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ABSTRACT 
Computer architecture evaluation requires new tools that 
complement the customary simulations and, in this sense, the 
traditional Graph Theory can help to create a new frame for fine-
grain parallelism analysis of execution performance, a step 
beyond the classical static analysis performed by compilers. 

Starting off from Graph Theory basic foundations, this paper 
introduces the data dependence matrix D supported by the novel 
concept of the reduced valence. The matrix D characterizes a code 
sequence in a mathematical manner, is endowed with a number of 
properties and restrictions, and provides information about the 
ability of the code to be processed concurrently. Among other 
details, some low complexity techniques to calculate parallelism 
degree from the matrix D are presented. 

Keywords 
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1. INTRODUCTION 
Performance in the field of superscalar execution depends on 
many factors: the intrinsic parallelism of algorithms, the 
capabilities of the used high level language, the compilation 
process, the target machine instruction set and, of course, the 
physical layer. Figure 1 schematically illustrates the factors that 
affect the available parallelism at each layer of the computation 
process. 

 

 

Figure 1. Factors affecting the available parallelism in the 
different layers of the computation process. 

 

Nowadays, one of the most important objectives in Computer 
Engineering is code decoupling, in other words, avoiding data 
dependency among instructions in order to obtain full 
concurrency in superscalar processing of code. In particular, 
impacts from both the compiler [12] and the instruction set 
architecture [9, 14] can be responsible for an over-ordering of the 
code that has no solution in the physical layer and/or may cause 
increased execution complexity and power consumption. It is, 
therefore, important to steer the focus from the physical layer to 
the machine language layer and the program layer regarded on 
their own. 

Moreover, considering a single unit for study (the instruction set 
and the hardware that should interpret it) has become a usual way 
to perform the research, under the assumption that this is a 
sounder computational approach. Another circumstance that has 
also contributed to the mentioned fact is the extensive use 
(sometimes abuse) of simulation as the performance evaluation 
method. Simulation does not differentiate between the impact on 
performance arising from the upper computation process layers 
and the impact from limited physical resources [15]. 

In this paper we propose an analytical model for the quantitative 
evaluation of ILP at the machine language layer based on Graph 
Theory, which provides an efficient and promising mathematical 
formalization for the analytical modeling of ILP. 

Graphs had already been successfully applied to the study of other 
aspects of computation such as data structures [1, 3, 6] or 
software description [7, 8]. 

In particular, graphs have been traditionally applied to compiler 
extraction of medium- and coarse-grain parallelism [2, 17, 18] but 
using a purely static approach. Instead of this, we are interested in 
a dynamic approach allowing us to monitor the real execution of 
programs. 

We propose a measurement method based on the data dependence 
graphs (DDG). It consists of building the DDG of a real machine 
code sequence. DDG-based quantification is a powerful tool of 
analysis when the matrix representation is used for a number of 
reasons. First of all, it permits a mathematical processing. We can 
determine the critical path length and, consequently, the 
parallelism degree of an instruction window. We can find out the 
life span of operands, data sharing reuse, parallelism distribution 
and other significant parameters. 

Parallelism quantification by means of the critical path length has 
been previously employed in several works: In [11] it is used at 
the program layer and in [4, 13, 16] it is used to evaluate 
characteristics of the physical layer. But the main difference 
between these works and ours is the way in which the critical path 
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length is computed. In our work we derive the precise critical path 
length by means of our proposed mathematical formalization, 
whereas in the existing literature the critical path length is 
obtained by simply recording actual dependences thus losing any 
other information about the considered code fragment. 

So far, the most often employed metric in parallelism 
quantification at the instruction level is IPC. Since IPC requires 
the measurement of instruction count as well as time, the results 
strongly depend on the characteristics of the physical 
implementation and therefore it is amenable to the study of the 
different architectural proposals at the physical layer level. 
However, this method demands a complex simulator, if the 
measurements are to be precise; moreover, the necessary 
assumptions and simplifications have a significant effect on the 
final result. For example, it is typically assumed that the measured 
events follow a Gaussian distribution, which is seldom the case, 
since parallelism appears to come in bursts [11]. This fact impairs 
the results [15]. 

