
Simulation versus Analytic-Numeric Methods: Illustrative
Examples

B. Tuffin
IRISA/INRIA

Campus Universitaire de
Beaulieu

35042 Rennes Cedex, France
btuffin@irisa.fr

P. K. Choudhary
Dept. of Electrical and

Computer Engg.
Duke University

Durham, NC 27708-0291,
U.S.A.

pchoudhary@gmail.com

C. Hirel
Dept. of Electrical and

Computer Engg.
Duke University

Durham, NC 27708-0291,
U.S.A.

chirel@ee.duke.edu

K. S. Trivedi
Dept. of Electrical and

Computer Engg.
Duke University

Durham, NC 27708-0291,
U.S.A.

kst@ee.duke.edu

ABSTRACT
Performance along with dependability analysis is a tremendous chal-
lenge in the design or improvement of modern complex systems.
Two different classes of solution methods are generally used: analy-
tic-numeric methods and simulation methods. As most of the lit-
erature explains, the choice between them depends more on the
analyst’s background than on the system itself. In this paper, we
illustrate the advantages and drawbacks of each method on real
problems and compare the results. Finally we conclude the paper
providing some hints to choose a solution method depending on the
model. We use SPNP, a Petri net analysis package, and CSIM 19,
as simulation package to model and evaluate systems.

Keywords
Analytic-numeric methods, Performance evaluation, Simulation.

1. INTRODUCTION
Performance and dependability evaluation of modern systems

becomes a challenging problem due to the complexity involved.
Several solution techniques are available in the literature. One
of the most commonly used techniques is the analytic one which
produces accurate results. Unfortunately, it becomes inapplicable
quickly, due to the size and complexity of models or due to non-
Markovian nature of the problem involved. In such cases, approx-
imation methods are applied. Even these approximation methods
may become inefficient in most cases, and then simulation becomes
inevitable.

In the current literature, authors have either used analytic-numeric

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Valuetools ’07, October 23-25, 2007, Nantes, France
Copyright 2007 ICST 978-963-9799-00-4.

methods or simulation, but making this choice is often arbitrary.
There is a need for careful comparison of these two methods. In
fact, depending on model parameter settings, it may be useful to
switch between the two. We illustrate the advantages and draw-
backs of these methods in order to help a modeler decide which
one might be the most efficient for his/her model. Generally peo-
ple consider simulation when the assumptions made by analytical
models are not appropriate. In this paper, we show that even when
all assumptions are appropriate for an analytic numeric solution,
storage requirements preclude such a solution and hence one may
have to resort to simulation. This has been pointed out earlier in
the literature, but never been explicitly illustrated. This paper dis-
cusses the relative merits of analytic-numeric methods and simula-
tion when a predefined (time) batch size is fixed.

We consider here two real life examples: a client/server system
and a cable modem termination system (CMTS) for the purpose
of illustration. Client/server system is a system where a server sta-
tion receives requests from its client stations, processes the requests
and replies to the requesting stations ([16]). We compare the solu-
tion methods while varying the number of stations connected to the
server. We restrict ourselves to a single model, with a note that a
study on other models has led to similar conclusions. In a CMTS
system, we calculate the capacity oriented availability(COA) for
the system. The CMTS system we consider here consists of mul-
tiple primary CMTS nodes and single backup secondary CMTS
node. For more details see ([18]).

The analysis of the client-sever example is made using SPNP
(stochastic Petri net package) ([10, 15]). For analysis of CMTS
system we use SHARPE ([14]) and CSIM 19 ([1]). The systems
are modeled by stochastic reward nets (SRNs) ([20]), an extension
of generalized stochastic Petri nets ([3]). SPNP includes analytic-
numeric methods as well as discrete event simulation ([11, 15, 25]).
SHARPE is a analytic-numeric solver which can solve both state-
space (meaning models for which the state space has to be gen-
erated) and non-state space models including Markov chains and
stochastic Petri nets. CSIM 19 is a process-oriented discrete event
simulator implemented in C/C++ as a library of routines which per-
form necessary operations.

The layout of the paper is as follows. Section 2 deals with the

analysis of the client/server system. The paradigm used is SRNs,
for which solution methods are presented in subsection 2.1 (the de-
scription of the paradigm is left to appendix A.1, along with the
description of the software SPNP, CSIM and SHARPE). The de-
scription of the system as a SRN is presented in subsection 2.2,
and simulation and analytic-numeric methods are compared for the
transient behavior in subsection 2.3 and for steady-state in subsec-
tion 2.4. In Section 3 we describe the CMTS system. Again, the
full description of the paradigm and software used is left to Ap-
pendix A. The transient and steady state result is described in sub-
sections 3.3 and 3.4. Finally, we discuss results and conclude in
Section 4.

2. CLIENT/SERVER EXAMPLE
We consider a client/server system where a server station re-

ceives requests from its client stations, processes the requests and
replies back to the client stations. This is a common feature in dis-
tributed computing. The analysis of such systems becomes difficult
by various kinds of dependencies in the system ([16]). Generally
Markov chain is able to capture the dependencies but a hand con-
struction of such a Markov chain is often tedious and infeasible.
For this reason, the use of SRNs as model of representation may be
helpful. Before going into further details with the model descrip-
tion, we briefly review the solution methods associated with SRNs.
The complete description of SRNs is left to appendix.

