass may
have name Place and a property Tokens that represents the
initial marking of a place.

A Model Class describes a model (compliant with a given
Metaclass) that needs to be instantiated to obtain a Model
Object. Hence, a Model Class is a model which specifies
some parameters that must be defined before the model is
used. A Model Class may have an interface to connect its
Model Objects with the external environment. A composed
model is built by connecting Model Objects (sub-models)
through proper operators. The Model Classes that may
be used to build the composed model, the topology of the
composition and the operators allowed for that composition
are defined by a special formalism named Bridge. OMM
distinguishes between explicit and implicit multi-formalism.
Explicit multi-formalism is visible at the user level: the
user may build a composed model by explicitly using Model
Classes compliant with different Metaclasses. Implicit multi-
formalism is a form of multi-formalism that is not visible at
the user level, since it is only exploited in order to solve the
models.

OMM has been recently extended to introduce Model In-
terface Polymorphism [16], since the ultimate goal of Os-
MoSys is not only to promote model reuse, but to improve
the overall modeling approach to the analysis of complex
system by allowing for dynamic construction of models. In
particular, Interface Polymorphism allows to define parts of
a multi-formalism model on-the-fly, i.e. while solving the
model.

The very first steps of OsMoSys are described in [12].
OMM has been applied to the definition of Repairable Fault
Trees [7] (a case of implicit multi-formalism) and to the de-
velopment of different models, for example in [11] (contact
center scenarios) and [9] (evaluation of design choices for
critical control systems). The example presented in [14] will
be used here to show how the solution process works in prac-
tice.

The development of a model according to OMM is sup-
ported by the DrawNET modeling system [6].

The analysis of complex OMM models can be performed
by means of the OsMoSys Multi-solution Framework (OMF),
whose complete software architecture is described in this pa-
per.

4. SOFTWARE ARCHITECTURE OF THE
OSMOSYS FRAMEWORK

Metaclasses, Model Classes and Model Objects are de-
scribed in OMF by a family of XML based languages [13,
17]. Once a model has been developed, it is expressed by
means of the Model Definition Language (MDL) that is used
for both Model Classes and Model Objects. To solve a model
a Query must be defined on the model itself which contains
a specification of the performance indices or measures that
must be evaluated. A Query is expressed by means of the
Model Query Language (MQL). Then a solution process is
generated. The solution process specifies a workflow [1, 23],
i.e. it describes which tasks must be performed to solve the
model, how they are structured, who performs them, what
their relative order is, how they are synchronized, how infor-
mation flows to support them. Hence, the solution process
is expressed by means of a workflow language, the Solution
Process Definition Language (SPDL) introduced in [17]. A
solution process is then executed by a workflow engine. The
results obtained must be collected and processed - if it is
necessary- to produce the answer to the Query defined on
the model. The answer to a Query is expressed by means of
the ReSult Language (RSL).

Fig. 1 shows the OMF architecture and the graphical user
interfaces (GUIs) which are used to interact with OMF. The
GUIs (represented by the three rectangles in the pale-gray
box on top of Fig. 1) do not strictly belong to the OMF ar-
chitecture (depicted in the big dark-gray box). The Drawing
GUI is used to develop the models and generate their MDL
definitions. At the moment the model development is sup-
ported by the DrawNET modeling system [6], as mentioned
in Section 3. The SPD GUI aids the editing of a solution
process that must be written in SPDL. The Configuration
GUI is a graphical console used to configure and manage
OMF. The OMF architecture mainly consists of the follow-
ing layers:

1. the SPDL Compiler;

2. the OsMoSys Core;

3. the Solvers/Applications layer;

4. the Repositories/DB layer.

The SPDL Compiler partially automates the generation of
a solution process, at this aim the compiler uses the model
definition written in MDL and the information about the
current OMF configuration.

The second layer contains the OMF components used to
execute the solution process. These components are able to:

• handle queries and results (Results Manager);

• instantiate model classes (Instancer);

• enact the solution process (Worklow Engine).

The third layer contains solvers and tools used to solve
sub-models. At this layer other tools, like Möbius ([8, 19]),
SHARPE ([18]), UPPAAL ([3]) or GreatSPN([5]) can be
used to solve submodels. In order to use existing tools it is
necessary to write a wrapper, called Adapter. An Adapter
is used to manage input/output formats, invoke a solver
and handle results. If allowed by the solver, the Adapter
can also interact with it during its execution. For example,
this feature can be used in order to manage the state-space
evolution of the model during its solution.

The relationships among all the entities involved in the
analysis of a model are described and handled by the Repos-
itory/DB layer. In particular, it is necessary to store and
manage information about the solvers and their Adapters,
about the relationships among formalisms, models and mea-
sures or performance indices which solvers are able to an-
alyze/evaluate, about the associations between models and
queries, about (sub)models and their related results: all the
information needed to define multiformalism models and to
enact solution processes, or that must be stored for re-use
purposes, are contained in the OMF Data Bases.

