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ABSTRACT
We apply the replica method to analyze vector pre-coding, a
method to reduce transmit power in antenna array commu-
nications, in the limit of an infinite number of dimensions of
the signal vector. The analysis applies to a very general class
of channel matrices. The statistics of the channel matrix en-
ter the transmitted energy per symbol via its R-transform.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Wireless communications, statistical mechanics

1. INTRODUCTION
Vector precoding aims to minimize the transmitted power
that is associated with the transmission of a certain data
vector s ∈ SK of length K. For that purpose, the original
symbol alphabet S is relaxed into the alphabet B. The data
representation in the relaxed alphabet is redundant. That
means that several symbols in the relaxed alphabet repre-
sent the same data. Due to the redundant representation,
we can now choose that representation of our data which re-
quires the least power to be transmitted. This way of saving
transmit power is called vector pre-coding.

That means, for any sk ∈ S , e.g. S = {1, 0}, there is a set
Bsk

⊂ B, e.g. B = Z, such that all elements of Bsk
represent

the data sk. For binary transmission without vector pre-
coding, it is most common to choose B0 = {+1} and B1 =
{−1}. This modulation is called binary phase shift keying.
For binary modulation, vector pre-coding is the idea to allow
for supersets of B0 and B1.

In order to avoid ambiguities, we should have

Bi ∩ Bj = ∅ ∀i 6= j. (1)

In addition, one would like to design the sets Bi such that
the distance properties between the presented information
are preserved. This is easily achieved by letting the sets
Bi to be distinct sub-lattices of B. However, we are not
concerned with these design issues here. We aim to analyze
the power saving achieved by a particular choice of the sets
Bi. This goal is achieved using the replica method invented
in statistical physics.

The replica method was introduced into multiuser communi-
cations by the landmark paper of Tanaka [15] for the purpose
of studying the performance of the maximum a-posteriori
detector. Subsequently his work was generalized and ex-
tended other problems in multiuser communications by him-
self and Saad [17], Guo and Verdú [4], Müller et al. [14, 13],
Caire et al. [1], Tanaka and Okada [16], Kabashima [8], Li
and Poor [9], Guo [3], and Wen and Wong [21]. Addition-
ally, the replica method has also been successfully used for
the design and analysis of error correction codes. Vector
pre-coding has been discussed in the non-asymptotic regime
by several authors, e.g. [6]

2. PROBLEM STATEMENT
Let s denote the information to be encoded. Let t = T x be
the vector being sent. Then, the pre-coding problem can be
written as the minimization of the following quadratic form

min
x∈X

x
†
Rx (2)

over the discrete set

X = Bs1 × Bs2 × · · · × BsK
(3)

with R = T
†
T with s1, s2, . . . , sK representing the informa-

tion sequence to be encoded.

In order to allow for analytical tractability, we need a few
assumptions:

Assumption 1 (self-averaging property). We have

lim
K→∞

Pr

„
1

K

˛
˛
˛
˛min
x∈X

x
†
Rx −E

R

min
x∈X

x
†
Rx

˛
˛
˛
˛ > ǫ

«

= 0 (4)

for all ǫ > 0, i.e. convergence in probability.
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Assumption 2 (replica continuity). For all β > 0,
the continuation of the function

f(n) =
nY

a=1

X

xa∈X
e−βx

†
aRxa (5)

onto the positive real line is equal to
 
X

x∈X
e−βx

†
Rx

!n

in the vicinity of n = 0.

Assumption 3 (unitary invariance). The random
matrix R, can be decomposed into

R = ODO
† (6)

such that the matrices D and O are diagonal and Haar dis-
tributed, respectively. Moreover, as K → ∞, the asymptotic
eigenvalue distribution of R converges to a non-random dis-
tribution function which can be uniquely characterized by its
R-transform1 R(w).

Assumption 4 (replica symmetry). When applying
the replica method to solve the saddle-point equations, we
will assume that the extremal point is invariant to permu-
tations of the replica index. For a detailed discussion of
replica symmetry, the reader is referred to the literature of
spin glasses, e.g. [11].

The first three assumptions are rather technical and should
hold well in the application we are addressing. The valid-
ity of replica symmetry, by contrast, is a postulate which,
for sake of analytical tractability, is made without further
justification.