2.1 Brief introduction to solution methods for
stochastic reward nets (SRNs)

Petri nets are formal graph models particularly well suited for
representing the flow of information and control in systems with
concurrency and synchronization characteristics ([22]). We will
limit ourselves here to discrete Markovian SPNs.

The first class of solution methods is the analytic-numeric one.
To apply these methods, several restrictions must be applied on the
previous model. The first major limitation is that the distributions
of transition firing times must generally be exponential or immedi-
ate. There exist less general restrictions (see for instance ([7, 8])
where no more than one non-exponential distribution is enabled in
any marking, leading to a Markov regenerative process), but they
are still restrictive. One can argue that general distributions can
be approximated by phase type distributions ([21]). Nevertheless
this can also increase the size of the state space. The second as-
sumption made is that the resampling policy when a transition is
disabled by the firing of another transition and becomes enabled
again later on is preemptive repeat different (this has been relaxed
by some authors ([5])). Given these assumptions, a Markov chain
is constructed either directly or via thereachability graph from
a Petri net model. Several matrix analysis methods may then be
used to solve the problem, such as, for instance, steady-state SOR
(successive over relaxation), steady state Gauss-Seidel, steady-state
power method ([9, 23, 24]) or transient solution using uniformiza-
tion ([19]).

Simulation methods ([13]), on the other hand can be used when
the above assumptions are not satisfactory for model solution, when
the storage requirements exceeds the memory capacity or when
the computation time for analytic-numeric technique is very long.
Since generation of reachability graph is not needed in simulation,
this solution method requires less memory. Also the computa-
tion time can be reduced by decreasing the number of replications
which in turn reduces the accuracy of result. However the simula-
tion time can be quite often very long. Also the simulation methods
(except regenerative or perfect simulation) are generally transient
simulations which tend to introduces a bias. In the following ex-

amples we compare analytic-numeric methods with the standard
discrete event simulation.

2.2 Problem description
For our illustration, we consider a distributed system consisting

of N workstations and one file server interconnected by a local area
network. For a complete description of the model, see ([16]). To
avoid confusion in the use of the word “token" which is used both
in ring network and in PN, we will refer it either as the “network to-
ken" or the “PN token", instead of just “token". We assume that the
client-station generates requests which follow an exponential dis-
tribution with rateλ and that the transmission time of this request
is also exponentially distributed with rateµ. To simplify the analy-
sis all other times are also assumed to be exponentially distributed.
This includes the time for the network token to move from a station
to another one (rateγ), the request processing time for the server
(rateη) and the reply transmission time (rateβ). Figure 1 shows the
SRN model for a token ring network-based system with five client
stations.

PlacesPCkI (1 ≤ k ≤ N) represent the condition that station
k is idle and transitiontak that a request is generated at stationk.
Then the PN token moves to placePCkA where the client is wait-
ing for the network token to arrive (condition represented by place
PCkS). When the network token arrives at stationk, the transmis-
sion of the request can be processed (transitiontsk). Then a PN
token is put in placePC(k+1)P (or PSP if k = N , or PC1P if
the current station is the server), which means the network token
is waiting to move to the next station (or to the server forPSP).
This move is made by the firing of the corresponding transitiontkp
or tsp. PlacePSI represents the condition that the client’s request
has arrived at the server, where it is served by firing transitiontsa.
PlacePSA represents the condition that the request is completed.
When the server has received the network token (condition rep-
resented by placePSS) , it commences to transmit an answer (by
firing transitiontss). Next we describe the modeling of the server’s
buffer. PlacesPWk represent the condition that a request is waiting
for its reply atkth slot of the queue from the tail. The multiplic-
ity of input arcs from transitionstsk to PW1 is k, which identifies
the requesting stations. The firing of transitionsk (1 ≤ k ≤ N)
means that the server sends a reply to stationk. A token in place
PSW means that the service is completed. In ([16]), an approxima-
tion of this model is described to reduce the state space size. This
is done by considering a tagged client and lumping the remaining
clients into one super-client. The SRN for this approximation for
the system withN = 5 stations is given in Figure 2. For a de-
tailed description of this model, see ([16]). Table 1 describes the
state space and storage requirements for both the exact and approx-
imate models, and when a memory overflow is obtained on a Sun
SparcStation Ultra 60 with 640Mb of real memory and 982Mb of
swapping memory. Nonzero entries are the number of nonzero el-
ements in the infinitesimal generator of the underlying continuous
time Markov chain. We observe that the state space size of the ex-
act model increases quickly and becomes too large to construct the
reachability graph for small values ofN (N = 8). On the other
hand, the approximate model reachability graph can be generated
for larger values ofN , but limited toN = 31 on the same com-
puter.

