
Quantifying ILP by means of Graph Theory
Virginia Escuder, Raúl Durán, Rafael Rico

Department of Computer Engineering
Universidad de Alcalá

28871 Alcalá de Henares (Spain)
+34 91 885 66 15

{virginia.escuder, raul.duran, rafael.rico}@uah.es

ABSTRACT
Computer architecture evaluation requires new tools that
complement the customary simulations and, in this sense, the
traditional Graph Theory can help to create a new frame for fine-
grain parallelism analysis of execution performance, a step
beyond the classical static analysis performed by compilers.

Starting off from Graph Theory basic foundations, this paper
introduces the data dependence matrix D supported by the novel
concept of the reduced valence. The matrix D characterizes a code
sequence in a mathematical manner, is endowed with a number of
properties and restrictions, and provides information about the
ability of the code to be processed concurrently. Among other
details, some low complexity techniques to calculate parallelism
degree from the matrix D are presented.

Keywords
Instruction level parallelism; Graph theory.

1. INTRODUCTION
Performance in the field of superscalar execution depends on
many factors: the intrinsic parallelism of algorithms, the
capabilities of the used high level language, the compilation
process, the target machine instruction set and, of course, the
physical layer. Figure 1 schematically illustrates the factors that
affect the available parallelism at each layer of the computation
process.

Figure 1. Factors affecting the available parallelism in the
different layers of the computation process.

Nowadays, one of the most important objectives in Computer
Engineering is code decoupling, in other words, avoiding data
dependency among instructions in order to obtain full
concurrency in superscalar processing of code. In particular,
impacts from both the compiler [12] and the instruction set
architecture [9, 14] can be responsible for an over-ordering of the
code that has no solution in the physical layer and/or may cause
increased execution complexity and power consumption. It is,
therefore, important to steer the focus from the physical layer to
the machine language layer and the program layer regarded on
their own.

Moreover, considering a single unit for study (the instruction set
and the hardware that should interpret it) has become a usual way
to perform the research, under the assumption that this is a
sounder computational approach. Another circumstance that has
also contributed to the mentioned fact is the extensive use
(sometimes abuse) of simulation as the performance evaluation
method. Simulation does not differentiate between the impact on
performance arising from the upper computation process layers
and the impact from limited physical resources [15].

In this paper we propose an analytical model for the quantitative
evaluation of ILP at the machine language layer based on Graph
Theory, which provides an efficient and promising mathematical
formalization for the analytical modeling of ILP.

Graphs had already been successfully applied to the study of other
aspects of computation such as data structures [1, 3, 6] or
software description [7, 8].

In particular, graphs have been traditionally applied to compiler
extraction of medium- and coarse-grain parallelism [2, 17, 18] but
using a purely static approach. Instead of this, we are interested in
a dynamic approach allowing us to monitor the real execution of
programs.

We propose a measurement method based on the data dependence
graphs (DDG). It consists of building the DDG of a real machine
code sequence. DDG-based quantification is a powerful tool of
analysis when the matrix representation is used for a number of
reasons. First of all, it permits a mathematical processing. We can
determine the critical path length and, consequently, the
parallelism degree of an instruction window. We can find out the
life span of operands, data sharing reuse, parallelism distribution
and other significant parameters.

Parallelism quantification by means of the critical path length has
been previously employed in several works: In [11] it is used at
the program layer and in [4, 13, 16] it is used to evaluate
characteristics of the physical layer. But the main difference
between these works and ours is the way in which the critical path

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Valuetools'07, October 23�25, 2007, Nantes, France.
Copyright 2007 ICST 978-963-9799-00-4

machine language layer

physical layer

program layer

compiler impact

instruction set

architecture impact

hardware factors

length is computed. In our work we derive the precise critical path
length by means of our proposed mathematical formalization,
whereas in the existing literature the critical path length is
obtained by simply recording actual dependences thus losing any
other information about the considered code fragment.

So far, the most often employed metric in parallelism
quantification at the instruction level is IPC. Since IPC requires
the measurement of instruction count as well as time, the results
strongly depend on the characteristics of the physical
implementation and therefore it is amenable to the study of the
different architectural proposals at the physical layer level.
However, this method demands a complex simulator, if the
measurements are to be precise; moreover, the necessary
assumptions and simplifications have a significant effect on the
final result. For example, it is typically assumed that the measured
events follow a Gaussian distribution, which is seldom the case,
since parallelism appears to come in bursts [11]. This fact impairs
the results [15].

