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ABSTRACT methods or simulation, but making this choice is often arbitrary.

[There is a need for careful comparison of these two methods. In
fact, depending on model parameter settings, it may be useful to

Two different classes of solution methods are generally used: analy-SWitch between the two. We illustrate the advantages and draw-
tic-numeric methods and simulation methods. As most of the lit- Packs of these methods in order to help a modeler decide which

erature explains, the choice between them depends more on th&€ Might be the most efficient for his/her model. Generally peo-
analyst's background than on the system itself. In this paper, we ple consider snmulatlon_when the_ assumptions made by analytical
illustrate the advantages and drawbacks of each method on reafnOdeIS are pot appropriate. !n this paper, we S.hOW that. even vyhen
problems and compare the results. Finally we conclude the paperaII assumptlc_ms are appropriate for an anal_ytlc nhumeric solution,
providing some hints to choose a solution method depending on theStorage requirements preclude such a solution and hence one may

model. We use SPNP, a Petri net analysis package, and CSIM 191hhav? to resortbto smulagon. Th'sl_ h_"?S _Ii)leen po:jnterh_out earlle(:jr_ n
as simulation package to model and evaluate systems. the literature, ‘%‘ never been exp |(_:|ty| ust_rate - ' NIS paper dis-
cusses the relative merits of analytic-numeric methods and simula-

tion when a predefined (time) batch size is fixed.
Keywords We consider here two real life examples: a client/server system
Analytic-numeric methods, Performance evaluation, Simulation. and a cable modem termination system (CMTS) for the purpose
of illustration. Client/server system is a system where a server sta-
tion receives requests from its client stations, processes the requests
1. INTRODUCTION - ) and replies to the requesting stations ([16]). We compare the solu-
Performance and dependability evaluation of modern systems tion methods while varying the number of stations connected to the
becomes a challenging problem due to the complexity involved. server. We restrict ourselves to a single model, with a note that a
Several solution techniques are available in the literature. One study on other models has led to similar conclusions. In a CMTS
of the most commonly used techniques is the analytic one which system, we calculate the capacity oriented availability(COA) for
produces accurate results. Unfortunately, it becomes inapplicablene system. The CMTS system we consider here consists of mul-
quickly, due to the size and complexity of models or due to non- tiple primary CMTS nodes and single backup secondary CMTS
Markovian nature of the problem involved. In such cases, approx- node. For more details see ([18)).
imation methods are applied. Even these approximation methods  The analysis of the client-sever example is made using SPNP
.may.become inefficient in most cases, and then simulation becomes(stochastic Petri net package) ([10, 15]). For analysis of CMTS
inevitable. _ _ _ _system we use SHARPE ([14]) and CSIM 19 ([1]). The systems
In the current literature, authors have either used analytic-numericare modeled by stochastic reward nets (SRNs) ([20]), an extension
of generalized stochastic Petri nets ([3]). SPNP includes analytic-
numeric methods as well as discrete event simulation ([11, 15, 25]).
SHARPE is a analytic-numeric solver which can solve both state-

; ) . X space (meaning models for which the state space has to be gen-
personal or classroom use is granted without fee providatidbpies are - . .
not made or distributed for profit or commercial advantage aatidbpies erated) a}nd no.n-state Space m'odels '“C'Ud'”g MarkO\( chains and
bear this notice and the full citation on the first page. Toyaiberwise, to stochastic Petri nets. CSIM 19 is a process-oriented discrete event
republish, to post on servers or to redistribute to listgunees prior specific simulator implemented in C/C++ as a library of routines which per-
permission and/or a fee. form necessary operations.
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analysis of the client/server system. The paradigm used is SRNs,amples we compare analytic-numeric methods with the standard
for which solution methods are presented in subsection 2.1 (the de-discrete event simulation.

