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ABSTRACT
In this paper we study the relations between multi-class
BCMP-like service stations with Coxian service time and
generalized stochastic Petri nets (GSPN). We consider
multi-class product-form service center types of QN and
their representation with GSPN, in order to investigate
the relation between the product-form solutions of the
two models. Representing queueing discipline with GSPN
models is not easy. We focus on representing multi-
class queueing systems with LCFSPR scheduling disci-
pline and Coxian distributed service time. Note that
the queueing discipline in general affects performance
measures in multi-class systems. For example, BCMP-
like service centers with First Come First Served (FCFS)
and with Last Come First Served with Preemptive Re-
sume (LCFSPR) have a (different) product-form solution
under different hypotheses. We define a structurally fi-
nite GSPN model with product- form that does not be-
long to the class of known product-form GSPN. Then
we show that this model is equivalent to the multi-class
M/COX/k/ LCFSPR queueing system, in terms of steady
state probability and average performance measures. The
main idea is to define a finite GSPN model that simulates
the behavior of the given queue discipline by defining
some appropriate random choices. Moreover, we prove
that the combination of the introduced equivalent GSPN
model has a closed-form steady state probability by the
M ⇒ M property.

Keywords
GSPN, BCMP theorem, Coxian distribution, multi-class
system, LCFSPR scheduling discipline

1. INTRODUCTION
Queueing networks (QNs) and Generalized Stochastic

Petri Nets (GSPNs) are stochastic models that have been
widely applied to evaluate system performance. In this
paper we study the relations between multi-class BCMP-
like service stations with Coxian service time and gener-
alized stochastic Petri nets (GSPN). We consider multi-
class product-form service center types of QN and their
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representation with GSPN, in order to investigate the
relation between the product-form solutions of the two
models.

QNs allow representing resource sharing system. A
QN model is a collection of interacting service centers
representing system resources and a set of customers rep-
resenting the users sharing the resources. They provide a
good balance of a relative high accuracy in performance
results and efficiency in model analysis and solution. Un-
der some general assumptions QNs can be described by
an associated stochastic Markov process whose solution
becomes soon computationally unfeasible, due to the high
cardinality of the system state space that is exponential
with the QN number of components (resources and cus-
tomers). The class of product-form QNs allows a closed
expression for the stationary state probability and the
definition of efficient polynomial algorithms to calculate
the performance measures. Product-form QN station-
ary probability can be expressed as product of functions
which depends on the state and on the type of each node.
The main result is known as BCMP theorem [5] and it
considers open, closed and mixed QNs which consist of
multiple class of customers, probabilistic routing, Poisson
arrivals and four types of service centers. Some efficient
solution algorithms have been defined for BCMP QNs
and some further extensions of product-form QNs have
been derived under special constraints.

Generalized Stochastic Petri Nets (GSPNs) extend Pe-
tri Nets models defined to specify synchronization be-
havior of concurrent systems. A Petri Net consists of a
set of places, a set of transitions, an input function re-
lating places to transitions, an output function relating
transition to places, and a marking function, associat-
ing to each place a nonnegative integer number. In the
stochastic timed extension the firing time of a transition,
that is the time taken by the activity represented by the
transitions, is expressed by random variables, usually ex-
ponential. GSPNs are continuous time stochastic Petri
Nets that allow both exponentially timed and untimed
(or immediate) transitions. The quantitative analysis of a
stochastic Petri Net is based on the identification and so-
lution of an associated Markov process built on the basis
of the net reachability graph. In the general case, GSPNs
are hard to study because of the generation of its reacha-
bility set which is an NP-hard problem. The Markov pro-
cess suffers of the state space explosion problem and some
special classes of product-form solution nets have been re-
cently defined. Product-form GSPNs are studied in [13,
11, 2] but even if they express the stationary probability
function as product of function depending on the marking
of each place, they do not overcome the problem of decid-
ing whether a marking is reachable from the model initial



state or not. This limit influences also the applicability
of the algorithms defined for product-form GSPNs [21,
11]. Some non polynomial algorithms exist for product-
form stochastic Petri Net, under further structural con-
straints, and many approximation techniques have been
defined. A different approach is used in [6] where the au-
thor defines the conditions for a product-form solution of
a stochastic process defined by the competition of set of
CTMCs (e.g. stochastic processes associated to GSPNs
or SPNs) competing for a set of resources.

GSPNs are usually considered as stochastic model with
a lower level of abstraction than QNs. In fact GSPN se-
mantic is strictly defined in terms of transitions, places
and rules of firing. On the other hand GSPNs easily allow
the definition of concurrency and synchronization, such
as fork-join constructions without introducing a specific
semantic, so being more expressive than BCMP QNs.
Extensions of classical QNs have been introduced in order
to represent special system features, such as synchroniza-
tion and concurrency constraints, finite capacity queues,
memory constraints and simultaneous resource posses-
sion or client-server communication patterns in concur-
rent and/or distributed system (e.g., Extended QN and
Layered QN [15, 14, 23]). However, most of such QN ex-
tensions do not yield the BCMP product-form solution
and can be solved by approximate solution techniques.

In this paper we study the relations between BCMP
QNs and GSPNs. At a first look the topic seems to be
trivial, and actually it is a well-know result that a re-
stricted class of GSPNs called state-machines is equiva-
lent to single class QNs. This means that if the customers
are statistically identical, state machines and QNs are
equivalent even if the former model does not have the
notion of queueing discipline. However, the relation be-
tween multi-class QNs with GSPNs is not trivial, and
some problems arise when we try to represent BCMP
QNs with multiple classes of customers with GSPNs. We
observe that in this case we cannot ignore the scheduling
discipline because, as shown in [5] and further studies [9,
18], it influences the performance measures. For example
a First Come First Served (FCFS) station with exponen-
tial service time can be embedded in a BCMP QN only
if the service time is independent on the customer class,
while for an LCFSPR station this condition is not neces-
sary.