2. THE THOERETICAL MODEL
2.1 Representation of instruction sequences as
graphs
Data dependences in an instruction sequence can be represented
as a graph G(V, E), where V is the set of vertices and E is the set
of edges. Each vertex in V represents an instruction and each edge
in E a data dependence. Any two vertices related by an edge are
said to be adjacent.

Traditionally, graphs allow two formalizations: as linked list style
or as matrix style. Each of them presents pros and cons regarding
mathematical treatment and memory consumption. In our work,
we have selected the matrix style because it facilitates the
operations we are interested in, though at the price of a (tolerable)
higher memory consumption.

For the convenience of the reader, we introduce in this Section
some concepts of Graph Theory (for more information see, for
instance, [5, 10]) that will serve as environment for other novel
concepts to be introduced later on.

In the matrix style, a graph topology can be represented by the so-
called adjacency matrix1 A:

=
otherwise. 0,

adjacent; are vertices and if ,1 ji
aij

(1)

A is a symmetric n x n matrix where n is the number of
instructions in the graph, with null diagonal and aij∈{0, 1}.

The incidence matrix2 B is defined as:

=
otherwise. 0,

; ith vertexincident w is if ,1 ji
ij

ve
b

(2)

If the graph has n vertices and m edges, then the dimension of B is
n x m.

1 The equivalent concept in the linked list style is called

adjacency list.
2 The equivalent concept in the linked list style is called incidence

list.

In our formalism we use directed graphs. In a directed graph G(V,
A), each pair of vertices is connected by an arc from the set A,
which is a directed edge, i.e., an ordered pair of distinct vertices.
A directed graph may have two possible orientations
corresponding to the following: either �instruction i produces data
for instruction j� (orientation σ) or �instruction j consumes data
from (depends on) instruction i� (orientation σ). In either case,
the arcs point in opposite directions and have a complementary
meaning: the first orientation shows data flow whereas the second
one records data dependences.

The incidence matrix Bσ with respect to orientation σ, is defined
as the following n x m matrix:

+

=

otherwise. 0,

; of end outgoing theis if 1,�

; of end incoming theis if ,1

ji

ji

ij av

av

bσ

(3)

The valence of a vertex is defined as the total number of arcs that
are incident with this vertex. The valence matrix ∆ is an n x n
diagonal matrix where the (i, i) component is the valence of vertex
i. The adjacency matrix and the incidence matrix for the
orientation σ are related as follows:

() .
t

ABBQ −∆=⋅= σσ (4)

The Bσ · (Bσ)t product is known as the Laplacian matrix Q.
Adjacency, valence and Laplacian matrices are independent of the
orientation.

Moreover, a graph representation using adjacency matrix A have the
properties of the characteristic polynomial det(λ I � A).

2.2 Reduced valence
In this Section, we introduce the novel concept of reduced
valence. We define the reduced valence of a vertex as the total
number of arcs having an incoming end on this vertex. The
reduced valence depends, therefore, on the orientation selected.

The σ-oriented reduced valence matrix Vσ, is an n x n diagonal
matrix where the component (i, i) is the σ-oriented reduced
valence of vertex i.

Considering just one orientation, it is possible to formulate a
special definition for the incidence matrix which we call the
reduced incidence matrix Iσ with respect to orientation σ:

+

=
otherwise. 0,

; of end incoming theis if ,1 ji
ij

av
iσ

(5)

If the graph has n vertices and m arcs, the dimension of Iσ is n x
m.

Proposition 1: The Iσ · (Iσ)t product generates the reduced valence
matrix Vσ for the selected orientation.

() .
tσσσ IIV ⋅= (6)

Proof: If we compute the (i, j) product component:

()[] .
1

0
∑
−

=

⋅=⋅
m

k
jkikij

t
iiII σσσσ

(7)

However, 0≠⋅ σσ
jkik ii if and only if i = j, because each arc has just

one incoming end. Since σ
iki ∈{0, 1}, then (σ

iji)2 = σ
iji and so

()[]

≠

=
=

=⋅
∑
−

=

.if,0

; if ends

incoming ofnumber

1

0

ji

ji
i

II

m

k
ik

ij

t
σ

σσ

(8)

This result is in agreement with the definition of the oriented
reduced valence matrix Vσ and so, the proof is completed. �

Proposition 2: The reduced incidence and the reduced valence
matrices verify the following relations:

,σσσ IIB −= (9)

,σσσ IIB −= (10)

.σσ VV +=∆ (11)

Proof: It is deduced directly from the definitions. �

2.3 Computational meaning of the reduced
valence
The mathematical concept of reduced valence has a computational
meaning that depends on the selected orientation. As stated in
Section 2.1, there exist two orientations: the orientation σ
(�instruction i produces data for instruction j�) and orientation σ
(�instruction j consumes data from instruction i�).