scription of the paradigm is left to appendix A.1, along with the L

description of the software SPNP, CSIM and SHARPE). The de- 2.2 Problem deSCFIptIOI‘I

scription of the system as a SRN is presented in subsection 2.2, For our illustration, we consider a distributed system consisting
and simulation and analytic-numeric methods are compared for the of N workstations and one file server interconnected by a local area
transient behavior in subsection 2.3 and for steady-state in subsecnetwork. For a complete description of the model, see ([16]). To
tion 2.4. In Section 3 we describe the CMTS system. Again, the ayoid confusion in the use of the word “token” which is used both
full description of the paradigm and software used is left to Ap- in ring network and in PN, we will refer it either as the “network to-
pendix A. The transient and steady state result is described in sub-ken" or the “PN token", instead of just “token”. We assume that the
sections 3.3 and 3.4. Finally, we discuss results and conclude inclient-station generates requests which follow an exponential dis-

Section 4. tribution with rate\ and that the transmission time of this request
is also exponentially distributed with rate To simplify the analy-
2. CLIENT/SERVER EXAMPLE sis all other times are also assumed to be exponentially distributed.

We consider a client/server system where a server station re_This includes the time for the network token to move from a station

ceives requests from its client stations, processes the requests an{f @nother one (ratg), the request processing time for the server
replies back to the client stations. This is a common feature in dis- (ratén) and the reply transmission time (ratj Figure 1 shows the
tributed computing. The analysis of such systems becomes difficult SRN model for a token ring network-based system with five client
by various kinds of dependencies in the system ([16]). Generally Stations. B .
Markov chain is able to capture the dependencies but a hand con- PlacesPerr (1 < k < N) represent the condition that station
struction of such a Markov chain is often tedious and infeasible. ¥ S idle and transitiortak that a request is generated at station
For this reason, the use of SRNs as model of representation may bel €N the PN token moves to plagex4 where the client is wait-
helpful. Before going into further details with the model descrip- "9 for the network token to arrive (condition represented by place

tion, we briefly review the solution methods associated with SRNs. £cks). When the network token arrives at statiorthe transmis-
The complete description of SRNSs is left to appendix. sion of the request can be processed (transitid). Then a PN
token is put in placePc(,+1)p (O Psp if k = N, or Poip if
2.1 Brief introduction to solution methods for the current station is the server), which means the network token
stochastic reward nets (SRNSs) is waiting to move to the next station (or to the server Rp).
Petri nets are formal graph models particularly well suited for 1NiS move is made by the firing of the .c.orrespondlng.trar?vaan
representing the flow of information and control in systems with Of tsp- PlacePs; represents the condition that the client's request

concurrency and synchronization characteristics ([22]). We will has arrived at the server, where it is served by firing transitian
limit ourselves here to discrete Markovian SPNs. PlacePs 4 represents the condition that the request is completed.

The first class of solution methods is the analytic-numeric one. WWhen the server has received the network token (condition rep-
To apply these methods, several restrictions must be applied on the/€Sented by placé’ss) , it commences to transmit an answer (by
previous model. The first major limitation is that the distributions firing transitiontss). Next we describe the modeling of the server's
of transition firing times must generally be exponential or immedi- Puffer. PIacesPMt/}f represent the condition that a request is waiting
ate. There exist less general restrictions (see for instance ([7, 8])f0r its reply atk™ slot of the queue from the tail. The multiplic-
where no more than one non-exponential distribution is enabled in Ity of input arcs from transitionssk to Py 1 is k, which identifies
any marking, leading to a Markov regenerative process), but they the requesting stations. The firing of transitieh (1 < k < N)
are still restrictive. One can argue that general distributions can Means that the server sends a reply to statio token in place
be approximated by phase type distributions ([21]). Nevertheless £’sw meéans that the service is completed. In ([16]), an approxima-
this can also increase the size of the state space. The second adion of this model is described to reduce the state space size. This
sumption made is that the resampling policy when a transition is is done by considering a tagged client and lumping the remaining
disabled by the firing of another transition and becomes enabled Clients into one super-client. The SRN for this approximation for
again later on is preemptive repeat different (this has been relaxedth® System withV. = 5 stations is given in Figure 2. For a de-
by some authors ([5])). Given these assumptions, a Markov chain tailed description of this mod.el, see ([16]). Table 1 describes the
is constructed either directly or via theachability graph from _state space and storage requirements for both_ the ex_act and approx-
a Petri net model. Several matrix analysis methods may then beiMmate models, and when a memory overflow is obtained on a Sun
used to solve the problem, such as, for instance, steady-state SOFoParcStation Ultra 60 with 640Mb of real memory and 982Mb of
(successive over relaxation), steady state Gauss-Seidel, stely-staSWapping memory. Nonzero entries are the number of nonzero el-
power method ([9, 23, 24]) or transient solution using uniformiza- gments in the |nf]n|te5|mal generator of the underlylng. continuous
tion ([19]). time Markqv chain. We_observe that the state space size of the ex-