3. GENERAL RESULT
With the previous assumptions, we find for the average
transmitted energy per symbol in the large system limit

Es = lim
K→∞

1

K
min
x∈X

x
†
Rx (7)

= − lim
K→∞

lim
β→∞

1

βK
E
R

log
X

x∈X
e−βx

†
Rx (8)

= − lim
K→∞

lim
β→∞

1

βK
lim
n→0

∂

∂n
log E

R

 
X

x∈X
e−βx

†
Rx

!n

(9)

= − lim
β→∞

1

β
lim
n→0

∂

∂n
lim

K→∞

1

K
log E

R

nY

a=1

X

xa∈X
e−βx

†
aRxa

| {z }

△
=Ξn

.

where the argument of the logarithm in (10) is given by

Ξn = lim
K→∞

1

K
log E

R

X

{xa∈X}
exp

"

−β
nX

a=1

x
†
aRxa

#

(10)

= lim
K→∞

1

K
log E

R

X

{xa∈X}
exp

"

tr

 

−βR

nX

a=1

xax
†
a

!#

.

1See [20, 12, 19] for the definition of the R-transform.

Using Assumption 3, we can integrate over the Haar dis-
tributed eigenvectors of R. LetR(w) denote the R-transform
[20] of the asymptotic eigenvalue distribution of R. Then,
we have from [10, 7]

Ξn = lim
K→∞

1

K
log

X

{xa∈X}
exp

2

4−K
nX

a=1

1Z

0

λaR(−λaw)dw

3

5

(11)
with λi denoting the n positive eigenvalues of

β
nX

a=1

xax
†
a. (12)

In their original work [10], Marinari et al. do not formulate
their result in terms of the R-transform from free probability
theory, but in terms of what they call the generating func-
tion. The equivalence of our and their formulation is shown
in Appendix A.

The eigenvalues λi are completely determined by the inner
products

KQab = x
†
axb

△
=

KX

k=1

x∗
akxbk. (13)

In order to perform the summation in (11), the Kn-dimen-
sional space spanned by the replicas is split into subshells

S{Q} △
=
n

x1, . . . ,xn

˛
˛
˛x

†
axb = KQab

o

(14)

where the inner product of two different replicated vectors
xa and xb is constant.2 With this splitting of the space, we
find3

Ξn = lim
K→∞

1

K
log

Z

Rn2

eKI{Q}e−KG{Q}Y

a,b

dQab, (15)

where

eKI{Q} =

Z nY

a=1

"
nY

b=1

δ
“

x
†
axb −KQab

”
#

dPx(xa) (16)

denotes the probability weight of the subshell and

G{Q} =
nX

a=1

1Z

0

λa{Q}R
`
− λa{Q}w

´
dw (17)

=
nX

a=1

λa{Q}Z

0

R(−w) dw (18)

This procedure is a change of integration variables in mul-
tiple dimensions where the integration of an exponential
function over the replicas has been replaced by integration
over the variables {Q}. In the following the two exponential
terms in (15) are evaluated separately.

First, we turn to the evaluation of the measure eKI{Q}.
Since for some t ∈ R, we have the Fourier expansion of

2The notation f{Q} expresses dependency of the function
f(·) on Qab, 1 ≤ a ≤ b ≤ n.
3The notation

Q

a,b is used as shortcut for
Qn

a=1

Qn

b=1.



the Dirac measure

δ
“

x
†
axb −KQab

”

=

Z

J

exp
h

Q̃ab

“

x
†
axb −KQab

”i dQ̃ab

2πj

(19)

with J = (t − j∞; t + j∞), the measure eKI{Q} can be
expressed as

eKI{Q} =

Z
2

4
Y

a,b

Z

J

eQ̃ab(x
†
axb−KQab) dQ̃ab

2πj

3

5

nY

a=1

dPx(xa)

=

Z

Jn2

e
log

K
Q

k=1
Mk{Q̃}−K

P

a,b

Q̃abQab Y

a,b

dQ̃ab

2πj
(20)

with

Mk

n

Q̃
o

=

Z

exp

0

@
X

a,b

Q̃abx
∗
axb

1

A

nY

a=1

dPxk
(xa). (21)

In the limit of K → ∞ one of the exponential terms in
(15) will dominate over all others. Thus, only the maximum
value of the correlation Qab is relevant for calculation of the
integral.

At this point, we assume replica symmetry. This means,
that in order to find the maximum of the objective func-
tion, we consider only a subset of the potential possibilities
that the variables Qab could take. Here, we restrict them
to the following two different possibilities Qab = q, ∀a 6= b
and Qaa = q+ b/β, ∀a. One case distinction has been made
to distinguish correlations Qab which correspond to correla-
tions between different and identical replica indices, respec-
tively. We apply the same idea to the correlation variables
in the Fourier domain and set with a modest amount of
foresight Q̃ab = β2f2/2, ∀a 6= b and Q̃aa = β2f2/2 − βe,∀a.
Note that the matrix defined by Qab is positive semidefinite.
This implies that the replica symmetric parameters q, b, f, e
are all real.

At this point the crucial benefit of the replica method be-
comes obvious. Assuming replica continuity, we have man-
aged to reduce the evaluation of a continuous function to
sampling it at integer points. Assuming replica symmetry
we have reduced the task of evaluating infinitely many inte-
ger points to calculating four different correlations (two in
the original and two in the Fourier domain).