2.3 Transient behavior

2.3.1 Cumulative measure
Fig. 3 gives the results obtained when computing the transient

cumulative probability that the server is idle (i.e., placesPSA and

λ

ta3

PC3I PC3A

ts3

PC4P t4p

ta2

PC2I PC2A

ts2

PC3P t3p

λ

ta1

PC1I

ts1

PC2P t2p

λ

ta4

PC4I PC4A

ts4

PC5P t5p

λ

ta5

PC5I PC5A

ts5

PSP tsp

PC1A

PC2S

PC3S

PC4S

PC5S

PW1

PW2

PW3

PW4

PW5

2

3

4

5

µ

γ

µ

µ

µ

µ

γ

γ

γη

β tss

PSI PSA PSS

PSW

PC1P

tsa

t1p
γ

PC1S

PC1IPC2I

s1 s2 s3 s4 s5

γ

PC5IPC4IPC3I

PC1S

λ

11

1

1

1

1

Figure 1: SRN the accurate token ring network (N = 5)

tta
tts s1

s8

tsp

tsss5
tsa

top
s6

s7

s3

s4ttp

tos
toa

s2

λ

µ

γ

β

η

#λ

µ

γ

N-1

N-1

PTA
PTS

PTW

PSP

PSI
PSA PSS

PSW

POW POH
POI POA

POS

PTP

PC1

PC2

PTI

POP

1 1

N-1

Figure 2: SRN the approximate token ring network (N = 5)

N No. of states Nonzero Entries No. of states Nonzero Entries
(exact model) (exact model) (approx. model) (approx. model)

3 476 1004 274 562
4 3416 7960 790 1754
5 26672 66192 1880 4400
6 228880 591568 3920 9524
7 2160160 5736992 7420 18536
8 Memory overflow Memory overflow 13044 33292
10 34210 90050
15 209240 574700
20 785470 2204850
25 2230150 6343250
30 5281780 15156400
31 6172720 17738324
32 Memory overflow Memory overflow

Table 1: Storage requirements for the client/server example as a function of N

0 5 10 15 20 25
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of clients

Tr
an

si
en

t c
um

ul
at

iv
e

pr
ob

ab
ili

ty
 o

f s
er

ve
r b

ei
ng

 id
le

Exact analytical and simulation model

0 5 10 15 20 25 30
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

Number of clients

Tr
an

si
en

t c
um

ul
at

iv
e

pr
ob

ab
ili

ty
 o

f s
er

ve
r b

ei
ng

 id
le

Approximate analytical and simulation model

Figure 3: Results from the analytic-numeric and simulation
methods for the cumulative behavior. Analytic-numeric meth-
ods are plotted in bold, while simulation are plotted with thin-
ner lines, and confidence interval.

PSI are empty) up to timet = 500 ms, using analytic-numeric
methods and simulation (with arbitrary 10% relative error and 95%-
confidence interval) when the numberN of workstations is vary-
ing. In these computations, we assume (other values given simi-
lar results) that1/η = 2.0 ms, 1/µ = 0.1 ms, 1/β = 3.2 ms,
1/γ = 0.01/(N + 1) + 0.0024 ms and thatλ is varied withN so
that the offered loadρ = Nλ[(1/µ) + (1/β)] is fixed to 0.9. Also,
note thatt = 500 ms is much larger than the largest average firing
time.

The analytic-numeric method uses uniformization technique ([19])
(with absolute precision10−8) whereas the simulation method is
the standard discrete event simulation using independent replica-
tions. The number of replications is unknown as the simulation is
stopped only when a10% half-width relative error95% confidence
interval is reached. We do not give all the results because the com-
putation time can be very long for large values ofN . We observe
that the numerical values given by the approximate model are very
close to the exact ones. Of course, we obtain exact results only for
small values ofN so that we can not be sure that the results are
very good also for larger values, but simulation results show that
the approximation is still accurate asN increases. The simulation
results are in the range of the analytic-numeric ones. Only in the
case of the exact model withN = 6 the exact value is not included
in the confidence interval, probably due to the5% risk of the in-
terval. In simulation, we get a region where the solution might lie
with certain probability, instead of exact answer: one drawback of
simulation. In conclusion about Fig. 3, simulation allows us to
solve larger models, but this is at the cost that we obtain only a
confidence interval, i.e., we have only a given probability that the
true value is contained in the interval.

Fig. 5 shows the computation times (including state space gen-
eration) required for the methods to obtain the results. The com-
putation time for the analytic-numeric solution of the exact model
increases very fast with the state space size. The increase is slower
for the approximate model. Simulation time to obtain the10% rel-
ative error confidence interval becomes competitive forN = 5 and
is close to the analytic-numeric time for smallerN . For this exam-
ple, simulation provides a fast solution (and even the only one as
soon as there is a memory overflow while using analytic-numeric
methods; see Fig.1). The reason for different simulation times be-
tween the exact and the approximate model is due to the number

0 5 10 15 20 25
0.05

0.1

0.15

0.2

0.25

0.3

Number of clients

In
st

.
pr

ob
ab

ili
ty

 o
f s

er
ve

r b
ei

ng
 id

le
 a

t 5
00

m
s

Exact analytical and simulation model

0 5 10 15 20 25 30
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Number of clients

In
st

.
pr

ob
ab

ili
ty

 o
f s

er
ve

r b
ei

ng
 id

le
 a

t 5
00

m
s

Approximate analytical and simulation model

Figure 4: Analytic-numeric results and10% half-width relative
error 95% confidence interval simulation results for the instan-
taneous behavior att = 500 ms. Analytic-numeric methods are
plotted in bold, while simulation are plotted with thinner lines,
and confidence interval.