To the best of our knowledge the only results con-
cerning the representation of scheduling disciplines with
GSPNs are presented in [3]. In [22] the authors intro-
duce a comparison between QN models and SPN mod-
els based on the representation of multi-class features by
colored Petri nets. However the differences among the
various scheduling disciplines are not analyzed. Balbo et
al. in [1] combine GSPN and product-form QN by re-
placing subsystem in a low-level model with their flow
equivalents models. Still little attention is devoted to
scheduling disciplines. In [3] the authors observe how
they can map each service station of a BCMP QN to a
complex GSPN which does not hold the GSPN product-
form conditions introduced in [2]. The GSPN model de-
pends on the scheduling disciplines but it has an infi-
nite number of places and transitions for the FCFS and
LCFSPR stations. Then they give a finite and remark-
ably compact representation by a GSPN equivalent to
the detailed model. The compact representation holds
the product-form conditions for GSPN showed in [2] but
it does not distinguish different queuing disciplines by

mapping everything into the PS discipline. The work
[4] presents structurally finite GSPN models for all the
service center types of BCMP theorem by assuming ex-
ponential service time distribution, and it is proved that
they hold the M ⇒ M property. The main idea of this
results is a probabilistic model of the queue, i.e., all the
customers of the same class wait in the same place. When
a server becomes free the customer which gets the service
is chosen in a probabilistic way similarly to what happens
with the random queuing discipline. In the LCFSPR
discipline, there is also a probabilistic choice of the cus-
tomer that has to leave the server when a new customer
arrives to the system. However, in the work [4] Coxian
distributed service times are not considered.

The original result of this paper with respect to [4] is
the definition of a GSPN model for the LCFSPR ser-
vice center with Coxian distributed service time. We
define a structurally finite GSPN model with product-
form and we prove that it is equivalent to the multi-class
M/COX/k/LCFSPR queueing system, in terms of steady
state probability and average performance measures. It
is worthwhile noting that the defined GSPN model does
not belong to the class of product-form GSPN defined in
[2].
The GSPN model does not require the introduction of
new semantic and it just uses standard exponential and
immediate transitions with state-dependent weights. We
prove that under an aggregation of states the station-
ary probabilities of the GSPN are identical to the BCMP
marginal probabilities of the LCFSPR node type. The
presented result is not a trivial extension of the case of ex-
ponential service time, since the GSPN model definition
depends on the Coxian service distribution and we apply
an appropriate aggregation on the state space. Moreover
we show that the for the GSPN model, M ⇒ M prop-
erty is satisfied, in the sense specified in Section 2. Hence
we can apply a compositionality property similar to the
one known for product-form QNs. Specifically we can
compose a set of such GSPN models as well as the ones
defined in [4] so obtaining a GSPN whose solution can be
expresses by the product of the solutions of the various
GSPN components.

This paper, combined with [4], to the best of our
knowledge, points out a new relation between BCMP
QNs and GSPNs and overcomes the problem of repre-
senting the most common queueing disciplines by finite
GSPNs. Moreover we define a GSPN model that, un-
der appropriate composition rules, can be combined with
similar models [4] holding a product-form stationary prob-
ability function. Finally we observe that possible practi-
cal applications of these relations concern the integration
of QNs and GSPNs into a unique framework for system
performance analysis. For example the presented rela-
tions could help in transforming an hybrid model that
includes both QN and GSPN submodels into a unique
GSPN model that can be analyzed with appropriate tech-
niques and tools. The presented results could also allow
one to obtain more efficient solution if compositionality
and product-form expression introduced above hold.

The paper can be outlined as follows. Section 2 re-
calls some results on queueing networks and queueing
systems with multiple classes of customers. Section 3 in-
troduces the GSPN formalism we use in the paper and
sketches the analysis techniques. In Section 4 we define
the GSPN-COX model and we prove that it is equivalent
to the multi-class LCFSPR BCMP station with multiple



constant rate servers. Moreover we prove that the model
holds the M ⇒ M property. Section 5 illustrates a sim-
ple example of BCMP QN translated into GSPN. Section
6 discusses some final remarks about the work.

2. PRODUCT-FORM QUEUEING
NETWORKS WITH CLASSES
OF CUSTOMERS

In this section we briefly recall some results we are
using in the following concerning product-form queue-
ing networks (PFQNs). Informally a queueing network
consists of a finite set of service centers or stations Ω =
{1, . . . , M}. Each station is characterized by a schedul-
ing discipline, a set of class of service, and a random
service time which can depend on the class. Customers
are permanently clustered into chains which can be open,
if they have arrivals to and departures from the chain, or
closed, if their population is constant. After the service
completion at station i with class (i, r) the customer im-
mediately goes to station j and class (j, s) with probabil-
ity p(i,r),(j,s) or it can leave the system with probability
p(i,r),0, with

P
d=(j,s)∨0 p(i,r),d = 1 for each i, r, d.

Performance indices of general non-product-form QNs
can be hard to obtain, and sometimes only approximated
values, or result by simulations, can be obtained in rea-
sonable time. BCMP QNs [5] play a special role in the
field of stochastic models because they combine a good
modelling flexibility with the availability of mathemati-
cal results and algorithms which consent to obtain per-
formace indices efficiently [8, 20, 7, 12]. The main idea
underlying BCMP theorem is that the QN stations can
be studied in isolation, just like they had Poisson ar-
rivals with a network-dependent parameter even if it is
well-known that, in presence of feedback in the QN rout-
ing, station arrivals are not Poisson distributed. BCMP
QNs consist of four possible station types identified by
their scheduling discipline and service time distribution:
First Come First Served (FCFS) with exponential class-
independent service time, Processor Sharing (PS) and
Last Come First Served with Preemptive Resume (LCF-
SPR) with Coxian class-dependent service time, Infinite
Servers (IS) with Coxian class-dependent service time.