The components of OMF are described in more details in
the remainder of this Section.

Configuration GUISPD GUI Drawing GUI

SPDL Compiler

WorkFlow
Engine

Instancer

Result
Manager

Application

ADAPTER

Application
ADAPTER

Processes
Repository

Queries
Repository

Results
Repository

Models
Repository

Repository RepositoryR

REPOSITORY DB

Graphical User Interfaces

OsMoSys Core

Solvers / Applications

Repositories / DB

OMF

Figure 1: OsMoSys Architecture

4.1 Instancer
OsMoSys defines a language called Model Definition Lan-

guage (MDL) to write Model Classes and Model Objects
specifications, as explained before. Let mc ∈ MDL denote
a Model Class written in MDL. The Instancer performs the
operation:

instance : mc, parmc → mo ∈ MDL

that is, the Instancer transforms a Model Class specifica-
tion into a Model Object specification mo (still written in
MDL). The Model Object is instantiated with the param-
eters parmc . These parameters are the values that have to
be assigned to some element properties in the Model Class
in order to produce a fully defined model.

If the value of the parameters are known at solution time,
the Results Manager produces the parmc information by
elaborating the results retrieved from the analysis of some
sub-models.

Hence, the Instancer can be invoked:

• by the modeler, to instantiate Model Classes stored in
the Models Repository;

• by the workflow engine, to instantiate Model Classes
using results from the anlysis of sub-models previously
solved during the solution process enactment.

The first usage of the Instancer enables model reuse and
produces solvable Model Objects. The second one is useful
to implement composition semantics.

Inputs to the Instancer are models specifications that must
be instantiated, and the value of the parameters needed for
the instantiation. Outputs of the instantiation are the in-
stantiated model specifications.

4.2 Solvers
Solvers are external tools or software applications used to

analyze and solve models. For example the tool newSO of
the GreatSPN package [5] can be used to perform the steady
state analysis of a Generalized Stochastic Petri Net (GSPN)
model.

Let ms denote a model to be solved by an external tool.
The solver uses its input format for the model description.
Let Smf denote the description language used by the solver.
A solver performs the operation:

solver: ms ∈ Smf → rs ∈ Srf

where rs is the result of the analysis produced by the
solver. It is expressed by means of an output format. Srf
denotes the description language by which the results pro-
duced by the solver are expressed. It is important to un-
derline that each solver usually use its own input/output
format. Input/Output solvers’s data are wrapped in the
OMF languages by the Adapters.

4.3 Adapters
Adapters are software modules that directly interact with

solvers. They are wrappers whose goal is to provide the
solvers with a common interface to the solution process and
the workflow engine. The tasks executed by an Adapter
mainly include: the translation of the solver input/output
into the OMF proper language, and the interaction with the
solver during the solution process execution. An Adapter

also invokes the execution of the solver. Then it waits for
the end of the execution in order to retrieve the results of
the analysis. An Adapter can also interact with the solver
during its execution if allowed by the architecture or the im-
plementation of the solver itself. In this case, if the solution
of the model is performed by analyzing its state space, and if
the state space representation can be accessed, the Adapter
is able to handle this representation during the model anal-
ysis or simulation.

Hence, an Adapter may perform the following operations:

(1) adapter : mo ∈ MDL → ms ∈ Smf

(2) adapter : rs = solver(ms)

(3) adapter : rs ∈ Srf → rOMF
s ∈ RSL

where mo is a Model Object expressed by MDL, ms is the
same model expressed by the solver format, rs is the result
obtained by executing the solver on the model ms and rOMF

s

is rs expressed by the OMF format.
The first operation is needed to provide the solver with

the right input, the second operation is the invocation of
the solver, and the third is necessary in order to allow the
Results Manager to retrieve results from a solved model,
without writing a results manager for each solver.

The Adapter has to store in the Repository/DB the exact
correspondence between the elements of the Model Objects
mo and the elements of the formalism by which ms is de-
scribed.

In order to make easier the Adapters development, OMF
provides a library (the Adapter Interface library) which con-
tains pre-compiled functions to:

• manage OMF languages, models, queries and results;

• define a common interface to solvers’s state space rep-
resentations;

• manage communications with solver (through file ex-
change, pipe, socket and message);

• define proper interfaces to solvers’s functionalities.

These functions can be used in order to develop wrappers
for solvers able to interact with other OMF components.

4.4 Results Manager
The Results Manager (RM) is the OMF software module

in charge of processing the results obtained by the activa-
tion of Adapters and producing the answers to the queries
defined on the models. Indeed, the Results Manager oper-
ates on results translated to the OMF format and stored in
the ResultsRepository by Adapters.