Simulation methods ([13]), on the other hand can be used when act mod(_e_l increases quickly and becomes too large to construct the
the above assumptions are not satisfactory for model solution, whenr€@chability graph for small values &f (N = 8). On the other
the storage requirements exceeds the memory capacity or wherl@nd, the approximate model reachability graph can be generated
the computation time for analytic-numeric technique is very long. TOr larger values ofV, but limited to N’ = 31 on the same com-
Since generation of reachability graph is not needed in simulation, PUter-
this solution method requires less memory. Also the computa- . .
tion time can be reduced by decreasing the number of replicationsz'3 Transient behavior
which in turn reduces the accuracy of result. However the simula- .
tion time can be quite often very long. Also the simulation methods 2-3-1  Cumulative measure
(except regenerative or perfect simulation) are generally transient Fig. 3 gives the results obtained when computing the transient
simulations which tend to introduces a bias. In the following ex- cumulative probability that the server is idle (i.e., pla¢gs, and
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Figure 1: SRN the accurate token ring network (N = 5)
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Figure 2: SRN the approximate token ring network (N = 5)

N || No. of states Nonzero Entries || No. of states Nonzero Entries
(exact model) (exact model) (approx. model) | (approx. model)

3 476 1004 274 562

4 3416 7960 790 1754

5 26672 66192 1880 4400

6 228880 591568 3920 9524

7 2160160 5736992 7420 18536

8 Memory overflow | Memory overflow || 13044 33292

10 34210 90050

15 209240 574700

20 785470 2204850

25 2230150 6343250

30 5281780 15156400

31 6172720 17738324

32 Memory overflow | Memory overflow

Table 1: Storage requirements for the client/server example as a fiction of N
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Figure 3: Results from the analytic-numeric and simulation Figure 4: Analytic-numeric results and 10% half-width relative

methods for the cumulative behavior. Analytic-numeric meth- error 95% confidence interval simulation results for the instan-
ods are plotted in bold, while simulation are plotted with thin- taneous behavior att = 500 ms. Analytic-numeric methods are
ner lines, and confidence interval. plotted in bold, while simulation are plotted with thinner lines,

and confidence interval.

Psy are empty) up to time = 500 ms, using analytic-numeric L ommsmonmimm
methods and simulation (with arbitrary 10% relative error and 95%- ;
confidence interval) when the numh#' of workstations is vary-
ing. In these computations, we assume (other values given simi-
lar results) thatl /n = 2.0 ms,1/u = 0.1 ms,1/8 = 3.2 ms,
1/y =0.01/(N + 1) + 0.0024 ms and tha# is varied withN so
that the offered loag = NA[(1/u) + (1/5)] is fixed to 0.9. Also,
note thatt = 500 ms is much larger than the largest average firing
time.

The analytic-numeric method uses uniformization technique ([19])
(with absolute precision0~®) whereas the simulation method is

sabilty(in seconds)

the standard discrete event simulation using independent replica- &:/f/
tions. The number of replications is unknown as the simulation is ! e ——

stopped only when &0% half-width relative errob5% confidence

interval is reached. We do not give all the results because the com-

putation time can be very long for large values/6f We observe g 1o 5: Computation times to obtain for the cumulative esti-

that the numerical values given by the approximate model are very . ~.on

close to the exact ones. Of course, we obtain exact results only for

small values ofN so that we can not be sure that the results are

very good also for larger values, but simulation results show that of events to simulate per run. Recall that the state space does not

the approximation is still accurate a§increases. The simulation  have no role in this difference as we do not generate it. It is specific

results are in the range of the analytic-numeric ones. Only in the to the model: in the exact model, more transitions occur, which re-

case of the exact model witN = 6 the exact value is notincluded  sults in a bigger number of events per run. This leads to important

in the confidence interval, probably due to & risk of the in- observation that simulation of approximate models can be much

terval. In simulation, we get a region where the solution might lie faster than simulation of exact models.