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5
x 10

4

Number of clients

C
om

p.
 ti

m
e

of
 c

um
ul

at
iv

e
tr

an
. p

ro
ba

bi
lit

y(
in

 s
ec

on
ds

)

Comp. time for both exact and approx models

Ana−Exa
Ana−Approx
Sim−Exa
Sim−Approx

Figure 5: Computation times to obtain for the cumulative esti-
mation.

of events to simulate per run. Recall that the state space does not
have no role in this difference as we do not generate it. It is specific
to the model: in the exact model, more transitions occur, which re-
sults in a bigger number of events per run. This leads to important
observation that simulation of approximate models can be much
faster than simulation of exact models.

2.3.2 Instantaneous behavior
We now compute the transient probability that the server is idle

(i.e., placesPSA andPSI are empty) at given timet, using analytic-
numeric methods and simulation (with 10% relative error 95%-
confidence interval) with the numberN of workstations varying.
All other parameters have the same values as before. The results
for t = 500 ms are displayed in Fig. 4 and the computation times
are given in Fig. 6. Applying the numerical solution method to the
exact model requires a long time forN = 5, 6, 7 and after that it
cannot be applied. The method performs well on the approximate
model (restricted to the fact thatN < 31), but the running time
increases quickly withN . Comparing with simulation, we find that
the value obtained with analytic-numeric methods fall into the cor-
responding confidence intervals. If we compare the simulation re-
sults for the models, we see that the approximate model gives about

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5
x 10

4

Number of clients

C
om

p.
 ti

m
e

fo
r

In
st

 p
ro

b
at

 5
00

m
s(

in
 s

ec
on

ds
)

Inst. computation time at 500ms for exact and approx model

Ana−Exa
Ana−Approx
Sim−Exa
Sim−Approx

Figure 6: Computation times for the instantaneous behavior at
t = 500 ms.

0 5 10 15 20 25 30
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Number of clients

In
st

. p
ro

ba
bi

lit
y

of
 s

er
ve

r b
ei

ng
 id

le
 a

t 2
0

m
s

Exact analytical and simulation model

0 5 10 15 20 25 30
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Number of clients

In
st

. p
ro

ba
bi

lit
y

of
 s

er
ve

r b
ei

ng
 id

le
 a

t 2
0

m
s

Approximate analytical and simulation model

Figure 7: Analytic-numeric results and10% half-width relative
error 95% confidence interval simulation results for the instan-
taneous behavior att = 20 ms. Analytic-numeric methods are
plotted in bold, while simulation are plotted with thinner lines,
and confidence interval.

the same results as the exact one even for large values ofN . The
problem here is that simulation times are very long. Since to obtain
just one replication at timet = 500 ms, we need to simulate the
whole path to this time which can become very long. We also note
as in the previous subsection that the simulation of the approximate
model is much quicker because we have less number of events to
deal with. We suggest then to use the simulation of the approxi-
mate model as soon asN gets close to 15 as then simulation time
is almost half that of the numeric method one.

Next we consider the results for a smaller time horizon, say for
instancet = 20 ms. The results are presented in Fig. 7 and the
computation times in Fig. 9. Similar remarks can be applied to the
results as in the caset = 500 ms (but in one case, approximate
model withN = 20, the exact value is not included in the confi-
dence interval, due to the statistical risk), with the difference that
the running times are smaller because the time horizon is smaller.
Simulating the approximate model is the best method whenN gets
close to 20 and the simulation times are then less than 20 minutes.

As a conclusion of this subsection, simulation for instantaneous
behavior is better when “small” time horizons are used. Anyway, it
becomes the only solution when the state space is big (here when

0 5 10 15 20 25 30
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Number of clients

S
te

ad
y

st
at

e
pr

ob
ab

ili
ty

 o
f s

er
ve

r b
ei

ng
 id

le

Exact analytical and simulation model

0 5 10 15 20 25 30
0.05

0.1

0.15

0.2

0.25

0.3

Number of clients

S
te

ad
y

st
at

e
pr

ob
ab

ili
ty

 o
f s

er
ve

r b
ei

ng
 id

le

Approximate analytical and simulation model

Figure 8: Analytic-numeric and 10% half-width relative error
95% confidence interval simulation results for the steady-state
behavior. Analytic-numeric methods are plotted in bold, while
simulation are plotted with thinner lines, and confidence inter-
val.

0 5 10 15 20 25
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of clients

C
om

pu
. t

im
e

fo
r

In
st

 p
ro

bo
f 2

0m
s

(in
 s

ec
on

ds
)

Inst. time for both exact and approx models

Ana−Exa
Ana−Approx
Sim−Exa
Sim−Approx

Figure 9: Computation times for the results for the instanta-
neous behavior att = 20 ms.

N > 31 from Table 1).

2.4 Steady-state behavior
We now compute the steady-state probability of the server being

idle (i.e., placesPSA andPSI are empty) using analytic-numeric
methods and simulation (with 10% relative error 95%-confidence
interval) with the numberN of workstations varying.