The first one, which gives rise the reduced valence matrix Vσ,
conveys the information about how the instructions are coupled:
the diagonal element (i, i) shows the number of instructions on
which instruction i depends.

The second one, which gives rise the reduced valence matrix σV ,
conveys the information about data reuse: the diagonal element (i,
i) shows how many instructions use the data produced by
instruction i.

2.4 Data dependence matrix D
Another new concept introduce by us is the data dependence
matrix D defined as:

=
otherwise. 0,

;on dependsn instructio if,1 ji
dij

(12)

Then, the rows of matrix D correspond to the vectors id
�

 of a code
sequence. Each id

�

 holds the data dependence information for
instruction i. Notice that by data dependence information we
mean dependence on any operand involved in operation i.

This matrix is not to be confused with the matrix of the same
name typically used in compiler theory. Though related, actually
they do not store the same information: in loop transformation the
information captured in the matrix is the static dependence
distance (among iterations) [17, 18] not the dynamic dependence
among instructions.

The matrix D represents the direct data dependence path or data
dependence path of length 1, that is, instruction i consumes data
processed directly by instruction j with no interveners. According

to its definition, matrix D shows the graph orientation
corresponding to orientation σ (data flow).

Similarly, the matrix D can also be defined for the orientation σ
(data dependences). Obviously, if �instruction i depends on
instruction j� then �instruction j produces data for instruction i�,
and hence this means that D = Dt.

Finally, it is easy to check that the following relation holds:

.DDA += (13)

Recall that the matrix A considers adjacency and so it includes
both incoming and outgoing ends on vertices.

2.5 Topological properties and ILP
restrictions for D
One of the aims of Graph Theory algebra is to precisely determine
how graphs properties are presented in the algebraic properties of
their associated matrices. Additionally, we try to define properties
in the scope of parallel instruction processing.

• Vertex labeling used should not affect the properties of D.
Matrix D can be associated to a directed graph with a vertex set
V = {v0, v1, v2, �, vn-1} whose labeling is arbitrary.
Consequently, properties of matrix D should remain invariant
upon permutations of rows and columns.

 A natural labeling for the vertex of the graph is using the strict
precedence order of the instructions in a program. We will call
this labeling a programmatic labeling.

• There must exist a precedence relation among the data
dependence graph vertices. Any computable task entails some
precedence relation or partial ordering among the tasks
(instructions) to perform, since it is a process developed in an
ordered and finite succession of steps.

• An instruction does not depend on itself. A data item cannot
have the same instruction as source and as destination.
Consequently, matrix D has null diagonal. That is, dii = 0 when
0 ≤ i ≤ n � 1.

 This is true even for loops. A loop is a compact way to write a
code sequence which would correspond, in an expanded version
to the repetition a sequence of operations but on a different data.
Each iteration implies a new instance of the loop body but on
new data. The execution of the body of a loop requires a
conditional branch instruction between iterations. In that case,
the conditional branch instruction can be inserted in the data
flow graph as a special operation that manipulates the program
counter register and keeps apart the loop body instructions in
each iteration. Remember that since we apply our formalism in a
dynamic way, we resort to the use of trace files where loops are
naturally unrolled and branches are solved.

• Data dependences are not symmetrical. An instruction cannot
depend on another which, also depends on the former, as this
situation does not establish a precedence relation but a data
dependence cycle. Consequently, matrix D is not symmetric.
Mathematically: dij ≠ dji = 1 when 0 ≤ i ≤ n � 1 and 0 ≤ j ≤ n � 1.

• There is at least a graph vertex labeling under which matrix
D is lower triangular. Instructions only process data produced

by instructions located above in the program and, therefore, an
instruction depends only on the precedent ones (principle of
causality) so that at least one labeling must exist such that dij = 0
whenever j > i. These labelings are called canonical labelings.
According to this, the programmatic labeling is an example of
canonical labeling since it generates a lower triangular matrix D
that will be denoted Dc.