The assumption of replica symmetry leads to

X

a,b

Q̃abQab =
n(n− 1)

2
β2f2q + n

„
βf2

2
− e

«

(βq + b)

(22)
and

Mk(e, f) =

Z

e

β
2

n
P

a=1
(βf2−2e)|xa|2+2

n
P

b=a+1
βf2ℜ{x∗

axb}
×

×
nY

a=1

dPxk
(xa) (23)

Note that the prior distribution enters the free energy only
via (23). We will focus on this later on after having finished
with the other terms.

For the evaluation of G{Q} in (15), we can use the replica
symmetry to explicitly calculate the eigenvalues λi. Con-
siderations of linear algebra lead to the conclusion that the
eigenvalues b and b+βnq occur with multiplicities n−1 and
1, respectively. Thus we get

G(q, b) = (n− 1)

bZ

0

R(−w) dw +

b+βnqZ

0

R(−w) dw.(24)

Since the integral in (15) is dominated by the maximum
argument of the exponential function, the derivatives of

G{Q} +
X

a,b

Q̃abQab (25)

with respect to q and b must vanish as K → ∞. Taking
derivatives after plugging (22) and (24) into (25), gives

βnR(−b− βnq) +
n(n− 1)

2
β2f2 + βn

„
βf2

2
− e

«

= 0

(n− 1)R(−b) +R(−b− βnq) + n

„
βf2

2
− e

«

= 0

solving for e and f gives

e = R(−b) (26)

f =

s

2
R(−b) −R(−b− βnq)

βn
(27)

with the limits for n→ 0

f
n→0−→

p

2qR′(−b) (28)

n
df

dn
n→0−→ 0. (29)

Consider now the integration over the prior distribution in
the moment-generating function. Consider (23) giving the
only term that involves the prior distribution and apply the
complex Hubbard-Stratonovich transform

e
|x|2
2 =

1

2π

Z

C

e±ℜ{xz∗}− |z|2
2 dz =:

Z

e±ℜ{xz}Dz. (30)

Then, we find with (23)

Mk(e, f) =

Z

e

β2f2

2

˛

˛

˛

˛

˛

n
P

a=1
xa

˛

˛

˛

˛

˛

2

−
n
P

a=1
βe|xa|2 nY

a=1

dPxk
(xa)

=

ZZ

e
β

n
P

a=1
fℜ{xaz∗}−e|xa|2

Dz

nY

a=1

dPxk
(xa)

=

Z „Z

eβfℜ{xz∗}−βe|x|2dPxk
(x)

«n

Dz (31)

Moreover, for K → ∞, we have by the law of large numbers

logM(e, f) =
1

K
log

KY

k=1

Mk(e, f) (32)

=

Z

log

Z „Z

eβfℜ{z∗x}−βe|x|2dPxk
(x)

«n

DzdPs(xk) .

In the large system limit, the integral in (20) is dominated
by that value of the integration variable which maximizes



the argument of the exponential function. Thus, partial
derivatives of

logM(e, f)− n(n− 1)

2
f2β2q−n

„
βf2

2
− e

«

(b+ βq) (33)

with respect to f and e must vanish as K → ∞.

An explicit calculation of the two derivatives gives the fol-
lowing expressions for the macroscopic parameters q and b

b
n→0−→ 1

f

ZZ R
ℜ{z∗x}eβfℜ{z∗x}−βe|x|2dPxk

(x)
R

eβfℜ{z∗x}−βe|x|2dPxk
(x)

Dz dPs(xk)

q
n→0−→

ZZ R
|x|2eβfℜ{z∗x}−βe|x|2dPxk

(x)
R

eβfℜ{z∗x}−βe|x|2dPxk
(x)

DzdPs(xk) − b

β
.

Moreover, we find

lim
n→0

db

dn
= 0 (34)

Returning to our initial goal, the evaluation of the average
transmitted energy per symbol, and collecting our previous
results, we find

Es = − lim
β→∞

1

β
lim
n→0

∂

∂n
Ξn (35)

= lim
β→∞

1

β
lim
n→0

∂

∂n
(n− 1)

bZ

0

R(−w) dw +

b+βnqZ

0

R(−w) dw

− logM(e, f) + n(n−1)
2

f2β2q + n
2
(f2β − 2e)(b+ βq)

= lim
β→∞

1

β

bZ

0

R(−w) dw − bR(−b) + βqbR′(−b) (36)

− 1

β

ZZ

log

Z

eβfℜ{z∗x}−βe|x|2dPxk
(x)Dz dPs(xk)

= lim
β→∞

R(−b)
„

q +
b

β

«

− qbR′(−b) (37)

where the last equality follows from l’Hospital’s rule and the
re-substitutions of b and q applying (34) and (34). Note that
for any bound on the amplitude of the signal set B, the pa-
rameter q is finite. Even without bound, q will remain finite
for a well-defined minimization problem. The parameter b
behaves in a more complicated manner. It can be both zero,
finite, and infinite as β → ∞ depending on the particular
R-transform.