2. THE THOERETICAL MODEL 
2.1 Representation of instruction sequences as 
graphs 
Data dependences in an instruction sequence can be represented 
as a graph G(V, E), where V is the set of vertices and E is the set 
of edges. Each vertex in V represents an instruction and each edge 
in E a data dependence. Any two vertices related by an edge are 
said to be adjacent. 

Traditionally, graphs allow two formalizations: as linked list style 
or as matrix style. Each of them presents pros and cons regarding 
mathematical treatment and memory consumption. In our work, 
we have selected the matrix style because it facilitates the 
operations we are interested in, though at the price of a (tolerable) 
higher memory consumption. 

For the convenience of the reader, we introduce in this Section 
some concepts of Graph Theory (for more information see, for 
instance, [5, 10]) that will serve as environment for other novel 
concepts to be introduced later on. 

In the matrix style, a graph topology can be represented by the so-
called adjacency matrix1 A: 





=
otherwise. 0,

adjacent; are vertices and  if  ,1 ji
aij

 
(1)

A is a symmetric n x n matrix where n is the number of 
instructions in the graph, with null diagonal and aij∈{0, 1}. 

The incidence matrix2 B is defined as: 
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(2)

If the graph has n vertices and m edges, then the dimension of B is 
n x m. 

                                                                 
1 The equivalent concept in the linked list style is called 

adjacency list. 
2 The equivalent concept in the linked list style is called incidence 

list. 

In our formalism we use directed graphs. In a directed graph G(V, 
A), each pair of vertices is connected by an arc from the set A, 
which is a directed edge, i.e., an ordered pair of distinct vertices. 
A directed graph may have two possible orientations 
corresponding to the following: either �instruction i produces data 
for instruction j� (orientation σ) or �instruction j consumes data 
from (depends on) instruction i� (orientation σ ). In either case, 
the arcs point in opposite directions and have a complementary 
meaning: the first orientation shows data flow whereas the second 
one records data dependences. 

The incidence matrix Bσ with respect to orientation σ, is defined 
as the following n x m matrix: 
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The valence of a vertex is defined as the total number of arcs that 
are incident with this vertex. The valence matrix ∆ is an n x n 
diagonal matrix where the (i, i) component is the valence of vertex 
i. The adjacency matrix and the incidence matrix for the 
orientation σ are related as follows: 

( ) .
t

ABBQ −∆=⋅= σσ  (4)

The Bσ · (Bσ)t product is known as the Laplacian matrix Q. 
Adjacency, valence and Laplacian matrices are independent of the 
orientation. 

Moreover, a graph representation using adjacency matrix A have the 
properties of the characteristic polynomial det(λ I � A). 

2.2 Reduced valence 
In this Section, we introduce the novel concept of reduced 
valence. We define the reduced valence of a vertex as the total 
number of arcs having an incoming end on this vertex. The 
reduced valence depends, therefore, on the orientation selected. 

The σ-oriented reduced valence matrix Vσ, is an n x n diagonal 
matrix where the component (i, i) is the σ-oriented reduced 
valence of vertex i. 

Considering just one orientation, it is possible to formulate a 
special definition for the incidence matrix which we call the 
reduced incidence matrix Iσ with respect to orientation σ: 
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If the graph has n vertices and m arcs, the dimension of Iσ is n x 
m. 

Proposition 1: The Iσ · (Iσ)t product generates the reduced valence 
matrix Vσ for the selected orientation. 

( ) .
tσσσ IIV ⋅=  (6)

Proof: If we compute the (i, j) product component: 
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However, 0≠⋅ σσ
jkik ii if and only if i = j, because each arc has just 

one incoming end. Since σ
iki ∈{0, 1}, then ( σ
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This result is in agreement with the definition of the oriented 
reduced valence matrix Vσ and so, the proof is completed. � 

Proposition 2: The reduced incidence and the reduced valence 
matrices verify the following relations: 

,σσσ IIB −=  (9)

,σσσ IIB −=  (10)

.σσ VV +=∆  (11)

Proof: It is deduced directly from the definitions. � 

2.3 Computational meaning of the reduced 
valence 
The mathematical concept of reduced valence has a computational 
meaning that depends on the selected orientation. As stated in 
Section 2.1, there exist two orientations: the orientation σ 
(�instruction i produces data for instruction j�) and orientation σ  
(�instruction j consumes data from instruction i�). 