Several extensions to BCMP theorem have been in-
troduced. In [18] Muntz proves an interesting property
(M ⇒ M) of stations which can be embedded in a QN
keeping the product-form of the stationary probability
function. We briefly review this result that we shall use
in the following. A multi-class station exhibits M ⇒ M
property if under Poisson arrivals for each customer class
it presents Poisson departures. A simple way to check
if a station holds M ⇒ M property is presented in [18].
Let S be the state space of the station and let s ∈ S be
a generic state. Let us define |s|r as the number of class
r customers in the station if the state is s and finally let
S+

r = {s′ ∈ S : |s′|r = |s|r + 1}. Then the station has
the M ⇒ M property if:

∀s ∈ S, ∀r
X

s′∈S+
r

π(s′)ξ(s′ → s) = π(s)λr, (1)

where π(s) is the stationary probability of state s, ξ(s′ →
s) is the transition rate from s′ to s and finally λr is the
arrival rate for customers of class r. Although M ⇒ M
is defined for queueing stations, in the following we are
using it for characterizing GSPN models. In fact in [17]
Melamed extended Muntz’s results to a generic stochas-

tic process by the use of opportune traffic processes. We
point out here that because of the lower level of abstrac-
tion of the GSPN formalism with respect to QNs, the
definition of those traffic processes is not immediate in
the general case. However in this paper we define par-
ticular GSPN models and we know those processes be-
cause we know the semantic of what we are defining, i.e.,
we know which transition firings correspond to customer
movements in the net.

The work [4] has introduced GSPN models whose mar-
ginal state distributions are the same of the correspon-
dent FCFS, LCFSPR, PS, IS stations just for exponen-
tial distributed service time. The introduced models have
been proved to hold the M ⇒ M property. In order to
give a complete representation of BCMP station types,
we shall now consider the Coxian service time distribu-
tion. This paper focus on LCFSPR station with Coxian
distributed service time.

Let us consider a M/COX/1/LCFSPR with one load-
dependent server. According to the BCMP [5] model def-
inition, we assume that the service rate can be expressed
by a combination of a capacity function x(n) depend-
ing on the total number of customers n at the station,
and a class dependent capacity function yr(nr), where
nr is the number of customers of class r at the station.
The service time is modelled by a Coxian random vari-
able with Lr exponential stages with mean µr,l, where
1 ≤ r ≤ R denotes the customer class and 1 ≤ l ≤ Lr

denotes the stage of service. After being served at stage
l a customer of class r moves to stage l + 1 with prob-
ability ar,l and it completes the service with probability
br,l, where ar,l + br,l = 1 and ar,Lr = 0 Let µr be the
mean of the Coxian random variable for class r. So the
effective service rate for a customer of class r is given by
the product x(n)yr(nr)µr. Note that x(1) = yr(1) = 1.
The station state q is a finite but unlimited sized vector
whose components are couple (rj , lj) with rj represent-
ing the class of the j-th vector position customer, lj the
stage of service at which the j-th customer is in. Cus-
tomers arrive to the station and they are inserted at the
end of the vector. Only the customer occupying the last
vector position is served and it can change its stage or
leave the system. Under stability conditions, the steady
state probability of this service center denoted by π′′(q),
is given by [5]:

π′′(q) = π′0

RY

r=1

λnr
r

|q|Y

j=1

Arj ,lj

µrj ,lj

nY

b=1

1
x(b)

nrY

a=1

1
yr(a)

, (2)

where |q| is the dimension of vector q and Arj ,lj =
Qlj−1

i=1 arj ,i The marginal probability for an aggregation
of states which consider just the number of customers per
class n = (n1, . . . , nR), denoted by π′(n), is presented in
[5], and can be expressed as follows:

π′(n) = π′0
n!

QR
i=1 ni!

RY

i=1

λni
i

nY

b=1

1
x(b)

RY

r=1

h“ 1
µr

”nr

nrY

a=1

1
yr(a)

i
. (3)

Note that in order to obtain the steady state probabilities
for the multi-class systems with k servers it suffices to set
appropriate capacity functions. An LCFSPR center with
k load independent servers requires to set x(n) = min(n,k)

n
and yr(nr) = nr.



Section 4 presents a GSPN whose aggregated station-
ary distribution is equivalent to formula (3) and holds
M ⇒ M property.

3. GENERALIZED STOCHASTIC PETRI
NETS

In this section we briefly recall the Generalized Stochas-
tic Petri Nets (GSPNs). We consider the notation for
GSPNs introduced in [16]. In order to allow marking
dependent probabilities for solving conflicts among im-
mediate transitions we use the techniques discussed in
[10]. Let us define a marked Stochastic Petri Net which
consists of a 8-tuple as follows:

GSPN = (P, T , I(·, ·), O(·, ·), H(·, ·), Π(·), w(·, ·),m0)

where:

• P = {P1, . . . , PM} is the set of M places,

• T = {t1, . . . , tN} is the set of N transitions (both
immediate and timed),

• I(ti, Pj) : T ×P → N is the input function, 1 ≤ i ≤
N , 1 ≤ j ≤ M ,

• O(ti, Pj) : T × P → N is the output function, 1 ≤
i ≤ N , 1 ≤ j ≤ M ,

• H(ti, Pj) : T × P → N is the inhibition function,
1 ≤ i ≤ N , 1 ≤ j ≤ M ,

• Π(ti) : T → N is a function that specifies the pri-
ority of transition ti, 1 ≤ i ≤ N ,

• m ∈ NM denotes a marking or state of the net,
where mi represents the number of tokens in place
Pi, 1 ≤ i ≤ N ,

• w(ti,m) : T ×NM → R is the function which spec-
ifies for each timed transition ti and each marking
m a state dependent firing rate, and for immediate
transitions a state dependent weight,

• m0 ∈ NM represents the initial state of the GSPN,
i.e. the number of tokens in each place at the initial
state.