Consider now the most interesting case 0 < b < ∞ for β →
∞. First, this implies with (34) that

q
β→∞−→ lim

β→∞

ZZ R
|x|2eβfℜ{z∗x}−βe|x|2dPxk

(x)
R

eβfℜ{z∗x}−βe|x|2dPxk
(x)

DzdPs(xk)

=

ZZ
˛
˛
˛
˛
˛
argmin
x∈Bxk

˛
˛
˛
˛
˛
z

s

qR′(−b)
2R2(−b) − x

˛
˛
˛
˛
˛

˛
˛
˛
˛
˛

2

DzdPs(xk) (38)

Second, we find

b
β→∞−→

ZZ

ℜ
(

argmin
x∈Bxk

˛
˛
˛
˛
˛
z

s

qR′(−b)
2R(−b)2 − x

˛
˛
˛
˛
˛
z∗
)

DzdPs(xk)
p

2qR′(−b)

Note that the minimization with respect to the symbol x
splits the integration space of z into the Voronoi regions de-
fined by the (appropriately scaled) signal constellation Bxk

.
Finally, the energy per symbol simplifies to

Es = qR(−b) − qbR′(−b) (39)

= q
∂

∂b
bR(−b) (40)

= q
∂

∂b
bm−1(b) (41)

= q

„

s+
m(s)

m′(s)

«

(42)

with b = m(s) being the Stieltjes transform of the asymp-
totic eigenvalue distribution.

4. PARTICULAR RANDOM MATRICES
The general result leaves us with two objects to specify: 1)
The statistics of the random matrix entering the energy per
symbol via its R-transform. 2) The relaxed signal alphabets
Bi ∀i ∈ S . While the relaxed alphabets characterize a par-
ticular method of pre-coding, the random matrix statistics
depends on the wireless communication system. In the fol-
lowing, we will consider two choices for the statistics of the
random matrix.

4.1 Zero-Forcing Transmission
Consider a vector-valued communication system. Let the
received vector be given as

r = Ht + n (43)

where n is white Gaussian noise. Let the components of the
transmitted and received vectors be signals sent and received
at different antenna elements, respectively.

We now want to ensure that the received signal is (up to
additive noise) identical to the data vector. This design
criteria leads us to choose

T = H
†
“

HH
†
”−1

. (44)

This means that we invert the channel and get r = x + n

if the matrix inverse exists. This allows to keep the signal
processing at the receiver at a minimum. This is advanta-
geous if the receiver shall be a low-cost or battery-powered
device.

To model the statistics of the entries of H is a non-trivial
task and a topic of ongoing research, see e.g. [2] and refer-
ences therein. For sake of convenience, we choose in this first
order approach that the entries of the channel matrix H are
independent and identically distributed complex Gaussian
random variables with zero mean and variance 1/N .

4.2 Marchenko-Pastur Kernel
The kernel for channel inversion leads to a rather compli-
cated R-transform. In order to build up better intuition into
the mathematical structure of these kinds of combinatorial
optimization problems, we also consider the case where the
random matrix follows the Marchenko-Pastur law which has
a very simple R-transform.



5. 1-D LATTICE
Consider now the following case:

S = {0, 1} (45)

B1 = −B0 ⊂ R (46)

Then, we find in the limit β → ∞

q =

Z

R

˛
˛
˛
˛
˛
argmin

x∈B1

˛
˛
˛
˛
˛
z

s

qR′(−b)
2R2(−b) − x

˛
˛
˛
˛
˛

˛
˛
˛
˛
˛

2

e−
z2

2 dz√
2π

(47)

b =

Z

R

argmin
x∈B1

˛
˛
˛
˛
˛
z

s

qR′(−b)
2R2(−b) − x

˛
˛
˛
˛
˛

z e−
z2

2 dz
p

4πqR′(−b)
. (48)

Moreover, let without loss of generality −∞ = c0 < c1 <
· · · < cL < cL+1 = +∞ and

B1 = {c1, c2, . . . , cL} (49)

This case describes Tomlinson-Harashima precoding [18, 5]
with optimization over L different representations for each
information bit. An example of such a respresentation for in-
teger lattice points is shown in Fig. 1. The boundary points

Figure 1: 2 one-dimensional equally spaced integer
lattices representing the two binary states 0 and 1,
respectively.

of the Voronoi regions are

vi =
ci + ci−1

2
(50)

and the fixed-point equations for q and b become

q =
1√
2π

LX

i=1

√
2R(−b)vi+1√

qR′(−b)
Z

√
2R(−b)vi√
qR′(−b)

c2i e−
z2

2 dz (51)

= c21 +

LX

i=2

`
c2i − c2i−1

´
Q

 

R(−b)(ci + ci−1)
p

2qR′(−b)

!