Nevertheless a query always asks for the evaluation of
measures or performance indices over a model, we distin-
guish two kinds of queries: a) an End-User Query is the
query over a model solved by means of the enactment of a
solution process; b) an Intermediate Query is a query gen-
erated by the SPDL Compiler and used to define the so-
lution process. Thus, more Intermediate Queries may be
produced to answer to one End-User Query. The simplest
case is the generation of an Intermediate Query over a sub-
model, required to cause the invocation of an Adapter (and
the execution of the associated solver). The answer to these

Intermediate Queries is mainly used for instantiation pur-
poses (to set the values of Model Class parameters during
the solution process as explained in Section 4.1).

A more complex case is the generation of Intermediate
Queries when the End-User Query refers to a model which
exploits Implicit Multiformalism. In this case, the results
requested by the End-User Query may be related to models
that are generated during the solution process, so that the
relationship between the Intermediate Queries and the End-
User Query is not immediate and there is not a direct rela-
tion among the results obtained during the solution process
and the answer to the End-User Query. Proper functions
have to be given in order to define the relationship between
queries and results. These functions are called Translation
Functions.

Let mqu ∈ MQL denote an End-User Query, a Transla-
tion Function QT must be given to express mqu by means
of r Intermediate Queries:

QT : mqu ∈ MQL → mqs
1, · · · , mqs

r ∈ MQL

where mqs

k (k ∈ {1, ..r}) are written in MQL but refer
to sub-models that are not explicitly part of the model re-
ferred by mqu. A Translation Function RT must be given
to calculate the result asked by the End-User Query from
the answers to the r Intermediate Queries. Let rss

k ∈ RSL
(k ∈ {1, ..r}) denote the results obtained during the solution
process to answer to the queries mqs

k:

RT : rss
1, · · · , rss

r ∈ RSL → rsu ∈ RSL

The Translations Functions are defined off-line and used
by the Results Manager. They are associated to the available
Bridge formalisms and stored in the Repository.

4.5 Workflow Engine
The Workflow Engine (WFE) is the core of the solving

infrastructure of OMF: it orchestrates the other OMF com-
ponents in order to enact the solution processes used to solve
models. Workflow languages are the best candidates for de-
scribing complex orchestration patterns [21] and for this rea-
son SPDL is a workflow language [17] developed to describe
the OMF solution processes, that are (ad-hoc) workflow pro-
cesses [23].

Complex control flow path and data path can be defined
by SPDL. The invocation of Adapters or other software
modules is represented by an Activity. Transitions link ac-
tivities and define the execution order. Proper conditions
may be defined in order to allow parallel, sequential or con-
ditional execution of activities. Loops can also be defined,
by using proper activities. Each activity is performed by
a Participant which is an elaborating node able to execute
Adapters or other software modules. Since a software mod-
ule may be replicated on more participants, the WFE is also
able to perform a dynamic load balancing when invoking
Adapters and other applications.

Hence, in order to manage the solution process, the work-
flow engine performs the following tasks:

• Instantiates the applications needed to perform the so-
lution process activities;

• Performs a dynamic load balancing on participant nodes;

• Performs routing of data needed by the applications to
accomplish their tasks.

Proper scheduling strategies are implemented in the WFE
kernel, that is described in [17].

4.6 SPDL Compiler
The SPDL compiler allows for building solution processes

from the model definitions and from the End-User Queries.
Multi-formalism models are described by using particular

formalisms called Bridges as explained in Section 1.
Sub-models and operators are elements that belong to

Bridge Model Classes. Operators are used to connect sub-
models and carry information about the composition seman-
tics.

Operators have been introduced in [15] and the discussion
of this topic is out of the scope of the paper. In the following
the operators will be briefly described in order to explain
how they are used by the SPDL Compiler in order to support
the automatic generation of a solution process.

OMM distinguishes two kinds of operators: operators that
imply models manipulation and operators which require the
evaluation of results from submodels in order to instanti-
ate or modify other sub-models during the enactment of a
solution process.

The semantics of the operators related to models manip-
ulation strictly depends on the formalisms used to describe
sub-models, the operators related to the evaluation of results
are more general and they can be applied to all sub-models.
Sub-models linked by edges to operators are their operands.
Depending on edges orientation it is possible to distinguish
input and output operands.

The analysis of the graph by which the composed mod-
els are defined produce information useful to generate the
solution processes.

From the graph structure of a composed model it is pos-
sible to identify:

• sequences of activities that have to be enacted by the
WFE;

• subprocesses that can be executed in parallel;

• join and split points in the process control flow.

The SPDL Compiler is divided into two main components:
a front-end and a back-end. The front-end parses the Bridge
graph structure producing an intermediate code that can be
used by the back-end in order to define a solution process.