2.6 The matrix D and the reduced valence
In this Section we will show how the matrix D is related to the
reduced valence and thus is connected to the classical Graph
Theory.

Proposition 3: The product
t

II σσ ⋅ generates matrix D.

.
t

IID σσ ⋅= (14)

Proof: If we calculate the product component (i, j):

()[] .
1

0
∑
−

=

⋅=⋅
m

k
jkikij

t
iiII σσσσ

(15)

The summation goes through all the arcs in index k. The product
is different from zero only for the k-th arc if it enters the vertex i
(σ

iki = 1) and leaves vertex j. In other words, it enters vertex j
under the opposite orientation (

σ
jki = 1). But then, this is in

agreement with the definition of data dependence matrix D that
presented in (12).

.
1

0
ij

m

k
jkik dii =⋅∑

−

=

σσ

(16)

And the proof is completed. �

Proposition 4: The count of arcs along the rows of matrix D
generates the reduced valence matrix for the data flow graph
orientation (orientation σ).

Proof: Suppose the relation is true and replace each entry of D by
the value given in (16):

.
1

0

1

0

1

0
∑ ∑∑
−

=

−

=

−

=

⋅==
n

p

n

p

m

k
pkikipii iidv σσ

(17)

A simple computation leads to

.
1

0

1

0

1

0

1

0
∑ ∑∑∑
−

=

−

=

−

=

−

=

⋅=⋅=

m

k

n

p
pkik

m

k

n

p
pkikii iiiiv σσσσ

(18)

However, any given arc, say k, is incident only on one vertex and
hence:

.
1

0
∑
−

=

=
m

k
ikii iv σ

(19)

This corresponds to (8) and proves that obtaining the counting of
incoming arcs is equivalent to run through the rows either of
matrix Iσ or matrix D. Thus the proof is completed. �

Corollary: This fact allows us to provide a new definition for the
reduced valence matrix:

≠

==
=
∑
−

=

.if,0

; if arcs ofnumber
1

0

ji

jid
v

n

k
ik

ij
σ

(20)

2.7 Coupling and reuse vectors
For the sake of rising computational meaning, we can define the
coupling vector c

�

 that projects the Vσ diagonal over just 1
dimension. Then, from its definition, it is easy to see that each
component of the coupling vector c

�

 is the count of arcs along the
rows of matrix D:

∑
−

=

=
1

0

n

k
iki dc (21)

In the same way, working with the orientation σ , we can define
the reuse vector r

�

 that projects the
σV diagonal over just 1

dimension. Again, it is immediate that each component of the
reuse vector r

�

 is the count of arcs along the rows of matrix D :

∑∑
−

=

−

=

==
1

0

1

0

n

k
ki

n

k
iki ddr (22)

where the previous expression comes from the fact that D = Dt.

In summary, c
�

 conveys the coupling information whereas r
�

conveys the data reuse information.

2.8 Data dependence paths of length larger
than 1
In the classical Graph Theory, given a directed graph G(V, A), a
path of length l from vertex vi to vj is defined as a finite sequence
of l + 1 different vertices that begins in vi and finishes in vj, such
that two consecutive vertices are an arc belonging to A [10, 5].

In the following we will show how the path lengths are related to
some properties of the matrix D.

• Dl represents the data dependence path of length l (arcs).
Given a directed graph G(V, A) with orientation σ, the number
of data dependence paths of length l from vi to vj is the (i, j)
entry in the matrix Dl.

 For example, if dij = 1 and djk = 1 then instruction i depends on
instruction k through the instruction j by a path of length 2. We
can say that it exists a data dependence path of length 2 from
instruction i to instruction j running through, at least, one of the
instructions in the graph, whenever the following holds:

() () () .0
1

0
1100 ≠⋅=⋅++⋅ ∑

−

=
−−

n

k
kjikjninji dddddd �

(23)

• But this value corresponds to the (i, j) entry of the product D ·D
and, therefore, the matrix D2 represents the data dependence
paths of length 2. By induction we can extend the statement to
paths of length l. Note that the length is measured in arcs.

• The n-th power of D is null. The maximum length of a data
dependence path is n � 1 (arcs), n being the number of
instructions in the code sequence. Hence, Dn will necessarily be
null.