The first one, which gives rise the reduced valence matrix Vσ, 
conveys the information about how the instructions are coupled: 
the diagonal element (i, i) shows the number of instructions on 
which instruction i depends. 

The second one, which gives rise the reduced valence matrix σV , 
conveys the information about data reuse: the diagonal element (i, 
i) shows how many instructions use the data produced by 
instruction i. 

2.4 Data dependence matrix D 
Another new concept introduce by us is the data dependence 
matrix D defined as: 
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(12)

Then, the rows of matrix D correspond to the vectors id
�

 of a code 
sequence. Each id

�

 holds the data dependence information for 
instruction i. Notice that by data dependence information we 
mean dependence on any operand involved in operation i. 

This matrix is not to be confused with the matrix of the same 
name typically used in compiler theory. Though related, actually 
they do not store the same information: in loop transformation the 
information captured in the matrix is the static dependence 
distance (among iterations) [17, 18] not the dynamic dependence 
among instructions. 

The matrix D represents the direct data dependence path or data 
dependence path of length 1, that is, instruction i consumes data 
processed directly by instruction j with no interveners. According 

to its definition, matrix D shows the graph orientation 
corresponding to orientation σ (data flow). 

Similarly, the matrix D  can also be defined for the orientation σ  
(data dependences). Obviously, if �instruction i depends on 
instruction j� then �instruction j produces data for instruction i�, 
and hence this means that D  = Dt. 

Finally, it is easy to check that the following relation holds: 

.DDA +=  (13)

Recall that the matrix A considers adjacency and so it includes 
both incoming and outgoing ends on vertices. 

2.5 Topological properties and ILP 
restrictions for D 
One of the aims of Graph Theory algebra is to precisely determine 
how graphs properties are presented in the algebraic properties of 
their associated matrices. Additionally, we try to define properties 
in the scope of parallel instruction processing. 

• Vertex labeling used should not affect the properties of D. 
Matrix D can be associated to a directed graph with a vertex set 
V = {v0, v1, v2, �, vn-1} whose labeling is arbitrary. 
Consequently, properties of matrix D should remain invariant 
upon permutations of rows and columns. 

 A natural labeling for the vertex of the graph is using the strict 
precedence order of the instructions in a program. We will call 
this labeling a programmatic labeling. 

• There must exist a precedence relation among the data 
dependence graph vertices. Any computable task entails some 
precedence relation or partial ordering among the tasks 
(instructions) to perform, since it is a process developed in an 
ordered and finite succession of steps. 

• An instruction does not depend on itself. A data item cannot 
have the same instruction as source and as destination. 
Consequently, matrix D has null diagonal. That is, dii = 0 when 
0 ≤ i ≤ n � 1. 

 This is true even for loops. A loop is a compact way to write a 
code sequence which would correspond, in an expanded version 
to the repetition a sequence of operations but on a different data. 
Each iteration implies a new instance of the loop body but on 
new data. The execution of the body of a loop requires a 
conditional branch instruction between iterations. In that case, 
the conditional branch instruction can be inserted in the data 
flow graph as a special operation that manipulates the program 
counter register and keeps apart the loop body instructions in 
each iteration. Remember that since we apply our formalism in a 
dynamic way, we resort to the use of trace files where loops are 
naturally unrolled and branches are solved. 

• Data dependences are not symmetrical. An instruction cannot 
depend on another which, also depends on the former, as this 
situation does not establish a precedence relation but a data 
dependence cycle. Consequently, matrix D is not symmetric. 
Mathematically: dij ≠ dji = 1 when 0 ≤ i ≤ n � 1 and 0 ≤ j ≤ n � 1. 

• There is at least a graph vertex labeling under which matrix 
D is lower triangular. Instructions only process data produced 



by instructions located above in the program and, therefore, an 
instruction depends only on the precedent ones (principle of 
causality) so that at least one labeling must exist such that dij = 0 
whenever j > i. These labelings are called canonical labelings. 
According to this, the programmatic labeling is an example of 
canonical labeling since it generates a lower triangular matrix D 
that will be denoted Dc. 

2.6 The matrix D and the reduced valence 
In this Section we will show how the matrix D is related to the 
reduced valence and thus is connected to the classical Graph 
Theory. 