We consider ordinary nets, i.e., functions I, O and H take
values in {0, 1}. For each transition ti let us define the
input vector I(ti), the output vector O(ti) and the inhi-
bition vector H(ti) as follows: I(ti) = (i1, . . . , iM ) where
ij = I(ti, Pj), O(ti) = (o1, . . . , oM ) where oj = O(ti, Pj)
and H(ti) = (h1, . . . , hM ) where hj = H(ti, Pj). Func-
tion Π(ti) associates a priority to transition ti. If Π(ti) =
0 then ti is a timed transition, i.e., it fires after an expo-
nentially distributed firing time with mean 1/w(ti,m),
where m is the marking of the net. If Π(ti) > 0 then
ti is an immediate transition and its firing time is zero.
We say that transition ta is enabled by marking m if
mi ≥ I(ta, Pi) and mi < H(ta, Pi) for each i = 1, . . . , M
and no other transition of higher priority is enabled. We
consider just two priority levels, 0 and 1. Hence when
an immediate transition is enabled all the timed ones are
disabled. The firing of transition ti changes the state of
the net from m to m−I(ti)+O(ti). The reachability set
RS(m0) of the net is defined as the set of all markings
that can be reached in zero or more firings from m0. We
say that marking m is tangible if it enables only timed

transitions and it is vanishing otherwise. For a vanish-
ing marking m let Tα be the set of enabled immediate
transitions. Then the firing probability for any transi-
tion ti ∈ Tα and any state m is denoted by p(ti,m) and
it is defined as follows:

p(ti,m) =
w(ti,m)P

tj∈Tα
w(tj ,m)

. (4)

Given a tangible marking m the transition with the low-
est associated stochastic time fires. Sometimes it can be
useful to associate a probabilistic output vector to a tran-
sition. In this case we denote a possible output bag of
transition ti by Oj(ti), and its probability by di,j whereP

j di,j = 1. Note that this is not a real extension to the
model definition. In fact the probabilistic behavior of a
transition firing can be easily obtained by using imme-
diate transitions in a trivial way. Therefore even if we
introduce a model with a probabilistic behavior of the
transitions firings, it can be used by tools which do not
support this feature.

A GSPN is represented by a graph with the follow-
ing conventions: timed transitions are white filled boxes,
immediate transitions are black filled boxes, places are
circles, if I(ti, Pj) > 0 we draw an arrow from Pj to ti

labelled with I(ti, Pj), if O(ti, Pj) > 0 we draw an arrow
from ti to Pj labelled with O(ti, Pj), if H(ti, Pj) > 0 we
draw an circle ending line from Pj to ti labelled with the
value of H(ti, Pj), the marking m is represented by a set
of mj filled circles representing the tokens in place Pj for
1 ≤ j ≤ M .

For ordinary nets we do not use labels for the arrows.
GSPN analysis consists in finding the steady state

probability for each tangible marking of the reachabil-
ity set. Some analysis techniques are presented in [16].
Under general assumptions, the stochastic process gen-
erated by the dynamic behavior of a standard SPN is a
CTMC process. Mean state sojourn times are computed
from the mean transition delays of the net. For GSPNs
the distribution of the sojourn time in any marking can be
expressed as a negative exponential and deterministically
zero distributions for tangible and vanishing markings,
respectively. Thus the marking process can be studied as
a semi-Markov random process.

The GSPN models introduced in this paper present
marking processes which allow us to easily reduce the
semi-Markov process to a CTMC. In fact whenever a
vanishing marking is reached, the next marking is tan-
gible. Thus we can simply obtain a CTMC whose states
are the tangible states of the original process and the
transition rates are computed weighting the transitions
rates of the original process with the firing probabilities
of the immediate transitions.

Finally let us introduce some other notations: let ei

be an M -dimensional vector with all zero components
but the i-th which is 1. We use the lower case t to name
immediate transitions, the upper case T to name timed
transitions, t̃ to name a generic timed or immediate tran-
sition.

4. M/COX/K/LCFSPR MODEL
In this section we introduce a GSPN which can be

considered equivalent to a multi-class M/COX/k queue
with LCFSPR scheduling discipline, in terms of steady
state probability. We provide a model for this queueing
system whose structure is finite and depends only on the
number of classes of customers and stages of the Coxian



service time, i.e., not on the number of servers.