• There are no cycles of dependences. A graph representing a
code sequence must be acyclic, otherwise an instruction would
depend on itself through others and the task would not have
solution in a finite number of steps. Algebraically, the diagonal
of any power of the data dependence matrix (Dl) must be null:

l
iid = 0 when 1 ≤ l ≤ n � 1 and 1 ≤ i ≤ n.

2.9 Computation step concept
As soon as a data is available one or more instructions can
proceed to execution, thus starting a new computation step. Based
on this fact, we can define a computation step as the process of
eliminating all the nodes in the graph with no incoming ends.
Notice that in fact this is equivalent to execute all the independent
instructions.

The code sequence finalizes when the graph vanishes. Obviously
in the last computation step none of the remaining nodes has
incomings ends.

So, while an arc linking instructions shows a static precedence
relation, a computation step shows the dynamic transformation of
the graph. There is a direct relation between data dependence path
length and computation steps: if a data dependence path involves l
vertices, then this path has l � 1 arcs and the minimum number of
computation steps required to process the associated code
sequence is l.

Notice that computation step is an asynchronous concept.

3. METRICS
Based on the theoretical model above presented, we are going to
introduce a set of functions that allow us to measure magnitudes
related both to the graph itself and to the computational
environment represented by such graph. Among the former we
will introduce the code coupling, the data reuse and the path
length; and among the latter, the critical path length and the
degree of parallelism.

3.1 Code coupling
Remember (see Section 2.3) that if we select the data flow graph
orientation σ, the reduced valence gauges how much an
instruction is coupled with the rest. The coupling indicates that an
instruction consumes data coming from several instructions and,
therefore, it must stall its own execution till all these data are
available. Consequently, larger coupling implies a potentially
greater partial ordering of the code, since there are more
precedence relationships.

Accordingly, we define the instruction coupling function C as
follows:

,)(
1

0
∑
−

=

=
n

k
iki ddC

�

 (24)

where id
�

is the i-th row in matrix D and holds the data
dependence information for instruction i.

Let us consider any given data T (which resembles the word
�token� used in data flow setting) which creates a coupling
between the i-th instruction and other instructions. This coupling
is manifested in vector

id
�

.

If the dependence that T creates between two instructions is a true
dependence (RAW: Read After Write), namely, when a read is
performed in i after a write in j, then vector id

�

 will exhibit a
single component with a 1 in the j-th position. Then, T contributes
to the instruction coupling function)(idC

�

 with a value of just 1.

If the dependence through T is an output dependence (WAW:
Write After Write), namely, there is a write in instruction i after
another write in instruction j, then vector id

�

 will again exhibit a
single component with a 1 in the j-th position. Then, in this
second case, T contributes to the instruction coupling function

)(idC
�

 also with a value of just 1.

However, if the coupling through T is an anti-dependence (WAR:
Write After Read), namely, T is written in instruction i after one
or more reads, then vector id

�

 may contain several components
with a 1 since there are chances that previous instructions may
also read T. For anti-dependences, then, T contributes to the
instruction coupling function)(idC

�

 with a value potentially
greater than 1.

Naturally, the coupling vector c
�

 (see Section 2.7) carries the code
coupling information about each instruction. Notice that the
component ci =)(idC

�

.

From the instruction coupling function, we can introduce another
measure CT by simply summing all the components of vector c

�

.
This accounts for the total coupling of a code sequence thus
giving some information about the �entanglement� of the
instructions.

Since the maximum number of data dependences (arcs) in the
graph is given by all the possible ordered vertex pairs then the
total coupling CT is bounded by:

.
2

0

≤≤

n
CT

 (25)

To obtain a coupling measurement independent of the amount of
instructions in the sequence, we define a normalized coupling,
CTN, as the ratio CT vs. the binomial coefficient n over 2. When
CTN is zero there is no dependence; in the opposite case, each
instruction depends on all the precedent ones, and so CTN is one.
In other words .10 ≤≤ TNC

3.2 Data reuse and life span
The reduced valence matrix diagonal for the orientation σ
informs us about the reuse of data produced by each instruction.
The reuse indicates how many instructions consume data
produced by a given instruction. The larger the data reuse the
potentially larger the temporary storage.

To quantify the data reuse, we define the data reuse function R as
follows:

,)(
1

0
∑
−

=

=
n

k
iki ddR

�

 (26)

When the reuse value is 1, it means that each generated data is
consumed by only one instruction. If it is larger, it means that

several instructions consume a data. In this case, it is interesting
to know the life span of the data.

a) b)

Figure 2. Different classes of data reuse.