with certain probability, instead of exact answer: one drawback of .

simulation. In conclusion about Fig. 3, simulation allows us to 2-3-2 Instantaneous behavior

solve larger models, but this is at the cost that we obtain only a We now compute the transient probability that the server is idle

confidence interval, i.e., we have only a given probability that the (i.e., placePs 4 andPs; are empty) at given timg using analytic-

true value is contained in the interval. numeric methods and simulation (with 10% relative error 95%-
Fig. 5 shows the computation times (including state space gen- confidence interval) with the numbe¥ of workstations varying.

eration) required for the methods to obtain the results. The com- All other parameters have the same values as before. The results

putation time for the analytic-numeric solution of the exact model for ¢ = 500 ms are displayed in Fig. 4 and the computation times

increases very fast with the state space size. The increase is sloweare given in Fig. 6. Applying the numerical solution method to the

for the approximate model. Simulation time to obtain t6&5 rel- exact model requires a long time fof = 5,6, 7 and after that it
ative error confidence interval becomes competitive¥or= 5 and cannot be applied. The method performs well on the approximate
is close to the analytic-numeric time for smallgr For this exam- model (restricted to the fact th&f < 31), but the running time

ple, simulation provides a fast solution (and even the only one as increases quickly witv. Comparing with simulation, we find that
soon as there is a memory overflow while using analytic-numeric the value obtained with analytic-numeric methods fall into the cor-
methods; see Fig.1). The reason for different simulation times be- responding confidence intervals. If we compare the simulation re-
tween the exact and the approximate model is due to the numbersults for the models, we see that the approximate model gives about
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Figure 8: Analytic-numeric and 10% half-width relative error
95% confidence interval simulation results for the steady-state
behavior. Analytic-numeric methods are plotted in bold, while
simulation are plotted with thinner lines, and confidence inter-
val.
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Figure 7: Analytic-numeric results and 10% half-width relative
error 95% confidence interval simulation results for the instan-
taneous behavior att = 20 ms. Analytic-numeric methods are
plotted in bold, while simulation are plotted with thinner lines,
and confidence interval.

Figure 9: Computation times for the results for the instanta-
neous behavior att = 20 ms.

N > 31 from Table 1).

2.4 Steady-state behavior

the same results as the exact one even for large valuads dfhe We now compute the steady-state probability of the server being
problem here is that simulation times are very long. Since to obtain idle (i.e., placesPs4 and Ps; are empty) using analytic-numeric
just one replication at timé = 500 ms, we need to simulate the  methods and simulation (with 10% relative error 95%-confidence
whole path to this time which can become very long. We also note interval) with the numbeN of workstations varying.
as in the previous subsection that the simulation of the approximate The analytic-numeric method used is steady-state SOR. For sim-
model is much quicker because we have less number of events toulation, we first use the standard discrete event simulation with
deal with. We suggest then to use the simulation of the approxi- batch technique. In this, a single long simulation path is gener-
mate model as soon &6 gets close to 15 as then simulation time  ated till we are sure that steady-state is reached (a warm-up can be
is almost half that of the numeric method one. used). This single run is decomposed into several batches which
Next we consider the results for a smaller time horizon, say for can be considered independent, so that a statistical analysis is per-
instancet = 20 ms. The results are presented in Fig. 7 and the formed using the method of batch means ([24]).
computation times in Fig. 9. Similar remarks can be applied to the  The results for analytic-numeric methods and the simulation us-
results as in the cage= 500 ms (but in one case, approximate ing batch methods (with a batch sizetof= 5 ms) are displayed
model with N = 20, the exact value is not included in the confi- in Fig. 8. The computation times are presented in Fig. 10. The
dence interval, due to the statistical risk), with the difference that analytic-numeric solution performs well when applied on the exact
the running times are smaller because the time horizon is smaller.model until N = 6. BeyondN = 6, the running time is long.
Simulating the approximate model is the best method wkagets Use of the approximate model is much better as the results are very
close to 20 and the simulation times are then less than 20 minutes. close and the running times are much smaller (18 seconds as com-
As a conclusion of this subsection, simulation for instantaneous pared with 3 hours and 50 minutes fof = 7). But even the
behavior is better when “small” time horizons are used. Anyway, it approximate model can not be usedVf> 31. Simulation of the
becomes the only solution when the state space is big (here whenexact model is powerful for small values &f but the simulation
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Figure 12: SRN model for the CMTS system