The analytic-numeric method used is steady-state SOR. For sim-
ulation, we first use the standard discrete event simulation with
batch technique. In this, a single long simulation path is gener-
ated till we are sure that steady-state is reached (a warm-up can be
used). This single run is decomposed into several batches which
can be considered independent, so that a statistical analysis is per-
formed using the method of batch means ([24]).

The results for analytic-numeric methods and the simulation us-
ing batch methods (with a batch size oft = 5 ms) are displayed
in Fig. 8. The computation times are presented in Fig. 10. The
analytic-numeric solution performs well when applied on the exact
model untilN = 6. BeyondN = 6, the running time is long.
Use of the approximate model is much better as the results are very
close and the running times are much smaller (18 seconds as com-
pared with 3 hours and 50 minutes forN = 7). But even the
approximate model can not be used ifN > 31. Simulation of the
exact model is powerful for small values ofN but the simulation

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

3500

Number of clients

C
om

p.
 ti

m
e

fo
r

S
te

ad
y

st
at

e
pr

ob
(in

 s
ec

on
ds

)

Steady State time for both exact and approx models

Ana−Exa
Ana−Approx
Sim−Exa
Sim−Approx

Figure 10: Computation times to obtain the results for the
steady-state behavior.

0 5 10 15 20 25 30
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Number of clients

S
te

ad
y

st
at

e
pr

ob
ab

ili
ty

 o
f s

er
ve

r b
ei

ng
 id

le

Regenerative Exact simulation model

0 5 10 15 20 25 30
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

Number of clients

S
te

ad
y

st
at

e
pr

ob
ab

ili
ty

 o
f s

er
ve

r b
ei

ng
 id

le

Regenerative Approx simulation model

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

3500

Number of clients

S
te

ad
y

st
at

e
pr

ob
ab

ili
ty

 c
om

pu
ta

tio
n

(in
 s

ec
on

ds
)

Regenerative model for both exact and approx

Exact
Approx

Figure 11: Regenerative simulation results and computation
times for the steady-state behavior.

time increases withN . On the other hand, simulation of the ap-
proximate model requires very small running times (about 3 min-
utes 30 seconds forN = 20 or N = 25). Thus the simulation of
the approximate is a very powerful technique.

One inherent problem while using batch means method is the
choice of the batch size. It has to be big enough so that succes-
sive blocks are nearly independent. In our case, the exact value
gets closer to the edge of the confidence interval asN increases.
This suggests that the batch size should be increased withN . In-
deed, whenN increases the number of tokens in the system is larger
and hence more events have to occur within a batch to decorrelate
blocks.

Regenerative simulation is also applied to perform steady-state
simulation ([13]). The advantage is that the variance estimation
is unbiased. The drawback is that we need a regeneration point
(each state is suitable in the Markovian case) where a cycle will be-
gin. Each cycle is then independent and a statistical analysis can be
performed. Confidence intervals and computation times for regen-
erative simulation are given in Fig. 11. The exact values look less
at the edge of the confidence intervals. One observation, at least in
our client-server model is that batch method is quicker than regen-
erative simulation. Moreover, asN increases, the mean length of a
cycle increases, making it more difficult to estimate the variance of
the estimator.

Figure 12: SRN model for the CMTS system

Note that another way to perform regenerative simulation is us-
ing A-cycles ([6]). Instead of using a state as a regeneration point,
we use a subset of states, which increases the number of regen-
erations. This estimator is biased (because the initial state is not
generated from the regenerative subset with the steady-state distri-
bution, which would be too difficult) and the cycles are dependent.
The analysis is then more tricky and more approximate than the
classical regenerative method.

3. AVAILABILITY OF CABLE MODEM
TERMINATION SYSTEM (CMTS)

We describe the model of cable modem termination system and
solve such model analytic-numerically and by discrete event simu-
lation. In this example we will calculate capacity-oriented avail-
ability and calculation time required. The CMTS serves as the
backbone of the hybrid fiber coaxial (HFC) cable network and pro-
vides connectivity between the cable network and the Internet for
both upstream and downstream traffic. In addition, the CMTS is
also responsible for management services such as billing, autho-
rization, quality of service (QoS) control, and protocol conversion.
The high availability of CMTS is crucial for cable operators to pro-
vide carrier-class services to all its subscribers. Due to the im-
portance of CMTS in cable modem systems, hardware redundancy
and the corresponding resilient software features are introduced in
CMTS to achieve high availability as a traditional approach. The
cluster comprisesN primary CMTS (PCMTS) nodes, one sec-
ondary CMTS (SCMTS) node [18].

3.1 Paradigm and solution methods
We solve capacity oriented availability for CMTS problem analy-

tic-numerically by using SHARPE ([14]) and by discrete event sim-
ulation using CSIM 19. We model the system as stochastic reward
net(SRN) in SHARPE. SHARPE is a reliability/availability and
performance evaluator. CSIM 19 is a commercial process-oriented
discrete event simulator and it provides software libraries for C and
C++. More details about SHARPE (which also uses SRNs to model
systems) and CSIM 19 are described in Appendices A.3 and A.4.