Proposition 3: The product 
t

II σσ ⋅  generates matrix D. 

.
t

IID σσ ⋅=  (14)

Proof: If we calculate the product component (i, j): 
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The summation goes through all the arcs in index k. The product 
is different from zero only for the k-th arc if it enters the vertex i 
( σ

iki  = 1) and leaves vertex j. In other words, it enters vertex j 
under the opposite orientation (

σ
jki = 1). But then, this is in 

agreement with the definition of data dependence matrix D that 
presented in (12). 
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And the proof is completed. � 

Proposition 4: The count of arcs along the rows of matrix D 
generates the reduced valence matrix for the data flow graph 
orientation (orientation σ). 

Proof: Suppose the relation is true and replace each entry of D by 
the value given in (16): 
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A simple computation leads to 
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However, any given arc, say k, is incident only on one vertex and 
hence: 
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This corresponds to (8) and proves that obtaining the counting of 
incoming arcs is equivalent to run through the rows either of 
matrix Iσ or matrix D. Thus the proof is completed. � 

Corollary: This fact allows us to provide a new definition for the 
reduced valence matrix: 
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2.7 Coupling and reuse vectors 
For the sake of rising computational meaning, we can define the 
coupling vector c

�

 that projects the Vσ diagonal over just 1 
dimension. Then, from its definition, it is easy to see that each 
component of the coupling vector c

�

 is the count of arcs along the 
rows of matrix D: 

∑
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In the same way, working with the orientation σ , we can define 
the reuse vector r

�

 that projects the 
σV  diagonal over just 1 

dimension. Again, it is immediate that each component of the 
reuse vector r

�

 is the count of arcs along the rows of matrix D : 
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where the previous expression comes from the fact that D  = Dt. 

In summary, c
�

 conveys the coupling information whereas r
�

 
conveys the data reuse information. 

2.8 Data dependence paths of length larger 
than 1 
In the classical Graph Theory, given a directed graph G(V, A), a 
path of length l from vertex vi to vj is defined as a finite sequence 
of l + 1 different vertices that begins in vi and finishes in vj, such 
that two consecutive vertices are an arc belonging to A [10, 5]. 

In the following we will show how the path lengths are related to 
some properties of the matrix D. 

• Dl represents the data dependence path of length l (arcs). 
Given a directed graph G(V, A) with orientation σ, the number 
of data dependence paths of length l from vi to vj is the (i, j) 
entry in the matrix Dl. 

 For example, if dij = 1 and djk = 1 then instruction i depends on 
instruction k through the instruction j by a path of length 2. We 
can say that it exists a data dependence path of length 2 from 
instruction i to instruction j running through, at least, one of the 
instructions in the graph, whenever the following holds: 

( ) ( ) ( ) .0
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(23)

• But this value corresponds to the (i, j) entry of the product D ·D 
and, therefore, the matrix D2 represents the data dependence 
paths of length 2. By induction we can extend the statement to 
paths of length l. Note that the length is measured in arcs. 

• The n-th power of D is null. The maximum length of a data 
dependence path is n � 1 (arcs), n being the number of 
instructions in the code sequence. Hence, Dn will necessarily be 
null. 



• There are no cycles of dependences. A graph representing a 
code sequence must be acyclic, otherwise an instruction would 
depend on itself through others and the task would not have 
solution in a finite number of steps. Algebraically, the diagonal 
of any power of the data dependence matrix (Dl) must be null: 

l
iid  = 0 when 1 ≤ l ≤ n � 1 and 1 ≤ i ≤ n. 

2.9 Computation step concept 
As soon as a data is available one or more instructions can 
proceed to execution, thus starting a new computation step. Based 
on this fact, we can define a computation step as the process of 
eliminating all the nodes in the graph with no incoming ends. 
Notice that in fact this is equivalent to execute all the independent 
instructions. 

The code sequence finalizes when the graph vanishes. Obviously 
in the last computation step none of the remaining nodes has 
incomings ends. 

So, while an arc linking instructions shows a static precedence 
relation, a computation step shows the dynamic transformation of 
the graph. There is a direct relation between data dependence path 
length and computation steps: if a data dependence path involves l 
vertices, then this path has l � 1 arcs and the minimum number of 
computation steps required to process the associated code 
sequence is l. 