Regenerative Exact simulation model

Regenerative model for both exact and approx

S Exact
—— Approx

Note that another way to perform regenerative simulation is us-
ing A-cycles ([6]). Instead of using a state as a regeneration point,
we use a subset of states, which increases the number of regen-
erations. This estimator is biased (because the initial state is not
generated from the regenerative subset with the steady-state distri-
bution, which would be too difficult) and the cycles are dependent.
The analysis is then more tricky and more approximate than the
classical regenerative method.

02 3000

2500

2000

0.28

1500
0.26
0.24

0.22

Steady state probability computation (in seconds

0z 1000

0.18

3. AVAILABILITY OF CABLE MODEM
TERMINATION SYSTEM (CMTS)

We describe the model of cable modem termination system and
solve such model analytic-numerically and by discrete event simu-
lation. In this example we will calculate capacity-oriented avail-
ability and calculation time required. The CMTS serves as the
backbone of the hybrid fiber coaxial (HFC) cable network and pro-
vides connectivity between the cable network and the Internet for
both upstream and downstream traffic. In addition, the CMTS is
also responsible for management services such as billing, autho-
rization, quality of service (QoS) control, and protocol conversion.
The high availability of CMTS is crucial for cable operators to pro-
vide carrier-class services to all its subscribers. Due to the im-
portance of CMTS in cable modem systems, hardware redundancy
and the corresponding resilient software features are introduced in
CMTS to achieve high availability as a traditional approach. The
cluster comprisesV primary CMTS (PCMTS) nodes, one sec-
ondary CMTS (SCMTS) node [18].

0.16
0.14
0.12

01

10 1
Number of clients

Figure 11: Regenerative simulation results and computation
times for the steady-state behavior.

time increases withiV. On the other hand, simulation of the ap-
proximate model requires very small running times (about 3 min-
utes 30 seconds fa¥ = 20 or N = 25). Thus the simulation of
the approximate is a very powerful technique.

One inherent problem while using batch means method is the
choice of the batch size. It has to be big enough so that succes-
sive blocks are nearly independent. In our case, the exact value
gets closer to the edge of the confidence intervaNamcreases.
This suggests that the batch size should be increasedNvitn- ; :
deed, whenV increases the number of tokens in the system is larger 3.1 Paradlgm and solution methods
and hence more events have to occur within a batch to decorrelate Ve solve capacity oriented availability for CMTS problem analy-
blocks. tic-numerically by using SHARPE ([14]) and by discrete event sim-

Regenerative simulation is also applied to perform steady-state ulation using CSIM 19. We model the system as stochastic reward
simulation ([13]). The advantage is that the variance estimation N€t(SRN) in SHARPE. SHARPE is a reliability/availability and
is unbiased. The drawback is that we need a regeneration pointPerformance evaluator. CSIM 19 is a commercial process-oriented
(each state is suitable in the Markovian case) where a cycle will be- discrete event simulator and it provides software libraries for C and
gin. Each cycle is then independent and a statistical analysis can be"++. More details about SHARPE (which also uses SRNs to model
performed. Confidence intervals and computation times for regen- Systems) and CSIM 19 are described in Appendices A.3 and A.4.