3.2 Representation of the CMTS in this para-
digm

Figures 12 and 13 show the SRN model of the CMTS system. In
this model, a PCMTS and a SCMTS have the same failure behavior,
i.e., they may fail due to either hardware failures or software fail-

Figure 13: SRN model for the SCMTS system

λhw Hardware failure rate 1/53328
λhei Software failure (caused by Heisenbugs) rate 1/10000
λage age Software aging rate 1/200
λf Software failure rate (caused by aging-related bugs)1/200
λswt Node switching rate 120
λrbt Node reboot rate 10
λrep Node repair rate 1/4
λa Automatic failure detection rate 120
λm Manual failure detection rate 1/4
λc1 Coverage of automatic failure detection 0.95

Table 2: Rates for the CMTS model

ures. In the later case, failures may be caused by either Heisenbugs
or aging-related bugs. The two submodels differ in their recovery
behaviors. Whenever a PCMTS needs to repair/reboot, it has to
switchover the ongoing tasks to the SCMTS. However, the repair
action of the SCMTS is carried out without considering the state of
any PCMTS. This dependency is reflected in the enabling functions
and priorities of various transitions (see [18] for details).

As the failure of a PCMTS node does not affect the operations
on other PCMTS nodes, the CMTS cluster is still available with re-
gard to those customers connected with other operational PCMTS
nodes. The whole CMTS cluster becomes unavailable only when
all the N + 1 nodes fail. Although system availability can be
computed according to this definition, we choose capacity oriented
availability (COA) as our availability measure since it reflects the
perception from customers:

COA =
Na

N
(1)

whereNa denotes the average number of available PCMTS nodes
andN is the total number of PCMTS nodes in the cluster. To obtain
capacity oriented availability we assign reward rate functions to our
model as

COA = (#PPCMTS + #Paged + #Pswted + #Pswted_hw)/N.
(2)

For more details see ([18]).

3.3 Transient behavior
Figure 14 shows the result obtained from CSIM 19 simulation

and SHARPE for timet = 80000hrs. It also shows the actual
calculation time taken for both methods to obtain the transient sim-

0 2 4 6 8

0.5

0.6

0.7

0.8

0.9

1

Number of PCMTS

C
ap

ac
ity

 o
rie

nt
ed

 A
va

ila
bi

lit
y

Transient capacity oriented availability plot

Simulation
Analytic

0 2 4 6 8
0

1

2

3

4

5

6

7

8

9

10

Number of PCMTS

T
im

e
ta

ke
n

fo
r

tr
an

si
en

t a
na

ly
si

s

Time elapsed for transient availability

Simulation
Analytic

Figure 14: Transient capacity oriented availability (COA) at
t = 80000

0 2 4 6 8
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Number of PCMTS

C
ap

ac
ity

 o
rie

nt
ed

 A
va

ila
bi

lit
y

Capacity oriented availability plot

Simulation
Analytic

0 2 4 6 8
0

5

10

15

20

25

30

Number of PCMTS

T
im

e
ta

ke
n

fo
r

an
al

ys
is

Time elapsed for availability plot

Analytic
Simulation

Figure 15: Capacity-oriented availability and computation
times for the steady-state behavior

ulation att = 80000hrs. In both cases95% confidence interval
has been overlayed with the simulation result. The state space for
SRN grows quickly as we increase the number of primary PCMTS.
SHARPE SRN model calculates capacity oriented availability quick-
ly when number of primary PCMTS is below 5. But we see that be-
yond 5, the state space of CMTS model explodes and the analytic
model is not able to solve the model. On the other hand simulative
model scales very well to increase in number of primary PCMTS
nodes. We see that simulation calculation time increases marginally
as we increase number of primary nodes. This strengthens the be-
lief that when large state space exists it makes more sense to use
simulation as means of model solving.

3.4 Steady-state behavior
Figure 15 shows the results from CSIM simulation and SHARPE.

95% confidence interval is plotted for each simulation run. It also
shows the actual calculation time taken for both methods to ob-
tain the steady state simulation. We observe that the underlying
state space generated by the SRN model explodes quickly and the
SHARPE analytic-numeric engine is not able to solve the system

for N > 5. Whereas CSIM simulation scales well to increase in
redundancy for primary CMTS modes. We also note that actual
calculation times also scales well for discrete vent simulation case
whereas it increases rapidly for analytic-numeric case.

4. CONCLUSION
To choose between simulation and analytic-numeric methods,

we make the following recommendations (This follows a similar
study on other examples/models):

• When the system isnon-Markovian (especially without re-
generative structure), very few analytic-numeric methods are
available. Simulation is then the natural and often the only
possibility.

• When the system isMarkovian

– When the state space is big (and no approximate model
close to the exact model reducing the state space is
available), the reachability graph can not be generated.
Simulation is then again the only possibility (in our ex-
ample ifN > 31).

– In the other cases, a choice is very specific to the ap-
plication. Nevertheless, from our experience and the
example of this paper, we can say that for “small” state
spaces analytic-numeric methods perform well. When
the state space increases, there is always a point where
simulation time (for a given precision) is smaller (the
worst situation is when the reachability graph is too big
to be generated). But we can point out that the natural
switch from analytic-numeric to simulation methods is
faster for steady-state behavior, then cumulative tran-
sient behavior and finally instantaneous transient be-
havior (except for very small time horizons). Usually,
simulation takes long time to obtain good results for
long horizon instantaneous behavior.

