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ABSTRACT 
This paper surveys techniques for the recognition and treatment 
of self-similar network or internetwork traffic. Various 
researchers have reported traffic measurements that demonstrate 
considerable burstiness on a range of time scales with properties 
of self-similarity. Rapid technological development has widened 
the scope of network and Internet applications and, in turn, 
increased traffic volume. The exponential growth of the number 
of servers, as well as the number of users, causes Internet 
performance to be problematic as a result of the significant 
impact that long-range dependent traffic has on buffer 
requirements.  Consequently, accurate and reliable 
measurement, analysis and control of Internet traffic are vital. 
The most significant techniques for performance evaluation 
include theoretical analysis, simulation, and empirical study 
based on measurement.  In this research, we discuss existing and 
recent developments in performance evaluation and control tools 
used in network traffic engineering. 
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1.  INTRODUCTION 
Several researchers report that today’s network traffic 
exhibits properties of self-similarity and long-range 
dependence. Self-similar processes were first identified by 
Kolmogorov [1] in 1941. These processes were then 
brought to the attention of statisticians by Mandelbrot and 
colleagues in the late 1960’s and early 1970’s [2, 3, 4, 5]. 
Mandelbrot outlined the important dynamic characteristic 
of fractional Gaussian noises (fGn), characteristics which 
could be quantified with the Hurst exponent. The ordering 
of such series determined the dynamic measures (i.e. 
long-range dependence or LRD). Self-similar and LRD 
characteristics of Internet traffic have attracted the 
attention of researchers since 1994, when it was 
discovered that some aspects of LAN traffic exhibits self-
similar, rather than Poisson, behaviour [6].  

 
 
 

LRD is of great significance in traffic engineering 
problems such as measurement, queuing strategy buffer 
sizing and admission and congestion control. In [7] it is 
shown that consequences of LRD are packet and 
application level delays that cause a heavy-tailed 
distribution. The Transmission Control Protocol (TCP) 
estimates round trip timer values from peer 
acknowledgements and, as a result, congestion appears 
more frequently when maintaining impulsive behaviour 
with an increase in load. The influence of LRD properties 
on delay at packet and application level is reported in [8]; 
metrics of network performance, such as throughput, 
packet loss, latency and buffer occupancy levels, are 
affected by the presence of LRD phenomenon across 
many types of networks. The impact of LRD on Quality 

of Service (QoS) is analysed in [9] showing that, the 
greater the LRD, the lower the QoS.  
 
The LRD property of traffic fluctuations has important 
implications for the performance, design and 
dimensioning of the network [6]. A simple, direct 
parameter, characterizing the degree of LRD, is the Hurst 
parameter. The Hurst exponent (or Hurst parameter, H), 
which more than a half-century ago was proposed for the 
analysis of reservoir long-term storage capacity [10], is 
used today to measure the intensity of LRD in network 
traffic. A number of methods have been proposed to 
estimate the Hurst parameter. Some of the most popular 
include aggregated variance time (V/T) [11], Rescaled-
range (R/S) [6, 10] and the Higuchi and wavelet-based 
methods [12, 13] although there are many others. In all 
these methods, H is calculated by taking the slope from a 
log-log plot. Over time, the wavelet-based Hurst 
parameter has acquired popularity in estimating LRD 
traffic. The intensity of long-range dependence can be 
measured for file or document size [14], packet-count 
[15], inter-arrival time [16], frame size [17], connection 
size [18], packet length [19], byte-count [6], and bit or 
byte rate [20] amongst others. 
 
A number of factors, such as a slow start phase of the 
congestion window, packet losses, ack-compression of 
TCP traffic and multiplexing of packets at the bottleneck 
rate, can cause either short- or long-term burstiness in the 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
Valuetools'07, October 23-25, 2007, Nantes, France. 
Copyright 2007 ICST 978-963-9799-00-4 

 



behaviour of TCP flow [21]. The research in [22] 
investigates how various versions of TCP congestion 
control affect network performance when traffic is bursty. 
TCP represents the dominant transport protocol of the 
network (e.g. Internet), which contributes to the 
propagation of self-similarity. It is shown in [23] that TCP 
itself inherits self-similarity when it is combined with 
self-similar background traffic in a bottleneck buffer 
through the transform function of the linear system.  
 