erative simulation are given in Fig. 11. The exact values look less . . .
at the edge of the confidence intervals. One observation, at least in'?"2 (ﬁg&resentat'on of the CMTS in this para-

our client-server model is that batch method is quicker than regen-

erative simulation. Moreover, d$ increases, the mean length of a Figures 12 and 13 show the SRN model of the CMTS system. In
cycle increases, making it more difficult to estimate the variance of this model, a PCMTS and a SCMTS have the same failure behavior,
the estimator. i.e., they may fail due to either hardware failures or software fail-
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)\hei Softwa:ctev\}‘allure (Caused by HelsenbUQS) rate 1510000 Capacity oriented availability plot Time elapsed for availability plot
Aage | age Software aging rate 1/200 1051 : 30 " " ——
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Arve | Node reboot rate 10 o
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O
ures. In the later case, failures may be caused by either Heisent 5| 5
or aging-related bugs. The two submodels differ in their recove
behaviors. Whenever a PCMTS needs to repair/reboot, it has o~ i i i i 0 —
. . 0 2 4 6 8 0 2 4 6 8
switchover the ongoing tasks to the SCMTS. However, the rep Number of PCMTS Number of PCMTS

action of the SCMTS is carried out without considering the state o1
any PCMTS. This dependency is reflected in the enabling functions
and priorities of various transitions (see [18] for details).

As the failure of a PCMTS node does not affect the operations
on other PCMTS nodes, the CMTS cluster is still available with re-
gard to those customers connected with other operational PCMTS
nodes. The whole CMTS cluster becomes unavailable only when
all the N + 1 nodes fail. Although system availability can be
computed according to this definition, we choose capacity oriente
availability (COA) as our availability measure since it reflects the
perception from customers:

Figure 15: Capacity-oriented availability and computation
times for the steady-state behavior

ulation att = 80000Ahrs. In both case95% confidence interval
d has been overlayed with the simulation result. The state space for
SRN grows quickly as we increase the number of primary PCMTS.
SHARPE SRN model calculates capacity oriented availability quick-
ly when number of primary PCMTS is below 5. But we see that be-
COA — Na ) yond 5, the state space of CMTS model explodes and the analytic
model is not able to solve the model. On the other hand simulative

N
whereN,, denotes the average number of available PCMTS nodes model scales very wgll to ipcrease in .num.ber.of primary PCMTS
nodes. We see that simulation calculation time increases marginally

andN is the total number of PCMTS nodes in the cluster. To obtain i ber of pri des. This st th the b
capacity oriented availability we assign reward rate functions to our as We increase number of primary nodes. 1his strengthens the be-
lief that when large state space exists it makes more sense to use

model as : . .
simulation as means of model solving.

COA: P + Pae+ Pswe+ Pswe 1w N' .
(#Pposrs + #Feges ¥ # Fouted + #Povted uw)] @ 3.4 Steady-state behavior

For more details see ([18]). Figure 15 shows the results from CSIM simulation and SHARPE.
. . 95% confidence interval is plotted for each simulation run. It also
3.3 Transient behavior shows the actual calculation time taken for both methods to ob-

Figure 14 shows the result obtained from CSIM 19 simulation tain the steady state simulation. We observe that the underlying
and SHARPE for timg = 80000hrs. It also shows the actual  state space generated by the SRN model explodes quickly and the
calculation time taken for both methods to obtain the transient sim- SHARPE analytic-numeric engine is not able to solve the system



for N > 5. Whereas CSIM simulation scales well to increase in
redundancy for primary CMTS modes. We also note that actual

calculation times also scales well for discrete vent simulation case

whereas it increases rapidly for analytic-numeric case.

4. CONCLUSION

To choose between simulation and analytic-numeric methods,

we make the following recommendations (This follows a similar
study on other examples/models):

e When the system ison-Markovian (especially without re-
generative structure), very few analytic-numeric methods are
available. Simulation is then the natural and often the only
possibility.

e When the system iMlarkovian

— When the state space is big (and no approximate model
close to the exact model reducing the state space is

available), the reachability graph can not be generated.
Simulation is then again the only possibility (in our ex-
ample if N > 31).