In the Fig. 2.(a) and (b), two possible situations are illustrated.
In both cases, instruction 0 generates data for instruction 1 and
instruction 2. In the case (a) the data is consumed in the next
computation step whereas in the case (b) this is not possible
because there is a data dependence path of length 2 that is also
coupling instruction 2 to the 0. We deduce that the life span tm
of data Tm produced by instruction i and consumed by any other
instruction from the set J must be at least equal to the longest
data dependence path between the instruction i and any
instruction j in J:

[] []{ }0,0:,0max 1
=≠=

−

∈
ij

k
ij

k
j

Jj
m

jj DDkt . (27)

Notice that tm is measured in computation steps.

3.3 Critical path length
As it is well known, the critical path length L is defined as the
length of the longest data dependence path. In this Section we will
show how we can derive L using the formalism of our theoretical
model.

Remember that, given a graph of a code sequence, represented by
its data dependence matrix D, Dl represents the data dependence
paths of length l (see Section 2.8). Therefore, the first power of D
that is identically zero indicates the length of the critical data path
in computation steps:

L = l computation steps if and only if Dl�1 � 0 and Dl = 0. (28)

With this metric, L is bounded as follows:

1 � L � n. (29)

On the one hand, if L is 1: there are no data dependences among
instructions and, should resources be available, all the
instructions could be processed concurrently in just one
computation step. On the other hand, if L is n, each computation
step admits the issuing of just one instruction per computation
step so the sequentiality is complete: n computation steps are
required to process the code.

Remark that actually the life span tm, as defined in Equation
27, can be considered simply as the critical path length of the
subset J of instructions that consume the data produced by
instruction i.

3.4 Degree of parallelism
One of the most important pieces of information that we can
extract from data dependence matrices is the available instruction
level parallelism degree. The parallelism degree is inversely
related to the critical path length: the longer the length, the stricter

the partial ordering of the code sequence, limiting the ability of
concurrent processing.

Consequently, we define the parallelism degree, Gp, as:

.
L

n
Gp = (30)

Gp ranges from 1 instruction per computation step (absence of
parallelism) to n (maximum parallelism degree).

[].,1 nGp ∈ (31)

3.5 Calculation of the critical path length
According to Equation (28), the calculation of the successive
powers of the matrix D allows the determination of the critical
path length. Nevertheless, considering the worst case, the method
has a very heavy complexity (O(n4) product operations) which is
too high for practical purposes.

In this Section we are going to present a method that decreases the
complexity.

In the same way as the coupling vector c
�

 was derived from
matrix D (see Section 2.7), we can extend the definition to any
power of D so that ic

�

 will be the coupling vector associated to Di,
thus showing the coupling trough data dependence path of length
i. We denote cc

��

=1 .

Proposition 5: The following relation holds:

.1+=⋅ ii ccD
��

 (32)

Proof: Consider first the case i = 1.

[] .2
1

0

2

1

0

1

0

1

0

1

0

1

0

cD

ddddcdcD

n

k
ik

n

k

n

j
jkij

n

j

n

k
jkij

n

j
jij

�

�

==

=⋅==⋅=⋅

∑

∑∑∑ ∑∑

−

=

−

=

−

=

−

=

−

=

−

=

Consider now the general case:

[] []

[] .1
1

0

1

1

0

1

0

1

0

1

0

1

0

+
−

=

+

−

=

−

=

−

=

−

=

−

=

==

=⋅==⋅=⋅

∑

∑∑∑ ∑∑

i
n

k
ik

i

n

k

n

j
jk

i
ij

n

j

n

k
jk

i
ij

n

j

i
jij

i

cD

DdDdcdcD

�

�

Thus the proof is completed. �

Proposition 6: The coupling vector ic
�

 is the null vector if and
only if the matrix Di is null.

Proof: Assume that Di is null, then by definition, ic
�

 is also null.
Conversely, assume that ic

�

 is null; since all the entries in matrix
Di are non negative numbers then it follows that Di is null. �

Corollary: From the propositions above it follows:

L = l computation steps if and only if 01
�

�

≠−lc and 0
�

�

=lc . (33)

0

2

1

3

0

3

1 2

The calculation of 1+ic
�

 from ic
�

 has a complexity of O(n2) and
hence the complexity of the method displays a complexity of
O(n3) in the worst case.