Notice that computation step is an asynchronous concept. 

3. METRICS 
Based on the theoretical model above presented, we are going to 
introduce a set of functions that allow us to measure magnitudes 
related both to the graph itself and to the computational 
environment represented by such graph. Among the former we 
will introduce the code coupling, the data reuse and the path 
length; and among the latter, the critical path length and the 
degree of parallelism. 

3.1 Code coupling 
Remember (see Section 2.3) that if we select the data flow graph 
orientation σ, the reduced valence gauges how much an 
instruction is coupled with the rest. The coupling indicates that an 
instruction consumes data coming from several instructions and, 
therefore, it must stall its own execution till all these data are 
available. Consequently, larger coupling implies a potentially 
greater partial ordering of the code, since there are more 
precedence relationships. 

Accordingly, we define the instruction coupling function C as 
follows: 
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where id
�

is the i-th row in matrix D and holds the data 
dependence information for instruction i. 

Let us consider any given data T (which resembles the word 
�token� used in data flow setting) which creates a coupling 
between the i-th instruction and other instructions. This coupling 
is manifested in vector 

id
�

. 

If the dependence that T creates between two instructions is a true 
dependence (RAW: Read After Write), namely, when a read is 
performed in i after a write in j, then vector id

�

 will exhibit a 
single component with a 1 in the j-th position. Then, T contributes 
to the instruction coupling function )( idC

�

 with a value of just 1. 

If the dependence through T is an output dependence (WAW: 
Write After Write), namely, there is a write in instruction i after 
another write in instruction j, then vector id

�

 will again exhibit a 
single component with a 1 in the j-th position. Then, in this 
second case, T contributes to the instruction coupling function 

)( idC
�

 also with a value of just 1. 

However, if the coupling through T is an anti-dependence (WAR: 
Write After Read), namely, T is written in instruction i after one 
or more reads, then vector id

�

 may contain several components 
with a 1 since there are chances that previous instructions may 
also read T. For anti-dependences, then, T contributes to the 
instruction coupling function )( idC

�

 with a value potentially 
greater than 1. 

Naturally, the coupling vector c
�

 (see Section 2.7) carries the code 
coupling information about each instruction. Notice that the 
component ci = )( idC

�

. 

From the instruction coupling function, we can introduce another 
measure CT by simply summing all the components of vector c

�

. 
This accounts for the total coupling of a code sequence thus 
giving some information about the �entanglement� of the 
instructions. 

Since the maximum number of data dependences (arcs) in the 
graph is given by all the possible ordered vertex pairs then the 
total coupling CT is bounded by: 
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To obtain a coupling measurement independent of the amount of 
instructions in the sequence, we define a normalized coupling, 
CTN, as the ratio CT vs. the binomial coefficient n over 2. When 
CTN is zero there is no dependence; in the opposite case, each 
instruction depends on all the precedent ones, and so CTN is one. 
In other words .10 ≤≤ TNC  

3.2 Data reuse and life span 
The reduced valence matrix diagonal for the orientation σ  
informs us about the reuse of data produced by each instruction. 
The reuse indicates how many instructions consume data 
produced by a given instruction. The larger the data reuse the 
potentially larger the temporary storage. 

To quantify the data reuse, we define the data reuse function R as 
follows: 
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When the reuse value is 1, it means that each generated data is 
consumed by only one instruction. If it is larger, it means that 



several instructions consume a data. In this case, it is interesting 
to know the life span of the data. 

 

  
a) b) 

 

Figure 2. Different classes of data reuse. 

In the Fig. 2.(a) and (b), two possible situations are illustrated. 
In both cases, instruction 0 generates data for instruction 1 and 
instruction 2. In the case (a) the data is consumed in the next 
computation step whereas in the case (b) this is not possible 
because there is a data dependence path of length 2 that is also 
coupling instruction 2 to the 0. We deduce that the life span tm 
of data Tm produced by instruction i and consumed by any other 
instruction from the set J must be at least equal to the longest 
data dependence path between the instruction i and any 
instruction j in J: 

[ ] [ ]{ }0,0:,0max 1
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Notice that tm is measured in computation steps. 

3.3 Critical path length 
As it is well known, the critical path length L is defined as the 
length of the longest data dependence path. In this Section we will 
show how we can derive L using the formalism of our theoretical 
model. 