Note that even if the running time of analytic-numeric
methods is a little larger than the one of simulation, it is
still relevant to use them because they give an accurate
result instead of a confidence interval. How different it
should be is very subjective and depends on the user.

Moreover, using approximate models can be very help-
ful even when using simulation, as pointed out in this
paper. Indeed, even if the state space is not generated
as in analytic-numeric methods, an approximate model
can tremendously reduce the computation time per run
by reducing the number of events.

5. REFERENCES
[1] CSIM 19 Simulator:http://www.mesquite.com/,

2005.
[2] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and

G. Franceschinis.Modelling with Generalized Stochastic
Petri Nets. John Wiley & Sons, 1995.

[3] M. Ajmone Marsan, G. Conte, and G. Balbo. A Class of
Generalized Stochastic Petri Nets for the Performance
Evaluation of Multiprocessor Systems.ACM Transactions on
Computer Systems, 2(2):93–122, May 1984.

[4] J. Banks, J. S. Carson, B. L. Nelson, and D. M. Nicol.
Discrete-Event System Simulation. Prentice Hall, NJ, third
edition, 2001.

[5] A. Bobbio, V. Kulkarni, M. Puliafito, A. an d Telek, and
K. Trivedi. Preemptive Repeat Identical Transitions in
Markov Regenerative Stochastic Petri Nets. InProc. of Petri
Nets Performance Models 1995, pages 113–122. IEEE CS
Press, 1995.

[6] C. Chang, P. Heidelberger, and P. Shahabuddin. Fast
Simulation of Packet Loss Rates in a Shared Buffer
Communications Switch.ACM Transactions on Modeling
and Computer Simulation, 5(4):306–325, October 1995.

[7] H. Choi, V. Kulkarni, and K. Trivedi. Markov Regenerative
Stochastic Petri Nets.Performance Evaluation,
20(1-3):337–357, 1993.

[8] H. Choi, V. Kulkarni, and K. Trivedi. Transient analysis of
deterministic and stochastic petri nets. In M. A. Marsan,
editor,Application and Theory of Petri Nets 1993, volume
691 ofLecture Notes in Computer Science, pages 166–185.
Springer Verlag, 1993.

[9] G. Ciardo, A. Blakemore, P. Chimento, J. Muppala, and
K. Trivedi. Automated Generation and Analysis of Markov
Reward Models using Stochatic Reward Nets. In C. Meyer
and R. Plemmons, editors,Linear Algebra, Markov Chains
and Queuing Models, volume 48 ofIMA Volumes in
Mathematics and its Applications, pages 145–191.
Springer-Verlag, Heidelberg, 1993.

[10] G. Ciardo, J. Muppala, and K. Trivedi. SPNP: Stochastic
Petri net Package. InProc. Third International Workshop on
Petri Nets and Performance Models, PNPM’89, pages
142–151. IEEE CS Press, 1989.

[11] G. Ciardo, D. Nicol, and K. Trivedi. Discrete-Event
Simulation of Fluid Stochastic Petri-Nets.IEEE Transactions
on Software Engineering, 25(2):207–217, 1999.

[12] G. Ciardo and K. Trivedi. A Decomposition Approach for
Stochastic Reward Net Models.Performance Evaluation,
18(1):37–59, 1993.

[13] G. Fishman.Monte Carlo: Concepts, Algorithms and
Applications. Springer-Verlag, 1996.

[14] C. Hirel, R. A. Sahner, X. Zang, and K. S. Trivedi.
Reliability and performability modeling using SHARPE
2000. InProceedings of the 11th International Conference
on Computer Performance Evaluation: Modelling
Techniques and Tools, pages 345–349. Springer-Verlag,
London, UK, 2000.

[15] C. Hirel, B. Tuffin, and K. Trivedi. SPNP Version 6.0. In
B. Haverkort, H. Bohnenkamp, and C. Smith, editors,
Computer performance evaluation: Modelling tools and
techniques; 11th International Conference; TOOLS 2000,
Schaumburg, Il., USA, volume 1786 ofLecture Notes in
Computer Science, pages 354–357. Springer Verlag, 2000.

[16] O. Ibe, H. Choi, and K. Trivedi. Performance Evaluation of
Client-Server Systems.IEEE Transactions on Parallel and
Distributed Systems, 4(11):1217–1229, 1993.

[17] A. M. Law and W. D. Kelton.Simulation Modeling and
Analysis. McGraw Hill Higher Education, third edition,
2000.

[18] Y. Liu, Y. Ma, L. H. Han, J.J, and K.S. Trivedi. A proactive
approach towards always-on availability in broadband cable
networks.Computer Communications, 28(1):51–64, January
2005.

[19] M. Malhotra, J. Muppala, and K. Trivedi. Stiffness-tolerant
methods for transient analysis of stiff Markov chains.
Microelectronics Reliability, 34(11):1825–1841, 1994.