The pseudo-code of the main front-end analysis procedure
is reported below:

1.Bridge-Graph subGr;
2.Bridge-Graph ordSubGr;
3.list ordOperators;
4.list ordOperands;
5.// orders subGr byusing a topological depth first
6.// ordering algorithm
7.ordSubGr := DepthFirstOrder(subGr);
8.//separates the (ordered) lists of operators
9.//and operands
10.ordOperators := operatorsIn(ordSubGr);
11.ordOperands :=operandsIn(ordSubGr);
12.for (each Operand)
13.begin
14. identify pre/post conditions;
15.end
16.identify sequences
17.identify parallels

18.translate operators in sequences of micro-operations
19.produce front-end output.

The graph that represents the model to analyze is denoted
subGr (line 1).

First of all subGr is ordered by using a depth first topo-
logical ordering algorithm (line 7) and then operators and
operands are divided into two lists maintaining this order
(lines 10,11). The ordering brings a definition of pre and
post conditions over operators.

An operator pre-condition is a condition that has to be
verified in order to allow the enactment of actions related
to the operator semantics. An operator post-condition de-
fines which are the submodels that can be analyzed after the
enactment of a such an action.

The pre and post conditions are identified (loop on line
from 12 to 15) and then analyzed by the compiler. Depend-
ing on pre and post conditions, activities that can be exe-
cuted in sequence or in parallel are identified (lines 16,17).
In addition join and split points in the control flow are de-
fined.

Notice that if an operator Op1 has pre-condition pre1 and
post-condition post1, and if Op2 has pre-condition pre2 and
post-condition post2, and if post1 = pre2, than Op2 has also
pre1 as pre-condition. We address briefly this property as
condition chaining.

The operator semantics is translated into a sequence of
solution process activities (called micro-operations). These
activities depend on source (input) and destination (out-
put) operands of an operator. In the case of operators re-
lated to model manipulation, the micro-operations depend
on operands structures and formalisms. If the models re-
quires the exploitation of result-related operator, the micro-
operations to enact during the solution process involve di-
rectly the execution of the OMF core components. The more
common micro-operations (MO) that the Compiler can man-
age are the following:

• Compute(property on a model);

• Assign (source, destination);

• Evaluate (expression);

• Retrieve (property on a model).

The Compute MO allows for the evaluation of a prop-
erty on a model by solving it. It involves the definition
of a proper query on a (sub)model and the execution of a
proper Adapter in order to retrieve the value of the prop-
erty. The obtained result is then stored in the proper OMF
Repository.

The Assign MO allows a given value (source) to be as-
signed as property of a given (sub)model element (destina-
tion). This involves the execution of the Results Manager if
the source was a previously retrieved result, and the execu-
tion of the Instancer on the proper model to build a Model
Object.

The Evaluate MO is used to evaluate expressions on given
elements (for example variables, other results etc). The Re-
sults Manager parses the expression evaluating the results.
If expression variables are model properties or results, it re-
trieves their values from model definitions and results in the
Repository.

The Retrieve MO is similar to Compute with the differ-
ence that no solution is requested. Adapters will not be
invoked and only the Results Manager is involved in this
MO.

The above MO can be nested to build more complex oper-
ators. For example the following micro-code defines the as-
signment: M2.e2.p2 = 1/(M1.e1.p1), where M1 is a model
object to solve, M2 is a model class to instatiate, e1 and
e2 are respectively elements of M1 and M2 and finally p2
is a property of the element e2 and p1 is a property of the
element e1. The value of p1 is not contained in the M1 defi-
nition but can be computed by solving the model. The value
of p2 is determined by applying the previous assignement.

<ASSIGN>
<LEFT> "M2.e2.p2" </LEFT>
<RIGHT>

<EVALUATE> 1/<COMPUTE Par="M1.e2.p1"/> </EVALUATE>
</RIGHT>
</ASSIGN>

This kind of operator will be used in Section 5.
The output of the compiler front-end is an XML docu-

ment. It contains both information about sequential and
parallel paths in the solution process control flow, and the
sequences of MOs to be used to generate the solution pro-
cess.

The compiler back-end will get this output in order to
substitute the right OMF component invocation into the so-
lution process, translating the front-end representation into
SPDL. The Repository will be used in order to choose the
right Adapter and options to be activated during the solu-
tion process.

4.7 The User View
Fig. 2 shows the OMF users point of view. There exist

three main types of users:

1. users wishing to integrate existing tools or solvers into
the framework (actor Tools Integrator);

2. users writing solution processes (actor Solution Writer);

3. users that only use the framework choosing models and
solution processes from libraries (actor Model User).

Model
User

Tools
Integrator

Solution
Writer

Compose
Lib. Models

Solve
Model

Run
Solution Define Queries/

Get Results

Write Solution
Process

Integrate
Tools

Write
Adapters

<<include>>
<<include>>

<<extend>>

<<include>>

Instance
Model

<<include>>

<<include>>

Figure 2: OsMoSys User View

The Tool Integrator integrates existing tools into the frame-
work. As described in Section 4.3, to accomplish this task
an Adapter must be written by using the Adapter Interface

library. The other users can use Adapters and tools in the
solution process they wish to enact.
The Solution Writer writes solution processes for a certain
set of model classes. The OMF Compiler is able to write so-
lution processes automatically, but the following situations
may happen:

• an user want to define a solution process without in-
voking compiler services.