(52)

b =

LP

i=2

(ci − ci−1) exp
“

−R2(−b)(ci+ci−1)2

4qR′(−b)

”

p
4πqR′(−b)

. (53)

For the case of no precoding at all, i.e. L = 1, we get

b = 0 (54)

q = c21 (55)

Es = c21R(0). (56)

5.1 Marchenko-Pastur Law
Let H be anN×K random matrix composed of independent
identically distributed entries with variance 1/N . Then the

eigenvalue distribution of

R = H
†
H (57)

converges almost surely, asK = αN → ∞ to the Marchenko-
Pastur law [19]. This implies

R(w) =
1

1 − αw
(58)

R′(w) =
α

(1 − αw)2
. (59)

Thus, we find

Es = 0 if lim
β→∞

b = ∞. (60)

For finite values of b, we get

q = c21 +
LX

i=2

`
c2i − c2i−1

´
Q

„
ci + ci−1√

2qα

«

(61)

b =
1 + αb√

4πqα

LX

i=2

(ci − ci−1) exp

„

− (ci + ci−1)
2

4qα

«

.(62)

and

Es =
q

(1 + αb)2
. (63)

This relationship is plotted in Fig. 2 for the equally spaced
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E
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Figure 2: Load vs. energy per symbol for L =
1, 2, 3, 6, 100 shown by the cyan, black, blue, magenta,
and red lines, respectively.

integer lattice

B+1 = {+1,−3,+5,−7,+9, . . . } (64)

and various numbers of lattice points. The dashed green
line shows the lower bound given by λmin = (1 −√

α)2, the
smallest eigenvalue of R. With pre-coding the energy per
symbol becomes exactly zero, if the load exceeds a certain
threshold. The threshold load is the smaller, the larger the
number of lattice points, and reaches αt = 2 for L → ∞.
Beyond the threshold load, the parameter b diverges to in-
finity. This behavior can be intuitively understood from an



engineering perspective: Since the random matrix R con-
tains zero eigenvalues for α ≥ 1, pre-coding tries to shape
the signal vector x such that is lies within the null-space of
R. The dimension of the null-space grows with the load. If
the load exceed the threshold load, the signal vector can be
squeezed into the null-space.

Let us consider the fixed-point equation for b in the limit
b → ∞. We find

b =
αb√
4πqα

LX

i=2

(ci − ci−1) exp

„

− (ci + ci−1)
2

4qα

«

. (65)

Thus, the solution b→ ∞ is stable as long as

r
α

4πq

LX

i=2

(ci − ci−1) exp

„

− (ci + ci−1)
2

4qα

«

≥ 1. (66)

Thus, we find the final result

Es =

8

>>>>>><

>>>>>>:

0 for

√
α

L
P

i=2
(ci−ci−1)

exp

„

(ci+ci−1)2

4qα

« ≥ 2
√
πq

q

(1 + αb)2
for

√
α

L
P

i=2
(ci−ci−1)

exp

„

(ci+ci−1)2

4qα

« < 2
√
πq

(67)

The critical value of the load is given for L = 2 by

αt ≈ 3.4621. (68)

5.2 Channel Inversion
First we, restrict to the special case of a square channel
matrix. The general case is addressed subsequently.

5.2.1 Square Channel Matrix
For R = (H†

H)−1, we find

R(w) =
1√−w (69)

R′(w) =
1

2(−w)
3
2

. (70)

Thus, we find

Es → ∞ if lim
β→∞

b = 0. (71)

For positive values of b, we get

q = c21 +

LX

i=2

`
c2i − c2i−1

´
Q
“

b
1
4 q−

1
2 (ci + ci−1)

”

(72)

b =
b

3
4√

2πq

LX

i=2

(ci − ci−1) exp

 

−
√
b(ci + ci−1)

2

2q

!

.(73)

and

Es =
q

2
√
b

(74)

which makes the case distinction with respect to the asymp-
totic behavior of b obsolete. Moreover, we can combine the
above 3 equations to find

Es = π

2

6
6
4

c21 +
LP

i=2

`
c2i − c2i−1

´
Q
“

ci+ci−1√
2Es

”

LP

i=2

(ci − ci−1) exp
“

− (ci+ci−1)2

4Es

”

3

7
7
5

2

. (75)

Numerical solutions to (75) are shown in Table 1 for the

Table 1: Energy per symbol for inverted square
channel.