[20] J. Muppala and K. Trivedi. Composite Performance and

Availability Analysis using a Hierarchy of Stochastic Reward
Nets. In G. Balbo and G. Serazzi, editors,Computer
Performance Evaluation, Modelling Techniques and Tools,
pages 335–350. Elsevier, Amsterdam, 1992.

[21] M. Neuts and K. Meier. On the use of phase type
distributions in reliability modelling of systems with two
components.Oper. Res. Spektrum, 2(4):227–234, 1981.

[22] J. Peterson.Petri nets and the Modeling of Systems.
Prentice-Hall, EnglewoodCliffs, NJ, 1981.

[23] W. J. Stewart.Introduction to the Numerical Solution of
Markov Chains. Princeton University Press, 1994.

[24] K. Trivedi. Probability and Statistics with Reliability,
Queuing, and Computer Science Applications. John Wiley &
Sons, 2002. Second Edition.

[25] B. Tuffin and K. Trivedi. Implementation of importance
splitting techniques in stochastic Petri net package. In
B. Haverkort, H. Bohnenkamp, and C. Smith, editors,
Computer performance evaluation: Modelling tools and
techniques; 11th International Conference; TOOLS 2000,
Schaumburg, Il., USA, volume 1786 ofLecture Notes in
Computer Science, pages 216–229. Springer Verlag, 2000.

APPENDIX

A. STOCHASTIC REWARD NETS AND SOFT-
WARES FOR MODELING

A.1 Stochastic Reward Nets
Stochastic reward net (SRN) [12] is an extension of Petri net

(PN). SRN has been widely used in the area of performance and
dependability analysis due to its conciseness and clarity in visual
and conceptual presentation. A PN is a bipartite directed graph
with two types of nodes: places and transitions. Each place may
contain an arbitrary (natural) number of tokens. Each transition
may have zero or more input arcs, coming from its input places;
and zero or more output arcs, going to its output places. A transi-
tion is enabled if all of its input places have at least as many tokens
as required by the multiplicities of the corresponding input arcs.
Generalized stochastic Petri nets (GSPNs) [2] extend the PNs by
assigning a firing time to each transition. Transitions with expo-
nentially distributed firing times are called timed transitions while
the transitions with zero firing times are called immediate transi-
tions. For a given GSPN, an extended reachability graph (ERG)
is generated with the markings of the reachability set as the nodes
and some stochastic information attached to the arcs, thus connect-
ing the markings to each other. In order to make more compact
models of complex systems, several extensions are made to GSPN,
leading to the SRN. One of the most important features of SRN
is its ability to allow extensive marking dependency. In an SRN,
each tangible marking can be assigned with one or more reward
rates. Parameters such as the firing rate of the timed transitions, the
multiplicities of input/output arcs and the reward rate in a mark-
ing can be specified as functions of the number of tokens in any
place in the SRN. Another important characteristic of SRN is the
ability to express complex enabling/disabling conditions through
guard functions. This can greatly simplify the graphical represen-
tations of complex systems. For an SRN, all the output measures
are expressed in terms of the expected values of the reward rate
functions. To get the performance and reliability/availability mea-
sures of a system, appropriate reward rates are assigned to its SRN.
As an SRN can be automatically transformed into a Markov re-
ward model (MRM) [20], steady state and/or transient analysis of

the MRM produces the required measures of the original SRN. In
this paper, we use the tools SPNP [10, 15] and SHARPE [14] to
specify and solve the SRN models.

A.2 SPNP
In the SPNP package ([10, 15]), the model type used for input is

a stochastic reward net (SRN). SRNs incorporate several structural
extensions to GSPNs such as marking dependencies (marking de-
pendent arc cardinalities, guards, etc.) and allow reward rates to be
associated with each marking. The reward function can be mark-
ing dependent as well. They are specified using CSPL (C based
SRN Language) which is an extension of the C programming lan-
guage with additional constructs for describing the SRN models.
SRN specifications are automatically converted into a Markov re-
ward model which is then solved to compute a variety of transient,
steady-state, cumulative, and sensitivity measures. For SRNs with
absorbing markings, mean time to absorption and expected accu-
mulated reward until absorption can be computed. Both analytic-
numeric and simulation techniques are available

A.3 CSIM 19
Simulation of CMTS model is done using CSIM 19 [1]. It is

a process-oriented discrete event simulator implemented in C/C++
as a library of routines which perform necessary operations. It pro-
vides methods for calculating confidence interval by batch means
analysis [4]. It provides methods for random variates generation
from several distributions. Run length control [17] for terminat-
ing simulation is also possible when desired accuracy has been
achieved and there is no need to simulate the model further.

A.4 SHARPE
SHARPE, (Symbolic Hierarchical Automated Reliability and Per-

formance Evaluator, [14]) is a tool for specifying and analyzing
performance, reliability and performability models. It has been in-
stalled at over 250 sites. It is a toolkit that provides a specifica-
tion language and solution methods for most of the commonly used
model types for performance, reliability and performability model-
ing. Model types include combinatorial one such as fault-trees and
queuing networks and state-space ones such as Markov and semi-
Markov reward models as well stochastic Petri nets. Steady-state,
transient and interval measures can be computed. Output measures
of a model can be used as parameters of other models. This facili-
tates the hierarchical combination of different model types.