Definition 1 (GSPN-COX). According to the def-
inition given in Section 3:

• Places. P = {Pr,l, PR+r,l, Pr,0 : 1 ≤ r ≤ R, 1 ≤ l ≤
Lr} ∪ {P0, P2R+1}

• Transitions. T = Ts ∪ Tp ∪ T ′, where Ts = {tsr,l :
1 ≤ r ≤ R, 0 ≤ l ≤ Lr}, Tp = {tpr,l : 1 ≤ r ≤
R, 1 ≤ l ≤ Lr}, T ′ = {Tr,l : 1 ≤ r ≤ R, 0 ≤ l ≤
Lr}. Function Π is defined as follows:

Π(t̃) =

(
1 if t̃ ∈ Tp ∪ Ts

0 if t̃ ∈ T ′

• Arcs. Let tpr,l ∈ Tp, then I(tpr,l) = er,l + e0,
H(tpr,l) = e2R+1 and O(tpr,l) = e2R+1 + eR+r,l.
Let tsr,l ∈ Ts and l > 0, then I(tsr,l) = eR+r,l +
e2R+1, H(tsr,l) = e0 and H(tsr,l) = er,l. Let
tsr,0 ∈ Ts then I(tsr,0) = er,0 + e0, H(tsr,0) = 0
and O(tsr,0) = er,1. Let Tr,l ∈ T ′ then I(Tr,l) =
er,l, H(Tr,l) = 0. If l < Lr then the output vector
is probabilistic: O1(Tr,l) = e2R+1 with probability
br,l and O2(Tr,l) = er,l+1 with probability ar,l with
ar,l + br,l = 1. If l = Lr the output vector is deter-
ministic, O(Tr,Lr ) = e2R+1.

• Weights. Let 1 ≤ r ≤ R and l > 1 then w(tsr,l) =
mR+r,l, w(tsr,0) = 1, w(tpr,l) = mr,l and w(Tr,l) =
µr,lmr,l.

• Initial marking. m0 = (0, . . . , 0, k).

Tokens arrive to places Pr,0 for r = 1, . . . , R and P0.

Note that m0 = 1 if and only if mr,0 = 1 for a r, and
that if m0 > 0 then m is a vanishing marking, with
1 ≤ r ≤ R. Figure 1 illustrates a graphical model for
R = 2, L1 = 3, L2 = 2. Exponential transitions T0,1 and
T0,2 are introduced to show the arrival behaviors. The
dotted lines and the solid lines represents alternative fir-
ing modes while grey lines are used for sake of clarity. We
can give the following interpretation of the model: place
P3 has as many tokens as the free servers of the queuing
system, place Pr,l, 1 ≤ r ≤ 2, has as many tokens as the
number of customers being served at stage l of class r.
The tokens in place PR+r,l, 1 ≤ r ≤ 2 represent the num-
ber of customers in the queue of class r and stage l. When
a customer of class r arrives to the system a token is tem-
porally (i.e., it origins a vanishing state) stored in places
Pr,0 and P0. Immediate transition ts,0 put the arrived
token in service at stage 1, the customer which must be
preempted is chosen probabilistically by the transitions
tps. When a customer leaves the system by the firing
of a timed transition, a preempted customer from places
PR+r,l is chosen probabilistically by a transition tss and
it resumes the service.

In the following we first introduce a lemma which gives
the stationary probabilities for model GSPN-COX under
Poisson arrivals and we show that the M ⇒ M property
holds. Then we aggregate the states giving the marginal
probabilities in closed form. The final corollary states
how the model GSPN-COX can be considered equivalent
to a M/COX/k/LCFSPR station.

Lemma 1. Let m be a tangible state of model GSPN-
COX. Then the steady state probability of m is given by:

π(m) = π0

h RY

r=1

λ
mr+mR+r
r

i
(5)

·
h (

PR
r=1 mr)!QR

r=1

QLr
l=1 mr,l!

(
PR

r=1 mR+r)!QR
r=1

QLr
l=1 mR+r,l!

i

·
h RY

r=1

LRY

l=1

“Ar,l

µr,l

”mR+r,l+mr,l
ih mY

a=1

1
min{n, k}

i
,

where mr =
PLr

l=1 mr,l, mR+r =
PLr

l=1 mR+r,l, m =PR
r=1 mr + mR+r and π0 is the normalizing constant.

Moreover model GSPN-COX holds M ⇒ M property.

Proof. The proof is based on verifying that formula
(5) satisfies the set of global balance equations (GBEs)
of the Markov process associated to the model. We work
by cases: first we consider (a) the case of mR+1 = 0 and
mR+r,l > 0 for some r = 1, . . . , R and 1 ≤ l ≤ Lr, then
(b)the case mR+1 = 0 and mR+r,l = 0 for all r = 1, . . . , R
and 1 ≤ l ≤ Lr, then (c) the case 1 ≤ mR+1 < k, and
finally (d) the case mR+1 = k. The M ⇒ M property,
that is equation (1) is immediately verified by the chosen
partial balance.

Case (a). Consider tangible state m where mR+1 = 0
and mR+r,l > 0 for some r = 1, . . . , R. State m can be
reached from the following set of states:

• A = {m′ : m′ = m+er,l−1−er,l, mr,l > 0, 1 ≤ r ≤
R, 1 < l ≤ Lr} with rate µr,l−1ar,l−1(mr,l−1 + 1).

• B = {m′ : m′ = m−es,1 +er,l−eR+r,l, 1 ≤ r, s ≤
R, ms,1 > 0, mR+r,l > 0} with rate λs(mr,l +

1)/(
PR

r′=1

PLr′
l′=1 mr′,l′).

• C = {m′ = m + es," + eR+r,l − er,l, 1 ≤ r, s ≤
R, 1 ≤ l ≤ Lr, mr,l > 0 with rate µs,mbs,m(ms,m +

1)(mR+r,l + 1)/(1 +
PR

r′=1

PLr′
l′=1 mR+r′,l′).

The leaving rate from state m is:

RX

r=1

λr +
RX

r=1

LrX

l=1

mr,lµr,l, (6)

so we have to prove that:

X

m′∈A∪B∪C

π(m′)ξ(m′ →m)

= π(m)
h RX

r=1

λr +
RX

r=1

LrX

l=1

mr,lµr,l

i
, (7)

where ξ(m′ →m) denotes the transition rate from state
m′ to state m. In the following we write π(m′) as product
of π(m) and an opportune factor.