Remember that, given a graph of a code sequence, represented by 
its data dependence matrix D, Dl represents the data dependence 
paths of length l (see Section 2.8). Therefore, the first power of D 
that is identically zero indicates the length of the critical data path 
in computation steps: 

L = l computation steps if and only if Dl�1 � 0 and Dl = 0. (28)

With this metric, L is bounded as follows: 

1 � L � n. (29)

On the one hand, if L is 1: there are no data dependences among 
instructions and, should resources be available, all the 
instructions could be processed concurrently in just one 
computation step. On the other hand, if L is n, each computation 
step admits the issuing of just one instruction per computation 
step so the sequentiality is complete: n computation steps are 
required to process the code. 

Remark that actually the life span tm, as defined in Equation 
27, can be considered simply as the critical path length of the 
subset J of instructions that consume the data produced by 
instruction i. 

3.4 Degree of parallelism 
One of the most important pieces of information that we can 
extract from data dependence matrices is the available instruction 
level parallelism degree. The parallelism degree is inversely 
related to the critical path length: the longer the length, the stricter 

the partial ordering of the code sequence, limiting the ability of 
concurrent processing. 

Consequently, we define the parallelism degree, Gp, as: 

.
L

n
Gp =  (30)

Gp ranges from 1 instruction per computation step (absence of 
parallelism) to n (maximum parallelism degree). 

[ ].,1 nGp ∈  (31)

3.5 Calculation of the critical path length 
According to Equation (28), the calculation of the successive 
powers of the matrix D allows the determination of the critical 
path length. Nevertheless, considering the worst case, the method 
has a very heavy complexity (O(n4) product operations) which is 
too high for practical purposes. 

In this Section we are going to present a method that decreases the 
complexity. 

In the same way as the coupling vector c
�

 was derived from 
matrix D (see Section 2.7), we can extend the definition to any 
power of D so that ic

�

 will be the coupling vector associated to Di, 
thus showing the coupling trough data dependence path of length 
i. We denote cc

��

=1 . 

Proposition 5: The following relation holds: 

.1+=⋅ ii ccD
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Proof: Consider first the case i = 1. 
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Consider now the general case: 
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Thus the proof is completed. � 

Proposition 6: The coupling vector ic
�

 is the null vector if and 
only if the matrix Di is null. 

Proof: Assume that Di is null, then by definition, ic
�

 is also null. 
Conversely, assume that ic

�

 is null; since all the entries in matrix 
Di are non negative numbers then it follows that Di is null. � 

Corollary: From the propositions above it follows: 

L = l computation steps if and only if 01
�

�

≠−lc  and 0
�

�

=lc . (33)
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The calculation of 1+ic
�

 from ic
�

 has a complexity of O(n2) and 
hence the complexity of the method displays a complexity of 
O(n3) in the worst case. 

4. CONCLUSIONS 
In this paper, a model of analysis, based on Graph Theory, 
appropriate to quantify the data coupling has been proposed. It 
can be applicable to several layer of the computation process. For 
instance, we can determine with its help the parallelism 
degradation due to the compilation process or the availability of 
instruction level parallelism after the impact of using a particular 
instruction set architecture. 

The topological properties and restrictions the matrix D must 
comply with in the ILP scope have been identified along with a 
method that uses the same matrix D to quantify the parallelism 
degree of code, the data reuse, and their life span. A metric to 
measure the available parallelism degree has been defined as 
well. 

As a summary, we enumerate the main contributions that have 
been made throughout the paper: 

• we introduce the data dependence matrix D from the Graph 
Theory definitions and supported by the novel concept of the 
reduced valence, 

• we have identified several topological properties and restrictions 
that the matrix D must satisfy in the instruction parallel 
processing scope, 

• we have determined a relation between the matrix D and the 
adjacency matrix A, 

• we have proved the relation between the matrix D and the 
reduced valence matrix for an orientation, 

• we have introduced the concept of code coupling to measure the 
ordering degree of a code sequence, 

• we have established a way to quantify the data reuse degree, 

• we have identified the relation between the powers of D and the 
data dependence paths of length longer than 1, 

• we have proposed a method to calculate the critical path 
length. 
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