This paper is organised as follows. Section 2 describes the 
relationship between self-similarity, long-range 
dependence and the autocorrelation function (ACF). 
Section 3 discusses the performance of the estimators and 
their reliability. Section 4 explains heavy-tailedness in 
traffic patterns.  Section 5 considers the issues involved in 
controlling network traffic. Section 6 gives a brief 
account of modelling the network traffic. 

2.  THE RELATIONSHIP BETWEEN 

SELF-SIMILARITY, LRD AND ACF 
A phenomenon that is self-similar looks or behaves the 
same when viewed at different degrees of magnification 
or different scales on a given dimension and is bursty over 
all time scales. Figure 1 depicts self-similarity observed in 
physical or natural phenomena such as fern leaves in a 
branch, sunflowers in a plot, scheme of carpet, human 
being itself when gathering etc. The bottom left shows a 
higher magnification of a small segment of an image that 
demonstrates self-similarity. This type of self-similarity at 
all scales characterises the fractal nature of an image. 
Thus, self-similar data have a common property with 
fractals: when we zoom in on part of the traffic generated 
by the data, we observe the same structure. Many 
successive zooms show the same result [24] as shown in 
the bottom right. 

Self-similarity is the property of a series of data points to 
retain a pattern or appearance regardless of the level of 
granularity used and is the result of LRD in the data 
series. If a self-similar process is bursty on a wide range 
of timescales, it may exhibit LRD. Often lagged 

autocorrelations are used in time series analysis for 
empirical stationary tests.  Self-similarity manifests itself 
in the time series of arrivals’ LRD (i.e., long memory). 
The evidence of very slow, linear decay in the sample lag 
ACF indicates nonstationary behaviour [25]. Long-range-
dependence means that all the values at any time are 
correlated in a positive and non-negligible way with 
values at all future instants. 

A continuous time process ( ){ }0, ≥= ttYY  is self-similar 

if it satisfies the following condition: 
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[26] where H is the index of self-similarity (the Hurst 
parameter) and the equality is in the sense of finite-
dimensional distributions. 

The stationary process X is said to be an LRD process if 

its ACF is non-summable [27], that is if ∞=∑
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Details of how the ACF decays with k are of interest 
because the behaviour of the tail of the ACF completely 
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Equation (2) implies that the LRD is characterized by an 
ACF that decays hyperbolically rather than exponentially 
fast.  

LRD processes then are characterised by a slowly 
decaying covariance function that is non-summable. 
Numerous studies [6, 28, 29] of different types of data 
networks (LANs & WANs) and services/applications 
(ATM, Frame Relay, WWW, etc.) have shown that 
aggregated traffic at packet level exhibits slowly decaying 
autocorrelation that leads to LRD. The periodic nature of 
the traffic leads to high and slowly decaying 
autocorrelation [30]. When network performance is 
affected by LRD, data are correlated over an unlimited 
range of time lags and this property results in a scale 
invariance phenomenon. Then no characteristic time scale 
can be identified in the process: they are all equivalent for 
describing its statistics - the part resembles the whole and 
vice versa.  LRD and self-similarity are not equivalent. A 
random process is self-similar if  0<H<1. However, the 
process is both LRD and self-similar when 0.5<H<1. 
Therefore, all LRD processes are self-similar, but all self-
similar processes do not hold the properties of LRD. 

In Figure 2, the top left plot illustrates typical LRD and 
SRD (short-range dependent) processes. The top right plot 
shows traffic burstiness for real data. Having positive 
correlations of data (bit/second), the ACF plot at the 
bottom confirms that the traffic is LRD. Clearly, traffic 
persists for more than 9 seconds. These real data were 
taken from the UNC archive [31] with trace collections 
obtained from a Gigabit Ethernet link. The data set 
considered here are number of TCP bytes per 10 ms bin. 
The sample length (N) considered for the dataset is 
10,000. 



3.  FINDING RELIABLE AND ROBUST 

ESTIMATORS 
Several studies report problems with existing estimators, 
such as the unreliability of the wavelet-based Hurst 
parameter [32, 33, 34, 35], R/S analysis [36, 37], 
aggregated V/T analysis [38, 39, 40], Whittle estimator 

[33, 41] and Periodogram analysis [39]. The estimated 
Hurst parameters from the wavelet analysis, aggregated 
variance and Whittle method have been presented [33] for 
both real and synthetic data. 
 