In the other cases, a choice is very specific to the ap-
plication. Nevertheless, from our experience and the
example of this paper, we can say that for “small” state
spaces analytic-numeric methods perform well. When

the state space increases, there is always a point where

simulation time (for a given precision) is smaller (the
worst situation is when the reachability graph is too big
to be generated). But we can point out that the natural
switch from analytic-numeric to simulation methods is
faster for steady-state behavior, then cumulative tran-
sient behavior and finally instantaneous transient be-
havior (except for very small time horizons). Usually,
simulation takes long time to obtain good results for
long horizon instantaneous behavior.

Note that even if the running time of analytic-numeric
methods is a little larger than the one of simulation, it is

still relevant to use them because they give an accurate

result instead of a confidence interval. How different it
should be is very subjective and depends on the user.

Moreover, using approximate models can be very help-
ful even when using simulation, as pointed out in this

paper. Indeed, even if the state space is not generated

as in analytic-numeric methods, an approximate model
can tremendously reduce the computation time per run
by reducing the number of events.
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A. STOCHASTIC REWARD NETS AND SOFT- analysis [4]. It provides methods for random variates generation

WARES FOR MODELING from several distributions. Run length control [17] for terminat-
ing simulation is also possible when desired accuracy has been
A.1 Stochastic Reward Nets achieved and there is no need to simulate the model further.

Stochastic reward net (SRN) [12] is an extension of Petrinet A 4 SHARPE

(PN). SRN has been widely used in the area of performance and C . o :
dependability analysis due to its conciseness and clarity in visual SHARPE, (Symbolic H|erarch|ca| Automat.ed.Rellablllty and I?er
formance Evaluator, [14]) is a tool for specifying and analyzing

and conceptual presentation. A PN is a bipartite directed graph o . :
with two types of nodes: places and transitions. Each place may performance, rel|ab|I|Fy and p.erformab.lllty model;. It has bee.nlln-
stalled at over 250 sites. It is a toolkit that provides a specifica-

contain an arbitrary (natural) number of tokens. Each transition tion lanauage and solution methods for most of the commonly used
may have zero or more input arcs, coming from its input places; model tg eg for performance, reliability and performabilit mgdel-

and zero or more output arcs, going to its output places. A transi- in Moz;l?al t espinclude com’binatoria)ll one such as fault}/trees and
tion is enabled if all of its input places have at least as many tokens g. yp .

: P S gueuing networks and state-space ones such as Markov and semi-
as required by the multiplicities of the corresponding input arcs. Markov reward models as well stochastic Petri nets. Steady-state
Generalized stochastic Petri nets (GSPNs) [2] extend the PNs by ) h : y '

transient and interval measures can be computed. Output measures

assigning a firing time to each transition.  Transitions with expo- of a model can be used as parameters of other models. This facili-
nentially distributed firing times are called timed transitions while . i par X ’
tates the hierarchical combination of different model types.

the transitions with zero firing times are called immediate transi-
tions. For a given GSPN, an extended reachability graph (ERG)
is generated with the markings of the reachability set as the nodes
and some stochastic information attached to the arcs, thus connect-
ing the markings to each other. In order to make more compact
models of complex systems, several extensions are made to GSPN,
leading to the SRN. One of the most important features of SRN
is its ability to allow extensive marking dependency. In an SRN,
each tangible marking can be assigned with one or more reward
rates. Parameters such as the firing rate of the timed transitions, the
multiplicities of input/output arcs and the reward rate in a mark-
ing can be specified as functions of the number of tokens in any
place in the SRN. Another important characteristic of SRN is the
ability to express complex enabling/disabling conditions through
guard functions. This can greatly simplify the graphical represen-
tations of complex systems. For an SRN, all the output measures
are expressed in terms of the expected values of the reward rate
functions. To get the performance and reliability/availability mea-
sures of a system, appropriate reward rates are assigned to its SRN.
As an SRN can be automatically transformed into a Markov re-
ward model (MRM) [20], steady state and/or transient analysis of