We verify the GBEs considering the effective arrival
rates from states belonging to different sets A,B, C sep-
arately. Let m′ ∈ A, thus mr,l > 0 and l > 1, then we
can write the effective arrival rate to state m as follows:

π(m)
h mr,l

1 + mr,l−1

µr,l

Ar,l

Ar,l−1

µr,l−1

i
µr,l−1ar,l−1(1 + mr,l−1)

= π(m)[mr,lµr,l]. (8)

Let m′ ∈ B thus ms,1 > 0, and let us define Y =
{(r, l)|1 ≤ r ≤ R, 1 ≤ l ≤ Lr, mR+e,l > 0}. Then we



Figure 1: GSPN-Cox for R = 2 classes, L1 = 3 and L2 = 2 stages.

can write the effective arrival rate to state m as follows:

π(m)
h X

(r,l)∈Y

1
λs

ms,1

1 + mr,l

mR+r,lPR
r′=1

P
l′=Lr′ mR+r′,l′

i

·
h µs,1

As,1
kλs

1 + mr,l
PR

r′=1

PLr′
l′=1 mr′,l′

i

= π(m)
h
ms,1µs,1

1
PR

r′=1

PLr′
l′=1 mR+r′,l′

X

(r,l)∈Y

mR+r

i

= π(m)[ms,1µs,1]. (9)

Consider now m′ ∈ C. The effective arrival rate to state
m can be written as follows:

π(m)
h LsX

"=1

X

(r,l)∈Y

λs
mr,l

ms," + 1

1 +
PR

r′=1

PLr′
l′=1 mR+r′,l′

1 + mR+r,l

As,"

µs,"

1
k

µs,"bs,"(ms," + 1)
1 + mR+r,l

1 +
PR

r′=1

PLr′
l′=1 mR+r′,l′

i

= π(m)[λs

LsX

"=1

As,"bs,"

X

(r,l)∈Y

mr,l

k

i

= π(m)λs. (10)

Note that summing over all the possible m′ ∈ A ∪ B ∪ C
equations (8), (9), (10) we obtain the total arrival rate
to state m which equates the effective leaving rate from
state m given by expression (6).

Case (b). Consider the tangible state m where mR+1 =
0 and mR+r,l = 0 for all r = 1 . . . , R and 1 ≤ l ≤ Lr. The
only difference with respect to case (a) is that set B has
to be redefined as: B = {m′|m′ = m− es,1 + eR+1, 1 ≤
r, s ≤ R, ms,1 > 0}. Hence the effective arrival rate to

state m from a state in B can be written as follows:

π(m)[
1
λs

ms,1
PR

r′=1

PLr′
l′=1 mr′,l′

µs,1kλs] = π(m)[µs,1ms,1].

(11)
Noting that the right hand side of equation (11) is equal
to the right hand side of equation (9) and summing over
all the possible states m′ we verify the GBEs.

Case (c). Consider the tangible state m where 1 ≤PR
r=1

PLr
l=1 mr,l < k thus we have

PR
r=1

PLr
l=1 mR+r,l =

0. We partition the set of states from which state m can
be reached as follows:

• A is defined as done in case (a).

• B = {m′|m′ = m − es,1, 1 ≤ r, s ≤ R, ms,1 > 0}
with rate λs.

• C = {m′|m′ = m + es," − eR+1, 1 ≤ s ≤ R, 1 ≤ $ ≤
Ls} with rate µs,"bs,"(ms," + 1).

The calculations for states in A ∪ B are the same as the
previous case. Consider m′ ∈ C, the effective arrival rate
to m can be written as follows:

π(m)
h LsX

"=1

λs
1 +

PR
r′=1

PLr′
l′=1 mr′,l′

1 + ms,"

As,"

µs,"
µs,"bs,"

· (ms," + 1)
1

1 +
PR

r′=1

PLr′
l′=1 mr′,l′

i
= π(m)λs. (12)

Noting that the right hand side of equation (12) is equal
to the right hand side of equation (10) and summing over
all m′ ∈ A ∪ B ∪ C we verify the the GBEs.

Case (d). The proof is trivial.

The following lemma states a closed form expression for
the state probability of the GSPN-COX by considering



an exact aggregation of states. The basic idea is to obtain
an aggregated state which does not represent the stage
at which a token is, but it just distinguishes between
a token being in service and being in queue. The actual
relevance of the lemma is to show a result which is equiv-
alent to the well-known result of BCMP theorem, that is,
the marginal distribution for a Coxian service time LCF-
SPR station is equal to the one of the same station with
an exponential service time distribution with the same
mean.

Lemma 2. Let us define the aggregate tangible state as
follows: n = (n1, . . . , nR, nR+1, . . . , n2R, n2R+1), where
nr = mr =

PLr
l=1 mr,l and nR+r = mR+r =

PLr
l=1 mR+r,l

and n2R+1 = mR+1, with 1 ≤ r ≤ R and m is a tangible
state of model GSPN-COX. The steady state probabilities
for GSPN-COX can be written as follows:

πa(n) = π0

RY

r=1

λ
nr+nR+r
r

(
PR

r=1 nr)!QR
r=1 nr!

(
PR

r=1 nR+r)!QR
r=1 nR+r!

·
RY

r=1

“ 1
µr

”nr+nR+r
nY

a=1

1
min(n, k)

, (13)

where 1/µr is the mean service time, i.e.,
PLr

l=1 Ar,l/µr,l,

n =
PR

r=1 nr = m.