• more solvers are ”adapted” in the OMF which can en-
act a given COMPUTE MO.

• complex queries are defined on the user model and
operators are not directly related to that queries.

In such cases, the Solution Writer must to be able to create
(in the first case) a solution process or to modify (for other
cases) a solution process produced by the compiler. In the
second case, the actor modifies adapter invocations directly
in the SPDL code produced by the compiler, while in the
last case usually it must be able to modify the structure of
the solution process introducing further steps to obtain the
needed results.

The Solution Writer uses the SPD GUI to write the solu-
tion process and to define queries needed to implement the
bridge composition semantics.
The last actor is the Model User, who has the main purpose
to solve a model by choosing a solution process from the li-
brary within the ones defined for that model (Solve Model).
To accomplish this task, all model classes have to be in-
stantiated (Instantiated Model). Then queries have to be
defined on the model (Define Queries/Get Results) in order
to retrieve results after the execution of the solution pro-
cess (Run Solution) enacted by the WFE. The Model User
mainly interacts with the Drawing GUI.

We remember that two kinds of queries can be defined in
the OMM:

• End-User Queries: they are defined by the user to spec-
ify results he/she wants to evaluate from the model
solution.

• Intermediate QUeries: they are used to define and
properly enact the solution process needed to compute
the results defined in the previous point. These queries
are generated by the back-end of the OMF compiler
when a COMPUTE MO is defined in the front-end
output.

5. A MULTI-SOLUTION EXAMPLE
In this Section we exemplify the use of OMF. The starting

point is a multiformalism model of a simple RAID 5 system
described in [14]. The focus here is not on the construction
of the model, but on the generation of the solution process
and the role of the operators.

The system consists of two controllers (one is integrated
into the disk array, the other issues requests to the first) and
three disks. Data can be written in full stripes (the most of
the cases, according to caching mechanisms) or half stripes,
and are always read in full stripes. Integrity of the system
relies on disks: if no disk is damaged the system is in the Ok
state, if one disk is damaged the system is in the Degraded
state, if two or all of the disks are damaged the system is in
the Dead state (it is not working). A performability model

of this system is built to evaluate the mean response time
of read and write operations (RWMRT) while the system is
working. The model is obtained by composing seven sub-
models.

Two GSPN models are used to evaluate the throughput
of read and write operations when the system is working
in the Ok or Degraded state (they are named GSPNOK and
GSPNDEGR in the following). The throughput is associated
to a transition of the GSPN models named Sync.

Simple queues are used to evaluate the queuing effects on
read and write operations. They are described by means
of the Queueing Network (QN) formalism. The mean of the
service rate distributions of QNOK and QNDEGR are the in-
verse of the throughput of the Sync transition of GSPNOK

and GSPNDEGR respectively (in the hypothesis that the
queues can be approximated by M/M/1 queues).

QNCONTR is the QN that describes the behavior of the
disk array controller; to obtain the RWMRT of the system,
the arrival distribution of QNCONTR takes into account the
probability that the system is in the Degraded or Dead state:
two Fault Tree models (FTDEGR and FTDEAD) are used to
evaluate these probabilities that are associated to the Top
Events of the FT models, named TEDEGR and TEDEAD.

A Bridge formalism is used to build a composed model
able to contain Model Classes compliant with GSPN, QN
and FT Metaclasses and the proper composition operators.

The composed model of the RAID system is shown in
Fig. 3, where squares encapsulate Model Classes and rhom-
buses represent operators linked to the model interfaces by
means of edges.

GSPN_OK

GSPN_DEGR

(CER)
[2]

!

(CER)
[3]

! QN_DEGR

QN_OK

QN_CONTR

!

FT_DEAD

Bridge GSPN-QN-FT

FT_DEGR

(CER)
[1]

Figure 3: The case-study model

The Model Classes GSPNOK , GSPNDEGR, FTDEGR and
FTDEAD are then instantiated (the parameters of GSPN
models are the operations rates obtained through real mea-
sures from a RAID system and the parameters of the FT
models are the mean time between failures of the disks which
are given by their specification). Nevertheless, the QN Model
Classes cannot be fully instantiated, since the value of some
parameters will be known only during the solution process:
the semantics of this composition requires exchanges of in-
formation (results) between the sub-models in order to ob-
tain the automated solution of the RAID model. The Query
defined on this model asks for the evaluation of the RWMRT
of the system, that is obtained by evaluating the sojourn
time distribution of the QNCONTR model. Hence, the main
steps to solve the models are the followings:

1. The GSPNOK model is solved to compute the Sync
transition Throughput.

2. The inverse of this value is evaluated and assigned

to the service rate of the server in the QNOK model
(QNOK is now fully instantiated).