4. CONCLUSIONS
In this paper, a model of analysis, based on Graph Theory,
appropriate to quantify the data coupling has been proposed. It
can be applicable to several layer of the computation process. For
instance, we can determine with its help the parallelism
degradation due to the compilation process or the availability of
instruction level parallelism after the impact of using a particular
instruction set architecture.

The topological properties and restrictions the matrix D must
comply with in the ILP scope have been identified along with a
method that uses the same matrix D to quantify the parallelism
degree of code, the data reuse, and their life span. A metric to
measure the available parallelism degree has been defined as
well.

As a summary, we enumerate the main contributions that have
been made throughout the paper:

• we introduce the data dependence matrix D from the Graph
Theory definitions and supported by the novel concept of the
reduced valence,

• we have identified several topological properties and restrictions
that the matrix D must satisfy in the instruction parallel
processing scope,

• we have determined a relation between the matrix D and the
adjacency matrix A,

• we have proved the relation between the matrix D and the
reduced valence matrix for an orientation,

• we have introduced the concept of code coupling to measure the
ordering degree of a code sequence,

• we have established a way to quantify the data reuse degree,

• we have identified the relation between the powers of D and the
data dependence paths of length longer than 1,

• we have proposed a method to calculate the critical path
length.

5. ACKNOWLEDGMENTS
This work was partially supported by the Vicerrectorado de
Investigación de la Universidad de Alcalá under Grant UAH
PI2005/072.

6. REFERENCES
[1] Aho, A., Hopcroft, and J. E., Ullman, J. Data Structures and

Algorithms. Addison-Wesley Publishing Co., 1983.

[2] Aho, A., Sethi, R., and Ullman, J. Compilers. Principles,
Techniques and Tools. Addison-Wesley, 1986.

[3] Aho A., and Ullman, J. Foundations of Computer Science.
Computer Science Press, 1992.

[4] Austin, T. M., and Sohi, G. S. Dynamic Dependency
Analysis of Ordinary Programs. In Proceedings of the 19th
International Symposium on Computer Architecture, 1992,
342 � 351.

[5] Biggs, N. L. Algebraic Graph Theory (2nd edition),
ISBN: 0-521-45897-8, Cambridge University Press, 1993.

[6] Cormen, T. H., Leiserson, C. E., and Rivert, R. L.
Introduction to Algorithms. Mit Press, McGraw Hill, 1996.

[7] Davis, A. L., and Keller, R. M. Data flow program graphs.
IEEE Computer, vol. 15, 2, February, 1982.

[8] Dennis, J. B. Concurrency in software systems. In Advanced
Course in Software Engineering, Springer-Verlag,
1973, 111 � 127.

[9] Durán, R., and Rico, R. Quantification of ISA Impact on
Superscalar Processing. In Proceeding of EUROCON2005,
November 2005, 701 � 704.

[10] Godsil, C. D., and Royle, G. F. Algebraic Graph Theory,
ISBN: 0-387-95220-9, Springer-Verlag, 2001.

[11] Kumar, M. Measuring parallelism in computation intensive
scientific/engineering applications. IEEE Transactions on
Computers, 37(9), 1988.

[12] Padua, D. A., and Wolfe, M. J. Advanced Compiler
Optimizations for Supercomputers. Communications of the
ACM, 29(12), December 1986, 1184 � 1201.

[13] Postiff, M. A., Greene, D. A., Tyson, G. S. and T. N. Mudge.
The Limits of Instruction Level Parallelism in SPEC95
Applications. In Proceedings of the 3rd Workshop on
Interaction Between Compilers and Computer Architecture,
1998.

[14] Rico, R., Pérez, J. I., and Frutos, J. A. The impact of x86
instruction set architecture on superscalar processing.
Journal of Systems Architecture, vol. 51-1, 2005.

[15] Skadron, K., Martonosi, M., August, D. I., Hill, M. D., Hill,
D. J., and Pai, V. S. Challenges in Computer Architecture
Evaluation. IEEE Computer, vol. 36, 8, 2003.

[16] Stefanovic, D., and Martonosi, M. Limits and Graph
Structure of Available Instruction-Level Parallelism. In
Proceedings of the European Conference on Parallel
Computing (Euro-Par 2000), 2000.

[17] Wolfe, M. High Performance Compiler for Parallel
Computing. Addison-Wesley, CA, 1996.

[18] Zima, H., and Chapman, B. Supercompilers for Parallel and
Vector Supercomputers. ACM Press Frontiers Series, 1990.