Proof. In order to prove Lemma 2 we calculate the
aggregation as follows. Given n, the aggregation is ob-
tained in 2R steps. We first sum over m such that m1 =
n1, that is, we aggregate class 1 customers in service, ob-
taining an intermediate state mα1 , where πα1(mα1) is
given by the sum:

πα1(mα1) =
X

m:m1=n1

π(m). (14)

The following step aggregates class 1 customers in the
queue, obtaining the intermediate state mβ1 , whose sta-
tionary probability is given by:

πβ1(mβ1) =
X

mα1 :m
α1
R+1=nR+1

πα1(mα1). (15)

Proceeding with the aggregation for all classes 1 . . . R we
have that: mβR = n and πβR(mβR) = πa(n).

In order to simplify the notation, in the following we
write

P
αr

and
P

βr
to denote the sums which give in-

termediate states mαr and mβr respectively.
Hence we can simplify what we have to prove as fol-

lows:

X

βR

X

αR

· · ·
X

β1

X

α1

h (
PR

r=1 mr)!QR
r=1

QLr
"=1 mr,"!

·
(
PR

r=1 mR+r)!QR
r=1

QLr
"=1 mR+r,"!

i
·
h RY

r=1

LRY

"=1

“Ar,"

µr,"

”mR+r,"+mr,"
i

=
(
PR

r=1 nr)!QR
r=1 nr!

(
PR

r=1 nR+r)!QR
r=1 nR+r!

RY

r=1

“ 1
µr

”nr+nR+r
. (16)

Let us consider the inner summatory of the left hand side

of equation (16):

X

α1

h (
PR

r=1 mr)!QR
r=1

QLr
"=1 mr,"

(
PR

r=1 mR+r)!
QR

r=1

QLR
"=1 mR+r,"

·
h RY

r=1

LrY

"=1

“Ar,"

µr,"

”mR+r,"+mr,"
i

=
(
PR

r=1 mr)!QR
r=2

QLr
"=1 mr,"

(
PR

r=1 mR+r)!
QR

r=1

QLR
"=1 mR+r,"

·
L1Y

"=1

“A1,l

µ1,"

”mR+1,"
RY

r=2

LrY

"=1

“Ar,"

µr,"

”mR+r,"+mr,"

·
X

α1

h 1
QL1

"=1 m1,"

L1Y

"=1

“A1,"

µ1,"

”m1,"
i

=
(
PR

r=1 mr)!QR
r=2

QLr
"=1 mr,"

(
PR

r=1 mR+r)!
QR

r=1

QLR
"=1 mR+r,"

·
L1Y

"=1

“A1,l

µ1,"

”mR+1,"
RY

r=2

LrY

"=1

“Ar,"

µr,"

”mR+r,"+mr," 1
m1!

·
X

α1

h m1

m1,1 . . . m1,L1

!
L1Y

"=1

“A1,"

µ1,"

”m1,"
i

that by applying the binomial theorem, and noting that

L1X

"=1

(
A1,"

µ1,"
)

is the mean of the Coxian distributed service time, i.e.,
1/µ1, can be rewritten as follows:

=
h (

PR
r=1 mr)!

m1!
QR

r=2

QLr
"=1 mr,"

(
PR

r=1 mR+r)!
QR

r=1

QLR
"=1 mR+r,"

i

·
h RY

r=2

LrY

"=1

“Ar,"

µr,"

”mR+r,"+mr,"
L1Y

"=1

“A1,"

µ1,"

”mR+1,"

·
“ 1

µ1

”m1
i

(17)

Summing expression (17) to obtain mβ1 , by similar cal-
culations, gives:

h (
PR

r=1 mr)!

m1!
QR

r=2

QLr
"=1 mr,"

(
PR

r=1 mR+r)!

mR+1!
QR

r=2

QLR
"=1 mR+r,"

i

·
h RY

r=2

LrY

"=1

“Ar,"

µr,"

”mR+r,"+mr,"
“ 1

µ1

”m1+mR+1
i

(18)

Expression (18) can be similarly summed over α2 and
then β2, and so on. Noting that mr = nr and mR+r =
nR+r for r = 1, . . . , R we have proved equation (16) and
the lemma.

The following theorem states the equivalence of the
BCMP LCFSPR marginal probabilities and the GSPN-
COX ones.

Theorem 1. Consider model GSPN-COX, let m be a
tangible state. Define the aggregated state u as follows:
ur =

PLr
l=1 mr,l +

PLr
l=1 mR+r,l for r = 1, . . . , R, i.e.,

ur represents the number of customers of class r in the
system, either in service or in queue. Then we can write:

πA(u) = π0
u!

QR
r=1 ur!

RY

r=1

λur
r

“ 1
µr

”ur
uY

a=1

1
min{k, a} ,

(19)



where u =
PR

r=1 ur.

Proof. We have to prove that:

πA(u) =
X

m:
PLr

l=1(mr,l+mR+r,l)=ur
r=1,...,R

π(m). (20)

By Lemma 2 we obtain a closed form for the aggregation
of the stages. However, from the queueing model point
of view, the aggregated state still distinguish the number
of customers in service and the ones in queue. Moreover
we can see the marginal probability distribution as the
probability distribution of GSPN-COX model with Lr =
1 for every r = 1, . . . , R, and 1/µr =

PLr
l=1(Ar,l/µr,l).

In [4] it is proved that Theorem 1 holds for models with
Lr = 1, i.e., exponential servers.

The following corollary is very simple an it immediately
follows by Theorem 1 and BCMP theorem:

Corollary 1. The M/COX/k/LCFSPR queueing sys-
tem with R customer classes, arrival rates λr, Coxian
distributed service times with mean µr, 1 ≤ r ≤ R and
steady state probability π′(n), is equivalent to model GSPN-
COX in terms of steady state probability, i.e., πA(n) =
π′(n) for all n ∈ NR under condition that

PLr
l=1 Ar,l/µr,l =

µr for all r = 1, . . . , R.