L 1 2 3 4 ∞
Es ∞ 2.6942 2.6656 2.6655 2.6655
Es [dB] ∞ 4.3043 4.2579 4.2578 4.2578

equally spaced integer lattice defined in (64). Obviously,
there is little improvement when going from two to three
lattice points and negligible improvement for more than 3
lattice points.

5.2.2 Rectangular Channel Matrix
For a rectangular channel matrix, the Gramian is only in-
vertible for α ≤ 1. However, the R-transform is well-defined
for any positive aspect ratio. For singular random matrices,
the R-transform reflects the fact that the asymptotic eigen-
value distribution has some point mass at infinity. In that
case, we find in Appendix B that

R(w) =
1 − α−

p
(1 − α)2 − 4αw

2αw
(76)

R′(w) =

“

1 − α−
p

(1 − α)2 − 4αw
”2

4αw2
p

(1 − α)2 − 4αw
(77)

which for α = 1 simplifies to (69) and (70), respectively. It
also turns out helpful to recognize that

R2(w)

R′(w)
=

p
(1 − α)2 − 4αw

α
. (78)

Thus, we find

q = c21 +

LX

i=2

`
c2i − c2i−1

´
Q

 

((1−α)2+4αb)
1
4 (ci+ci−1)

√
2qα

!

b =
b
q

α
πq

p
(1 − α)2 + 4αb

α− 1 +
p

(1 − α)2 + 4αb
×

×
LX

i=2

(ci − ci−1) e−
√

(1−α)2+4αb(ci+ci−1)2

4qα .

It is convenient to replace the parameter b by the substitu-
tion

p =
p

(1 − α)2 + 4αb (79)

which gives

q = c21 +
LX

i=2

`
c2i − c2i−1

´
Q

„r
p

2qα
(ci + ci−1)

«

p = 1 − α+

r
αp

πq

LX

i=2

(ci − ci−1) exp

„

−p(ci + ci−1)
2

4qα

«

and

Es =
q

p
. (80)
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Figure 3: The macroscopic parameters q (upper
lines), b (lower lines), and p (medium lines) versus
the load α for L = 2, 3, 6, 100. shown by green, red,
blue, and black lines, respectively.
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Figure 4: The transmitted energy per symbol versus
the load for L = 1, 2, 3, 6, 100 shown by the magenta,
green, red, blue, and black lines, respectively.

Finally, combining the last three equations, we get

Es =

c21 +
LP

i=2

`
c2i − c2i−1

´
Q
“

ci+ci−1√
2αEs

”

1 − α+
q

α
πEs

LP

i=2

(ci − ci−1) exp
“

− (ci+ci−1)2

4αEs

”

(81)

The solutions of these fixed-point equations are shown by
the solid lines in Fig. 3. Clearly for small load, the parame-
ter q tends to 1, as in that case, no gain due to pre-coding
is possible and the symbol with smallest magnitude is pre-
ferred. The minimum of the transmit power is shown by the
solid line in Fig. 4. Note that precoding enables to achieved
finite transmitted energy per symbol even if the channel ma-
trix is singular. This effect has already been explained for
Marchenko-Pastur distributed random matrices. Unlike the
curve without precoding, the curves for L > 1 do not have

poles at the threshold load. Instead, a phase transition oc-
curs and the energy per symbol jumps discontinuously from
a finite value to infinity.

6. 2-D QUADRATURE LATTICE
Consider now the following case:

S = {00, 01, 10, 11} (82)

B1y = −B∗
0y ∀y ∈ {0, 1} (83)

Bx1 = +B∗
x0 ∀x ∈ {0, 1} (84)

This case extends the one-dimensional pre-coding of binary
phase-shift keying (BPSK) on the real line to two-dimensional
pre-coding of quaternary phase-shift keying (QPSK) in the
complex plane such that Gray mapping is applied and we
can consider the pre-coding for QPSK as independent pre-
coding of BPSK in both quadrature components.

The symmetry in both quadrature components implies that

q =

r

2

π

Z

R

˛
˛
˛
˛
˛
˛

argmin
x∈ℜ{B1+j}

˛
˛
˛
˛
˛
z

s

qR′(−b)
2R2(−b) − x

˛
˛
˛
˛
˛

˛
˛
˛
˛
˛
˛

2

e−
z2

2 dz (85)

b =

Z

R

argmin
x∈ℜ{B1+j}

˛
˛
˛
˛
˛
z

s

qR′(−b)
2R2(−b) − x

˛
˛
˛
˛
˛

z e−
z2

2 dz
p
πqR′(−b)

. (86)

Compared to the one-dimensional case, the only difference
is that the right hand sides of the two fixed point equations
are multiplied by a factor of 2 which stems from adding the
contributions of both quadrature components.