 

 
 

   
 

  
Figure 1.  Self-similar phenomena 
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Figure 2.  Autocorrelation plot and burstiness of network traffic 



 

 It is observed that the Whittle and wavelet methods 
overestimate the degree of self-similarity (i.e., produce 
H>1). In [34] the advantages and limitations of the 
wavelet estimators are explored. Here it is found that a 

traffic trace with a number of deterministic shifts in the 
mean rate results in a steep wavelet spectrum, which leads 
to overestimating the Hurst parameter.  
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Figure 3.  Reliability of the estimators.  A simulation experiment using the FARIMA(0, d, 0) process. Highest H-

values for 20 different realisations (out of 100 realisations). Sample length N = 16384. [43] 

 
In [42] it is reported that the interpretation of the 
estimated Hurst parameter is problematic in practice. 
Numerous studies have shown that existing estimators 
provide an unreliable estimate of the Hurst parameter (H). 
Having a reliable estimator can yield a good insight into 
traffic behaviour and should eventually lead to improved 
traffic engineering. Figure 3 compares the reliability of 
some popular estimators. Here the 20 highest values of 
the Hurst parameter provided by different estimators are 
shown while the self-similar sequences were generated by 
a fractional autoregressive integrated moving average 
(FARIMA) process for a particular Hurst parameter, H 
[43]. 

It is possible to derive wrong conclusions and wrong 
models when measuring the intensity of the LRD with 
unreliable estimators. In [44, 45] an estimator is 

introduced called the Hurst Exponent from the 

Autocorrelation Function (HEAF) and it is shown that 
(and why) lag 2 in HEAF (i.e. HEAF (2)) is considered 
when estimating LRD of network traffic. [43] considers 
the robustness of HEAF(2) when estimating the Hurst 
parameter of data traffic (e.g. packet sequences) with 
outliers and also the reliability of HEAF(2). Also, based 
on the comparison of simulation experiments shown [43, 
44, 45] for both fGn and FARIMA (0, d, 0) processes, it is 
evident that HEAF(2) is a stable method that quantifies 
the reliable degree of LRD. Through its simplicity, 
robustness and reliability, HEAF(2) can be used to 
estimate the intensity of LRD in real time network traffic. 

 



4.  HEAVY-TAILEDNESS IN TRAFFIC 

PATTERNS 
 
Self-similarity and heavy-tailedness are of great 
importance for network capacity planning purposes, in 
which researchers are interested in developing analytical 
methods for analysing traffic characteristics. The goal of 
traffic characterisation is to determine the nature of the 
traffic and develop tractable models that capture the 
important properties of data, which can eventually lead to 
accurate performance prediction. The uses of traffic 
characterisation include network planning, design, 
capacity management, performance prediction, real-time 
traffic management and network control. The terms long-
range dependent, self-similar and heavy-tailed are 
relatively close in meaning. In fact, superpositions of 
samples from heavy-tailed distributions aggregate to form 
long-range dependent time series.  
 

Many researchers have discussed the effects of heavy-
tailedness in network traffic patterns and shown that 
Internet traffic flows exhibit characteristics of self-
similarity that can be explained by the heavy-tailedness of 
the various distributions involved. The properties of 
heavy-tailed distributions are qualitatively different to 
commonly used memoryless distributions such as the 
exponential, normal or Poisson distributions. [46] 
concludes that such exponentiality assumptions mislead 
exploration of the presence of heavy-tailed distributions. 
The condition of self-similarity is that the ACF of the 
time-series declines as a power-law, leading to positive 
correlations among widely separated observations [47]. In 
the Internet, heavy-tailed distributions have been observed 
in the context of traffic characterization and self-similarity 
is mainly caused by the heavy-tailed nature of the file 
sizes transferred. The distributions having infinite 
variances are called heavy-tailed and the weight of their 
tails is determined by a parameter called the tail index, 

2<α  [48].  
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Figure 4. Estimation of tail index by Hill plot (α =0.76), static-qq plot (α =0.74) and LLCD plot (α =0.80) [49] 

The performance of several estimators of the tail index 
(α ) for heavy-tailed Internet traffic have been studied in 
[49]. A summary of results is shown in Figure 4. In most 
cases, the moment estimator due to an unstable region is 
observed in the graph.  The Hill plot, static qq plot and 
LLCD plot show a good level of agreement when 
estimating the index from graphs.  The results show that 

there are infinite variances (i.e. α < 2) observed in the 
traffic, which is indicative of the existence of heavy-
tailedness in the Internet traffic. 