3. The GSPNDEGR model is solved to compute the Sync
transition Throughput.

4. The inverse of this value is evaluated and assigned
to the service time of the server in QNDEGR model.
(QNDEGR is now fully instantiated).

5. The FTDEGR model is solved to compute the TEDEGR

probability.

6. The FTDEAD model is solved to compute the TEDEAD

probability.

7. The QNOK model is solved to compute the mean so-
journ time.

8. The QNDEGR model is solved to compute the mean
sojourn time.

9. The QNOK mean sojourn time is weighted by the 1-
(TEDEGR+TEDEAD) probability.

10. The QNDEGR mean sojourn time is weighted by the
TEDEGR probability.

11. The sum of these weighted mean sojourn times is eval-
uated and assigned to the arrivals mean rate of the
QNCONTR model.

12. The QNCONTR model is solved in order to compute
the RWMRT.

The semantics of the CER operator in Fig. 3 is the fol-
lowing: it requires the computation of values of some el-
ements parameters of some models (Source Models) which
are linked to it by incoming edges. The computed results are
manipulated in order to be used as instantiation information
for other submodels (Destination Models) parameters. The
destination models are linked to the operator by outgoing
edges. In brief CER operator needs three MO to be en-
acted, an ASSIGN, an EVALUATE and a COMPUTE, in
the following order :

<ASSIGN>
<LEFT> "Destination Model parameter" </LEFT>
<RIGHT>
<EVALUATE>
f(<COMPUTE Par="Source Model parameter"/>)
</EVALUATE>

</RIGHT>
</ASSIGN>

As for the step previously described, step 1 requires an
ASSIGN to be performed, while step 2 requires to perform
a chaining of the COMPUTE and EVALUATE operators.

The front-end intermediate code generated by the com-
piler for the case study is reported below:

<SEQUENTIAL>
<PARALLEL>

<SEQUENTIAL>
<ASSIGN>
<LEFT> "QN_OK.serv.rate" </LEFT>
<RIGHT>

<EVALUATE>
1 /<COMPUTE Par="GSPN_OK.Sync.Throughput" />

</EVALUATE>
</RIGHT>

</ASSIGN>
</SEQUENTIAL>

<SEQUENTIAL>
<ASSIGN>
<LEFT> "QN_Degr.serv.rate" </LEFT>

<RIGHT>
<EVALUATE>

1 /<COMPUTE Par="GSPN_Degr.Sync.Throughput"/>
</EVALUATE>

</RIGHT>
</ASSIGN>

</SEQUENTIAL>

</PARALLEL>

<SEQUENTIAL>

<ASSIGN>
<LEFT> "QN_CONTR.arrivals.rate" </LEFT>
<RIGHT>
<EVALUATE>

(1-(<COMPUTE Par="FT_Degr.TEdegr.Prob"/>+
<COMPUTE Par="FT_Dead.TEdead.Prob"/>)*
<COMPUTE Par="QN_OK.sojourn.mean"/>) +
(<COMPUTE Par="FT_Degr.TEdegr.Prob"/>)*
<COMPUTE Par="QN_Degr.sojourn.mean"/>)

</EVALAUTE>
</RIGHT>

</ASSIGN>

<COMPUTE Par="QN_CONTR.sojourn.mean" />
</SEQUENTIAL>

</SEQUENTIAL>

The algorithm described in section 4 is applied to the
bridge model in Fig.3 as described in the following. Sub-
models and operators are the nodes of the graph that are
ordered by applying the DepthF irstOrder algorithm. Then
pre and post conditions are identified. The instantiation of
the QNCONTR submodel is a post-condition for the CER[1]
operator and the solution of QNOK , QNDEGR, FTDEGR,
and FTDEAD submodels are pre-conditions of the same op-
erator. Post-condition and pre-condition for the CER[2]
operator are respectively the instantiation of the QNOK

submodel and the solution of the GSPNOK . Finally the
instantiation of the QNDEGR submodel and the solution of
the GSPNDEGR are respectively the post-condition and the
pre-condition of the CER[3] operator. Every solution of a
submodel has its instatiation as pre-condition. Notice that
the GSPNOK , GSPNDEGR, FTDEGR and FTDEAD sub-
models are model objects in the bridge model definition.
The condition chaining property states that also the solu-
tions of GSPNOK and GSPNDEGR submodels have to be
considered as pre-conditions of the CER[3] operator.

CER[1] can be exploited only after the enactment of CER[2]
and CER[3] operators. In addition, these two last operators
do not have any common pre-condition and can be enacted
in parallel. For this reason the front-end output contains
a solution process skeleton which comprises the enactment
of CER[2] and CER[3] in parallel followed (in a sequence
definition) by the exploitation of the CER[1] operator.