6.1 Marchenko-Pastur Law
Using the same convention for the notation of the lattice
points as in Subsection 5.1, we find easily that (63) remains
valid and b and q are given by

q = 2c21 + 2

LX

i=2

`
c2i − c2i−1

´
Q

„
ci + ci−1√

2qα

«

(87)

b =
1 + αb√
πqα

LX

i=2

(ci − ci−1) exp

„

− (ci + ci−1)
2

4qα

«

.(88)

In order to make a fair comparison to BPSK, we shall intro-
duce the energy-per bit

Eb =
Es

log2 |S|
. (89)

Note that on the right hand sides of the fixed point equa-
tions, b and q only occur as products with the load α. Thus,
we find the functional relationship

EQPSK,2−dim
b (α) = EBPSK,1−dim

b (2α). (90)

Thus, using complex pre-coding for QPSK instead of real-
valued pre-coding for BPSK, we just re-scale the load-axis
by a factor of one half.

6.2 Channel Inversion
Using the same argumentation about de-coupling between
quadrature components, as for the Marchenko-Pastur law,



we find that (80) remains valid and p and q are given by

q = 2c21 + 2
LX

i=2

`
c2i − c2i−1

´
Q

„r
p

2qα
(ci + ci−1)

«

(91)

p = 1 − α+

r
4αp

πq

LX

i=2

(ci − ci−1) e−
p(ci+ci−1)2

4qα . (92)

The solutions to these fixed point equations are shown in
Fig. 5. Remarkably, the energy per bit remains as small as
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Figure 5: Transmitted energy per bit versus the
load for channel inversion and pre-coding for Gray-
mapped QPSK with L = 1, 2, 3, 6, 100 shown by the
magenta, green, blue, and black lines respectively.

Eb = 4
3

for any load if L grows large.

7. 2-D CHECKERBOARD LATTICE
Let

S = {0, 1} (93)

B1 = jB0 ⊂ C. (94)

This case extends the one-dimensional pre-coding of BPSK
on the real line to two-dimensional pre-coding of BPSK in
the complex plane.

Consider a mapping that looks like a checkerboard where
the sets B1 and B0 correspond to the black and white fields,
respectively. For such a mapping, the boarderlines of the
Voronoi regions are not parallel to the real and imaginary
axes but intersect these by an angle of 45o.

Considering an unconstrained lattice, i.e. infinitly many lat-
tice points, we can rotate the lattice by 45o degrees without
loss of generality due to the rotational invariance of the com-
plex Gaussian integral kernel in the fixed-point equations for
b and q. After rotation we find the same lattice as in the
two-dimensional quadrature precoding except for a lattice
scaling by a factor of 1/

√
2. Thus, the energy per symbol

will be half the energy per symbol of quadrature precoding
and the energy per bit will be identical.

8. 2-D SEMI-DISCRETE LATTICE
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Figure 6: Energy per bit versus load for precod-
ing with complex quadrature lattice (dashed lines)
and semi-discrete lattice (solid lines) for L = 1, 2, 100
shown by the magenta, green and black lines, re-
spectively.

Let

S = {0, 1, } (95)

B1 = −B0 ⊂ C. (96)

Moreover, let the imaginary parts of the symbols in Bx be
arbitrary. Thus, we find

q =
qR′(−b)
2R2(−b) (97)

+

Z

R

˛
˛
˛
˛
˛
argmin
x∈ℜ{B1}

˛
˛
˛
˛
˛
z

s

qR′(−b)
2R2(−b) − x

˛
˛
˛
˛
˛

˛
˛
˛
˛
˛

2

e−
z2

2 dz√
2π

b =
1

2R(−b) (98)

+

Z

R

argmin
x∈ℜ{B1}

˛
˛
˛
˛
˛
z

s

qR′(−b)
2R(−b)2 − x

˛
˛
˛
˛
˛

z e−
z2

2 dz
p

4πqR′(−b)
.

8.1 Marchenko-Pastur Law
For the Marchenko-Pastur law, we have

R′(−b)
R2(−b) = α. (99)

This enables us to easily solve the fixed point equations. For
the case L = 1, we find

Es = 1 − α

2
∀α ≤ 2. (100)

Fig. 6 compares the complex semi-discrete lattice with com-
plex quadrature lattice in terms of energy per bit. While
there is little gain by the semi-discrete lattice in the vicin-
ity of α = 1

2
, there is a noticeable reduction of energy for

smaller and larger loads.

8.2 Channel Inversion
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Figure 7: Energy per bit versus load for precod-
ing with complex quadrature lattice (dashed lines)
and semi-discrete lattice (solid lines) for L = 1, 2, 3, 6
shown by the magenta, green, red, and blue lines,
respectively.