5. EXAMPLE
In this section we present an example of representation

of a simple multi-class QN by a GSPN. Consider the QN

Figure 2: Example of a QN with two stations.

shown in Figure 2 that consists of two stations with dif-
ferent scheduling disciplines, FCFS and LCFSPR, respec-
tively. We assume that the FCFS station has 2 identical
servers and a service time exponentially distributed and
independent on the class of the customer being served.
The LCFSPR station consists of 3 identical servers and
Coxian distributed service times that depend on the class
of the customer being served. For customers of class 1,
the service time is modelled by a 3-stage Coxian random
variable, while for customers of class 2, the service time
is modelled by a 2-stage Coxian random variable. The
routing is illustrated in Figure 2 and it is probabilistic:
after the service completion, a customer of class 2 can be
served either by class 4 with probability p2,4 or by class
2 with probability p2,2, with p2,4 + p2,2 = 1. Note that
we are using class concept in local sense [19]. The QN is
mixed because there is an open chain and a closed one.
The QN holds the BCMP theorem for product-form.

Figure 3 shows the equivalent GSPN model of the en-
tire QN, where the second service center with LCFSPR
and Coxian service distribution is defined according to
Definition 1 of Section 4,and the first service center is
defined as in [4].

Dotted lines in Figure 3 represent an alternative firing
mode of a transition, while grey lines are used just to im-
prove the readability of the figure. For example transition
transition Tb has two possible output vectors according to
the probabilistic routing of the closed chain customers af-
ter being served at FCFS station. Hence O1(Tb, P

∗) = 1,
O1(Tb, Pbq) = 1 (corresponding to the dotted line) and
O2(Tb, P

∗) = 1, O2(Tb, P0) = 1, O2(Tb, P2,0) = 1. The
probability associated to the output vectors are p2,2 for
firing mode 1 and p2,4 for firing mode 2 (corresponding
to the solid line). The mean of the timed transitions of
the GSPN-COX block associated to the LCFSPR station
are set according to the Coxian service time of the QN
station. Note that if the example QN has product-form,
the BCMP conditions for the QN require that the av-
erage service rate of FCFS station does not depend on
the customer class. This condition corresponds the con-
dition µa = µb in the GSPN, where µa and µb are the
firing rates of exponential transitions Ta and Tb.

Note that the QN has feedback, thus the internal flows
are not Poisson distributed. Even if we have proved that
the equivalence between the GSPN-COX model and the
multi-class LCFSPR BCMP station holds (for marginal
distributions) under Poisson arrivals, M ⇒ M property
assures that the equivalence can be straightforward ex-
tended to networks of blocks each of which holds the
M ⇒ M property. In fact Lemma 1 proves that model
GSPN-COX satisfies M ⇒ M property, and in [4] it is
proved that the same holds for the GSPN block we are
using for FCFS station. This ensures the equivalence be-
tween the QN of Figure 2 and the GSPN of Figure 3 in
terms of marginal stationary probabilities.

As consequence the whole GSPN equivalent to the QN
holds the M ⇒ M property, hence the departure process
from the GSPN (and the QN) is a Poisson process [18].

6. FINAL REMARKS
In this paper we have shown how to represent multi-

class single queueing systems by structurally finite GSPN
for LCFSPR queueing disciplines with Coxian distributed
service time. We pointed out this investigation led to the
definition of a model which can be combined with similar
GSPN models [4] giving a product-form solution which
does not belong to any one the well-known classes [13,
11, 2, 6].

We observe that simulating the behavior of the queue-
ing discipline such that the GSPN Markov chain is iso-
morphic to the one associated to the correspondent QN
leads to an infinite structure for open networks, or a
structure depending on the number of customers in the
system for closed ones. In order to overcome this problem
and define a finite GSPN we have simulated the queue-
ing discipline with a probabilistic behavior, so defining
the GSPN-COX model whose Markov chain is not iso-
morphic to the associated queueing station Markov chain.
However we have proved the equivalence between the two
models for meaningful aggregations. In fact for model
GSPN-COX we give the stationary distribution for three
level of details, each showing a closed form expression:

• π(m) represents the stationary distribution for de-
tailed state, that specifies how many customers for
each class are being served and are in queue for
every stage of the service.

• πa(n) allows one to determine the stationary prob-
ability of a state considering how many customers



Figure 3: GSPN equivalent to the QN of Figure 2.

are being served and in the queue for every class.

• πA(u) represents the stationary distribution for the
less detailed state, that gives the number of cus-
tomers for every class in the net, regardless to their
position, in queue or in service.

We have proved, in Section 4, that the GSPN-COX
model holds the M ⇒ M property that allows us to
state that the model can be used as a building block
in representing a BCMP QN with GSPN, maintaining
the same product-form for the marginal state distribu-
tion. Hence each GSPN block presented in [4] and in
this paper, that represent various types of QN service
centers, can be composed by using the M ⇒ M prop-
erty. In order to compose the QN centers one can define
an appropriate GSPN structure that represents the QN
routing probabilities, as simply illustrated by an example
in the previous section.

It is worthwhile noting that the product-form is a
property defined on the Markov chain associated to a
stochastic model. Hence further research could try to
identify structurally finite GSPN models whose stochas-
tic processes are isomorphic to the correspondent queue-
ing center ones, by considering a significant level of detail.
These kinds of model could have a stronger equivalence
with BCMP QNs and not just for average performance
measures.
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