The back-end translates the previous code into an SPDL
representation of the solution process. Notice that further
optimization can be exploited in this step: all COMPUTEs

related to the FT models in the last SEQUENTIAL step can
be executed concurrently with the GSPN models solutions;
in addition the sojourn mean time in the QNDEGR queue
can be evaluated once in the last EVALUATE section.

The SPDL code defines a solution process workflow which
is depicted in Fig. 4.

Solve
GSPN_OK

(1)

Solve
GSPN_Degr

(3)

Solve
FT_DEGR

(5)

Solve
FT_DEAD

(6)

Get Res from
GSPN_OK and

instantiate
QN_OK

(2)

Get Res from
GSPN_Degr and

instantiate
QN_Degr

(4)

Solve
QN_OK

(7)

Solve
QN_Degr

(8)

Get Res from
previous models

 and
instantiate
QN_Contr
(9-10-11)

Solve
QN_Contr and

get Result
(12)

Figure 4: The case-study solution process

Each Solve Model phase is related to a COMPUTE. It
involves the execution of the proper Adapter to solve the
Model and retrieve results from it. The result to retrieve is
specified in a proper query.

Each Get Res from Model1 and instantiate Model2 is
related to ASSIGNs. Eventually some the results can be ma-
nipulated by some expressions (when an EVALUATE MO
is defined in the front-end code). This phase is performed
by the Result Manager that is able to retrieve results from
the proper OMF repository and to evaluate some expres-
sions using results values. In addition the Result Manager
is able to produce instantiation information for submodels
that have to be instantiated later during solution process
enactment.

Notice that in Fig. 4 edges outgoing the same node repre-
sent split points in the solution process, while edges incom-
ing in the same node represent join points.

6. CONCLUSIONS
In this paper the architecture of the OsMoSys Multi-solution

Framework (OMF) has been presented. The framework is
being developed in the context of the OsMoSys research
project whose aim is the definitions of theoretical means
and CASE tools to build multi-formalism models of com-
plex systems, and to promote formal modeling in industrial

settings. Hence, OMF provides the mechanisms to analyze
and solve multi-formalism (composed) models, built accord-
ing to the OsMoSys Modeling Methodology, i.e. according
to an object oriented approach.

The framework supports flexible solution processes and
allows for the integration of heterogeneous external solvers
(or other software applications) at low development costs,
simply implementing the Adapter Interface provided by the
framework.

The OMF can be used by users expert in formal modeling
but it can be also used to realize COTS (Commercial off-the
Shelf) strategies in formal models development, since it may
provide libraries of models and solution processes ready to
be instantiated and used.

At the moment the framework is almost entirely imple-
mented. The Compiler module, which has been recently
introduced in OsMoSys, is being developed, and the same
holds for the functionalities of the Instancer which allow to
support the interface polymorphism. Nevertheless, the over-
all framework architecture is stable.

Future research work on the methodology is also necessary
to fully define different classes of composition operators and
extend the OsMoSys Modeling Methodology (OMM) with
the concepts of template models and behaviour inheritance.

Further efforts will be focused on exploiting the OMF for
solving multi-formalism models in the field of dependability
and security of real-world complex systems and infrastruc-
tures, like the model presented in [10] which addresses the
analysis of critical railway controllers.

7. REFERENCES
[1] Allen, R. 2001. Workflow: An Introduction.

Extracted fromThe Workflow Handbook 2001 ,
Workflow Management Coalition,
http://www.wfmc.org/standards/docs.htm

[2] Bause, F., Buchholz, P., and Kemper, P. 1998.
A Toolbox for Funtional and Quantitative Analysis of
DEDS. Proc. 10th International Conference on
Modelling Techniques and Tools for Computer
Performance Evaluation (TOOLS’98), 356–359.

[3] Behrmann, G., David, A., Larsen, K. G., Möller,

O., Pettersson, P., and Yi, W. 2001. Uppaal -
Present and Future. Proc. of 40th IEEE Conference on
Decision and Control (CDC’01), 2881-2886.

[4] Bohnenkamp, H., Hermanns, H., Katoen, J. P.,

and Klaren, R. 2003. The Modest Modeling Tool
and Its Implementation. Computer Performance:
Modelling Techniques and Tools - Tools for Evaluation
of Stochastic Models, LNCS 2794, 116–133.
Springer-Verlag.

[5] Chiola, G., Franceschinis, G., Gaeta, R., and

Gribaudo, M. 1995. GreatSPN 1.7: Graphical
Editor and Analyzer for Timed and Stochastic Petri
Nets. Performance Evaluation, special issue on
Performance Modeling Tools 24, 1&2 (November),
47–68. Elsevier.