For channel inversion, we have

R′(−b)
R2(−b) =

α

p
. (101)

This enables us to easily solve the fixed point equations.

Fig. 7 compares the complex semi-discrete lattice with com-
plex quadrature lattice in terms of energy per bit. Precoding
with semi-discrete lattices achieves a remarkable gain which
comes at the expense of reduced data rate. It is particularly
worth to remark that the semi-discrete lattice with L = 1
outperforms all quadrature lattices for small loads although
its pre-coding procedure has only polynomial complexity.
For large loads and large lattice size, the energy per bit ap-
proaches Eb = 4

3
.

9. CONCLUSIONS
We found that vector pre-coding can significantly reduce the
required transmitted power. In fact, with appropriate pre-
coding, the transmitted power stays always finite. Moreover,
we found strong advantages of complex-valued pre-coding
over real-valued pre-coding and a trade-off between data rate
and required transmit power.

We are aware of the fact that replica symmetry might not
hold. Therefore, we have started investigating first order
replica symmetry breaking (1RSB). The quantitative anal-
ysis is not finished yet, but qualitatively, the results remain
unchanged for 1RSB.
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APPENDIX
A. ITZYKSON-ZUBER INTEGRAL
Define

ZD (s) =
1

N

∞X

k=0

sk+1trD
k = −

Z
dPD(x)

x− 1
s

= −mD

`
s−1´(102)

with mD (·) denoting the Stieltjes transform of the distribu-
tion of D. Following the approach by Itzykson and Zuber
[7], Marinari et al. [10] show that with O being K ×K and
Haar distributed, D diagonal, and F having finite rank and
non-zero eigenvalues λ1, . . . , λn, we have

Z

exp
“

tr OF O
†
D

”

dO = exp

 

K

nX

a=1

GD (λa)

!

(103)

with

GD (λ) =

1Z

0

ψD (λw) − 1

w
dw (104)

and the function ψD (·) being defined as

ψD (w) =
w

Z−1
D

(w)
(105)

where Z−1
D

(w) is the inverse of ZD (w) with respect to com-
position, i.e. Z−1

D
(ZD (w)) = w. Thus, we find

ψD (ZD (w)) =
ZD (w)

w
(106)

ψD

`
−mD

`
w−1

´´
=

−mD

`
w−1

´

w
(107)

ψD (−mD (w)) = −wmD (w) (108)

ψD (−w) = −wm−1
D (w) (109)

ψD (w) = wm−1
D (−w) (110)

= w
`
RD (w) + w−1

´
(111)

= 1 + wRD (w) (112)

ψD (λw) − 1

w
= λRD (λw) (113)

with the R-transform defined as [20]

RD (w) = m−1
D

(−w) − 1

w
. (114)

Thus, we find for the Itzykson-Zuber integral
Z

exp
“

tr OF O
†
D

”

dO (115)

= exp

0

@K
nX

a=1

λa

1Z

0

RD (λaw) dw

1

A(116)

= exp

0

@K

nX

a=1

λaZ

0

RD (w) dw

1

A (117)

B. INVERSE MARCHENO-PASTUR LAW
Let pX(x) be an arbitrary pdf such that the Stieltjes trans-
forms

mX(s) =

Z
dPX(x)

x− s
(118)

and

mX−1(s) =

Z
dPX(x)

1
x
− s

(119)

exist for some complex s with ℑ(s) > 0. It can easily be
checked that

mX−1

„
1

s

«

= −s (1 + smX(s)) . (120)

Let s = m−1
X (−w). Then, we find

mX−1

„
1

m−1
X (−w)

«

= −m−1
X (−w)

`
1 − wm−1

X (−w)
´
.

(121)
and

1

m−1
X (−w)

= m−1
X−1

`
−m−1

X (−w)
`
1 − wm−1

X (−w)
´´
.

(122)
With (114), we find

1

RX(w) + 1
w

= RX−1

„

−wRX(w)

„

RX(w) +
1

w

««

− 1

wRX(w)
`
RX(w) + 1

w

´ (123)

and

1

RX(w)
= RX−1 (−RX(w) (1 +wRX(w))) . (124)

It is well known that for an N × αN random matrix H

with i.i.d. entries of variance (αN)−1, the R-transform of
the limiting spectral measure PH†H(x) is given by

R
H†H

(w) =
1

1 − αw
. (125)

Letting X−1 = H
†
H , we find

R(H†H)−1(w) = 1 + αR(H†H)−1(w)
`
1 + wR(H†H )−1(w)

´

(126)
with (124). Solving (126) for the R-transform implies (76).
Note that for α ≥ 1, the mean of the spectral measure is
diverging. Thus, the R-transform must have a pole at w = 0
which excludes the other solution of (126).