[50] proposes some analytical models based on the 
Empirical Distribution Function (EDF) statistics, which 
can characterise web traffic. The analyses show that the 



Weibull (three parameters) and generalized Pareto 
distributions (GPD), with the experimental results, are the 
most suitable to approximate the traffic, as shown in 
Figure 5. In addition, the generalized Pareto model (GPD) 
is more suitable for analysing traffic behaviour than the 

simple Pareto model in terms of heavy-tailedness. Hence, 
as an efficient analytical tool, the generalised Pareto model can 
be used for identifying a heavy-tailed nature based on samples 
from web traffic. 
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Figure 5.  Web file size cumulative distribution of different analytic models for NASA (http-95-August) traffic [50] 

5.  CONTROLLING NETWORK TRAFFIC 
Most research in this area concentrates on modelling 
network traffic rather than controlling it. However, 
controlling network traffic should not be overlooked as it 
can help reduce the network load and lead to the 
improvement of QoS in future network performance. [51] 
introduces a novel algorithm, called CoLoRaDe, to 
control the intensity of LRD traffic. Experimental results 
show that CoLoRaDe is capable of reducing the LRD of 
packet sequences received at the router buffer before they 
are transmitted to the core network (i.e. the Internet).  As 
the main function of the CoLoRaDe algorithm is to reduce 
the LRD of packet traffic, it can contribute in reducing the 
network load, leading to an improvement in QoS for the 
Internet of the future.  

A number of factors, such as a slow start phase of the 
congestion window, packet losses, ack-compression of 
TCP traffic and multiplexing of packets at the bottleneck 
rate, can cause either short- or long-term burstiness in 
TCP flow [52]. [53] investigates how various versions of 
TCP congestion control affect network performance when 
traffic is bursty. A significant adverse impact on network 
performance is shown, attributable to traffic self-
similarity and, while throughput declines gradually as 
self-similarity increases, queueing delay increases more 

drastically. TCP represents the dominant transport 
protocol of the Internet, which contributes to the 
propagation of self-similarity [23].  

Various researchers have reported that traffic 
measurements demonstrate considerable burstiness on 
several time scales, with properties of self-similarity. 
Bursty traffic can affect the QoS for all traffic on the 
network by introducing inconsistent latency. It is easier to 
manage the workloads under less bursty (smoother) 
conditions. One of the major drawbacks of TCP/IP is the 
lack of true QoS functionality. QoS in networks, in simple 
terms, is the ability to guarantee and limit bandwidth 
appropriately for certain services and users. Traffic 
shaping is an attempt to control network traffic in order to 
optimize, attempt to optimize or guarantee performance, 
low-latency or bandwidth, and deals with concepts of 
classification, queue disciplines, enforcing policies, 
congestion management, QoS and fairness. [54] 
introduces a novel algorithm, BPTraSha, to control the 
bursty nature of network traffic. Experimental results 
show that the BPTraSha algorithm is capable of 
smoothing out the bursty nature of traffic packets received 
at the router buffer before they are transmitted to the core 
network. Figure 6 shows how the bursty nature of traffic 
(left figure) are smoothed out (right figure) by BPTraSha 
algorithm. 
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Figure 6.  Traffic shaping: LBL-tcp3-pkt, C = 5 Mbps, Number of samples (N) = 65536 [54] 

 
6.  MODELLING NETWORK TRAFFIC 
Traffic models play a significant role in the analysis and 
characterisation of network traffic and network 
performance. Accurate models can provide the 
information of complicated signals and system 
performance through both analysis and simulation.  
Researchers have made a great progress in modelling 
network traffic by introducing an idea of fractal. In this 
case, Fractional Brownian Motion (FBM) has been 
broadly used to model fractal random processes [55, 16, 
56]. FBM is a generalised version of Brownian motion or 
Wiener process and an increment process of FBM is 
called Fractional Gaussian Noise (FGN). These FBM and 
FGN models are based on Gaussian distribution, which 
means that there must exist some negative signals. 
However, the data of network traffic should not be less 
than zeros. A Fractional Autoregressive Integrated 
Moving Average (FARIMA) process is used to model 
self-similar network traffic. FARIMA is a generalisation 
of ARIMA process, can capture both short-range 
dependence (SRD) and long-range dependence at the 
same time.  
 