[6] Codetta-Raiteri, D., Franceschinis, G., and

Gribaudo, M. 2006. Defining formalisms and
models in the Draw-Net Modeling System. Proc. of the
Fourth Int. Workshop on Modelling of Objects,
Components and Agents (MOCA06), 123–144.

[7] Codetta Raiteri, D., Franceschinis, G., Iacono,

M., and Vittorini, V. 2004. Repairable Fault

Tree for the Automatic Evaluation of Repair Policies,
Proc. of the Performance and Dependability
Symposium, 659–668.

[8] Deavours, D., Clark, G., Courtney, T., Daly, D.,

Derisavi, S., Doyle, J. M., Sanders, W. H., and

Webster P. G. 2002. The Möbius Framework and
its Implementation. IEEE Transactions on Software
Engineering 28, 10, 956-Ű969.

[9] Flammini, F., Iacono, M., Marrone, S., and

Mazzocca, N. 2005. Using Repairable Fault Trees
for the evaluation of design choices for critical
repairable systems. Proc. 9th IEEE Symposium on High
Assurance Systems Engineering (HASE2005), 163–172.

[10] Flammini, F., Marrone, S., Mazzocca, N., and

Vittorini, V. 2006. Modelling System Reliability
Aspects of ERTMS/ETCS by Fault Trees and Bayesian
Networks. Safety and Reliability for Managing Risk:
Proceedings of the 15th European Safety and Reliability
Conference (ESREL’06), 2675–2683.

[11] Franceschinis, G., Gribaudo, M., Iacono, M.,

Marrone, S., Mazzocca, N. and Vittorini, V.

2004. Compositional modeling of complex systems:
contact center scenarios in OsMoSys. Proc. of
Applications and Theory of Petri Nets 2004, 25th
international conference (ATPN’04), LNCS 3099,
177–196. Springer-Verlag.

[12] Franceschinis, G., Gribaudo, M., Iacono, M.,

Mazzocca, N., and Vittorini, V. 2002. Towards
an object based multi-formalism multi-solution
modeling approach. Proc. of the 2nd Workshop on
Modelling of Objects, Components and Agents
(MOCA’02).

[13] Gribaudo, M., Iacono, M., Mazzocca, N., and

Vittorini, V. 2003. The OsMoSys/DrawNET XE!
Languages System: A Novel Infrastructure For
Multi-formalism Object-Oriented Modelling. Proc. 15th
European Simulation Symposium and Exhibition.

[14] Gribaudo, M., Moscato, F., Mazzocca, N. and

Vittorini, V. 2005. Multisolution of Complex
Performability Models in the OsMoSys/DrawNET
Framework. Proc. 2nd International Conference on the
Quantitative Evaluation of Systems (QEST’05), 85–94.

[15] Moscato, F. 2005. Multisolution of
Multiformalism Models: Formal Specification of the
OsMoSys Framework , Ph.D. Thesis, Second University
of Naples, Department of Information Engineering.

[16] Moscato, F., Gribaudo, M., Franceschinis, G.,

Mazzocca, N., and Vittorini, V. 2007.
Introducing interface polymorphism in multi-formalism
modeling. Submitted to Journal of Software and
System Modeling . Springer.

[17] Moscato, F., Mazzocca, N., and Vittorini, V.

2004. Workflow Principles Applied to Multi-Solution
Analysis of Dependable Distributed Systems. Proc. of
the 12th Euromicro Conf. on Parallel, Distributed and
Network-based Processing , 134–141.

[18] Sahner, R. A., Trivedi, K. S., and Puliafito, A.

1996. Performance and Reliability Analysis of
Computer Systems - An Example-based Approach Using
the SHARPE Software Package. Kluwer Academic
Publisher.

[19] Sanders, W. H., Courtney, T., Deavours, D.,

Daly, D., Derisavi, S., and Lam, V. 2003.
Multiformalism and Multisolution-method Modeling
Frameworks: The Möbius Approach. Proc. of the
Symposium on Performance Evaluation - Stories and
Perspectives, 241–256.

[20] Trivedi, K. S. 2002. SHARPE 2002: Symbolic
Hierarchical Automated Reliability and Performance
Evaluator. Proc. of the Symposium on Dependable
Systems & Networks (DSN’02), 544.

[21] van der Aalst, W. M. P., ter Hofstede,

A. H. M., Kiepuszewski, B. and Barros, A. P.

2003. Workflow Patterns. Distributed and Parallel
Databases 14, 3 (July), 5–51.

[22] Vittorini, V., Iacono, M., Mazzocca, N., and

Franceschinis, G. 2004. The OsMoSys approach
to multi-formalism modeling of systems. Journal of
Software and System Modeling 3, 1 (March), 68-Ű81.
Springer.

[23] WFMC Coalition. 1999. Workflow Management
Coalition Terminology and Glossary, WFMC-TC-1011,
http://wfmc.org.