Fractional Gaussian noise X = (Xk: k = 0, 1, 2, ...) with 
parameter )1,0(∈H is a stationary Gaussian process 

with mean µ , variance 2σ , and autocorrdation function 

r(k) = l/2 ( |k + 1|
2H

 – 2 |k|
2H

 + |k – 1|
2H

), k > 0. Simple 
calculations show that fractional Gaussian noise is exactly 
second-order self-similar with self-similarity parameter H, 
as long as 1/2 < H < 1. Methods for estimating the three 

unknown parameters µ , 2σ  and H are known. 

Fractional ARIMA(p, d, q) processes are a natural 

generalization of the widely used class of Box–Jenkins 
models [57] by allowing the parameter d to take non-
integer values. They were introduced by Granger and 
Joyeux [58] and Hosking [59] who showed that fractional 
ARIMA(p, d, q) processes are asymptotically second-
order self-similar with self-similarity parameter d + 1/2, 
as long as 0< d < 1/2. Fractional ARIMA processes are 
much more flexible with regard to the simultaneous 
modeling of the short-term and long-term behavior of a 
time series than fractional Gaussian noise, mainly because 

the latter, having only the three parameter µ , 2σ and H, 

has a very rigid correlation structure and is not capable of 
capturing the wide range of low-lag correlation structures 
encountered in practice. This flexibility can already be 
observed when considering the simplest processes of the 
ARIMA(p,d,q) family, namely the two-parameter models 
ARMA(1,d, 0) and ARMA(0,d, 1) (see [59]). 
 
As a modelling tool, multifractal stochastic model has 
been suggested by the researchers [55, 60, 61] to 
understand the complex long-range dependence (LRD) 
and memory structure in data traffic and for measurement 
analysis, multiscale techniques such as wavelets have 
been outlined. Also Fractal Point Processes (FPP) are 
used in [62] for systematic analysis, modelling and 
synthesis of point processes with fractal characteristics. 
Researchers [63, 64, 65] used ∞// GM  model to 
analyse the performance of network traffic. An 

∞// GM  input process is the busy server process of a 
discrete-time infinite server system fed by a discrete-time 
Poisson process of rate  (customers/slot) and with generic 
service time (expressed in number of time slots) 
distributed according to G. The process was studied early 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7: Traffic engineering process: Characteristics, 

Simulation, Modelling and Control 
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on by Cox [27, 66] as a model for textile yarn processing. 
His analysis indicated that it was extremely versatile, 
capable of exhibiting correlations over a wide range of 
time scales simply by controlling the tail behavior of the 
distribution of the service time.  

An overview of Traffic Engineering and Analysis 
(Characteristics, Simulation, Modelling and Control) has 
been shown in Figure 7. Due to space limitation we 
cannot provide the explanation of this Figure. However it 
shows a clear view of the network traffic engineering 
process. We believe that this picture can motivate the new 
researchers to work in this area of research. Note that the 
steps in Figure 7 do not necessarily indicate the exact 
sequential process. 

 
7.  CONCLUSION 
Network performance evaluation is important for 
assessing the effectiveness of traffic methods and for 
monitoring and verifying compliance with network 
performance goals.  Results from performance evaluation 
can be used to identify existing problems, guide network 
re-optimization and aid in the prediction of potential 
future problems. Research towards finding and improving 
suitable tools which may help to characterise various 
types of network traffic is consequently, and obviously, 
vital. It is particularly important to understand the link 
between the self-similarity and long-range dependence of 
network traffic and the performance of the networks 
because such characterization can be potentially applied 
for essential control purposes such as traffic shaping, load 
balancing and other strategies of the future. 
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