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Abstract 

Recent years have seen the growth of interest for middleware (MW) approaches in resource-constrained systems like 
Wireless Sensor Networks (WSNs). In this context, available MW platforms usually provide an Application Layer with 
different basic services, but do not provide security services such as secure links management or intrusion detection. 
Nevertheless, since WSN applications normally require the collection of reliable data from the sensing units, secure 
communications should be guaranteed even in the presence of resource constraints. So, this paper present a novel MW 
approach directly tailored to an IEEE 802.15.4-based WSN. The security-related components of the proposed MW include 
a light yet powerful cryptographic scheme (TAKS) and an Intrusion Detection System (WIDS). According to the 
performance and overhead assessment, we may argue that the proposed architecture has potentials to be exploited in 
realistic application scenarios that rely on the IEEE 802.15.4. 
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1. Introduction
In the last years, the so called Wireless Sensor
Networks (WSNs) has attracted a lot of attentions in both
academic and industrial domains. This is mainly due to
the fact that WSNs could represent the infrastructure
able to support the Internet of Things (IoT) architecture.
In fact, a WSN is a distributed system, composed of a
set of sensor nodes and a sink node able to
communicate by means of wireless channels, that
could be used for pervasive and ubiquitous data
collection and processing. For this, WSNs have already
found application in several areas, such as
environmental monitoring, health monitoring,
intelligent building, intelligent transportations, and so on,
e.g. in [2]. In the depicted context, that is typically
resource-constrained, particular attention has been
devoted to

development of middleware platforms. A middleware is a 
software platform used to hide complexity and 
heterogeneity of the underlying physical platform and 
network and to offer several services to the Application 
Layer, eventually providing an application execution 
environment [26]. When the underlying physical network 
is a WSN, considering typical monitoring oriented 
applications, data and system reliability are also required. 
Although security is not usually included in the services 
portfolio provided by middleware platforms for WSNs, 
reliability involves security issues: so, a middleware for 
WSNs should not ignore aspects such as secure data 
transmission and intrusion detection. 
This paper deals with the definition and development of a 
new middleware framework to provide security in WSNs: 
in particular, a reference architecture for the middleware 
is proposed and the main design choices are discussed. 
Moving from our previous work, we focus on a hybrid 
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cryptographic scheme called TAKS and an Intrusion 
Detection System (IDS) based on a simplified version of 
Hidden Markov Models (HMMs) called Weak Process 
Models (WPMs). The relevant feature of the presented 
work is related to the fact that the proposed architecture is 
tailored to real-world IEEE 802.15.4-based WSNs. 
The remainder of this paper is organized as follow: 
Section 2 deals with background and motivations that 
have led us to propose a new middleware and also state-
of-art about middleware platforms for WSNs that handle 
security is reported. Section 3 deals with the provision of 
security services for IEEE 802.15.4 networks and Section 
4 with the proposed middleware architecture. Section 5 
and 6 are then focused on the secure transmission service 
(which refers to a WSN-oriented cryptographic scheme), 
the intrusion detection service and, specifically, the issues 
related to implementation on the protocol stack. Finally, 
Section 7 reports our validation approach while in Section 
8 some conclusive comments and future works are 
reported as well. 

2. Background and motivations

Usually, WSNs are used in monitoring and control 
applications wherein system resources are very 
constrained. In particular, sensor nodes are often battery 
powered and, once deployed, not easily accessible by 
humans. So, the energy consumption should be carefully 
optimized. Moreover, a WSN should be flexible 
especially with respect to node heterogeneity. In fact, the 
burden of computation may vary from node to node and 
the exploitation of a heterogeneous network setup could 
be beneficial. 
IEEE 802.15.4 has been designed to achieve these goals. 
It is a standard which specifies the Physical Layer and 
Media Access Control (MAC) for low-rate wireless 
personal area networks (LR-WPANs) [5]. A LR-WPAN 
is a simple, low-cost communication network that allows 
wireless connectivity in applications with limited power 
and relaxed throughput requirements. The main objectives 
of a LR-WPAN are easy installation, reliable data 
transfer, short-range operation, extremely low cost, and a 
reasonable battery life, while maintaining a simple and 
flexible protocol. Sensor nodes produced by different 
manufacturers, but following the Physical Layer 
specification, would be able to correctly communicate. 
Therefore, the exploitation of this standard implicitly 
gives the capability to manage heterogeneous WSNs. 
Moreover, IEEE 802.15.4 provides to the higher layers 
two types of services: the MAC data service and the MAC 
management service. The former one provides services to 
exchange data in the network, while the latter one allows 
to handle network management issues such as 
synchronization, network formation and maintenance (e.g. 
scan and association/disassociation), etc. 
Generally, these services are exploited by the Network 
Layer to provide multi-hop through routing table or smart 
address managing in association/disassociation. There are 

a lot of Network Layers suitable for IEEE 802.15.4, with 
some examples reported in [9] and [43]. 
It is worth noting that by providing a Network Layer on 
the top of the IEEE 802.15.4 MAC Layer, we have just 
provided a software package that helps to hide the 
complexity and heterogeneity of the underlying hardware 
platforms and simplify the management of system 
resources: in other words, it could be considered as a 
minimal middleware. This remark is also compliant with 
the classification of middlewares for WSNs provided in 
[16] and [39]. Nevertheless, the middleware discussed in
this paper is more complex with respect to the approach
devised above. In addition to providing methods to route
and control the medium access through IEEE 802.15.4,
our framework embeds methods to ensure reliability of
the network based on the exploitation of a hybrid
cryptographic scheme and an intrusion detection system.
It is worth to note that in [27], [28] and [29] we have
proposed an architecture for a middleware where security
services are embedded in the mobile agent-based
middleware Agilla [1]. Here, part of the same
considerations are moved in a different context for a
different purpose: in [27], [28] and [29] the middleware is
unaware of the underlying physical network, while in our
current proposal security services are tailored to a system
prototype that explicitly relies on the IEEE 802.15.4
standard.
This approach is quite different when compared to other
related works. For example, Zigbee [43] aims to
standardize the application execution environment
covering the largest number of WSN application domains
and providing some basic services. In fact, although
Zigbee is famous for its definition of Network and
Application Layers, to put on top of IEEE 802.15.4 ones,
its specification includes a number of basic security
provisions and options. In particular, Zigbee provides
facilities to manage secure communications (for instance,
link setup and key management), ciphering frames and
controlling devices. Instead, the middleware proposed in
this paper aims to provide advanced security services
focusing on the most popular WSN application domain,
i.e. monitor and control applications. In literature, other
than ZigBee, there are several proposals of middleware
platforms that provide security through cryptography: for
instance, SM-Sens [14] uses symmetric and asymmetric
cryptography along with message authentication code to
ensure security requirements on data flows. It also
provides a method to distribute keys by exploiting
hierarchical routing and a mechanism to exclude
compromised nodes of the network. STaR [10] is a
modular, reconfigurable and transparent software
component for secure communications in WSNs. STaR
guarantees confidentiality, integrity, and authenticity by
means of encryption and/or authentication and it is totally
transparent to the application, i.e. no changes to the
original application or the communication protocol are
required. SpartanRPC [7] extends nesC programming
language to provide a link-layer Remote Procedure Call
(RPC) mechanism. All the RPC resources are protected
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via language-level policy specification. SMEPP Light [37] 
features group management, group-level security policies, 
mechanisms for query injection and data collection based 
on a subscribe/event mechanism, and adaptable energy 
efficiency mechanisms. Other middleware proposals 
provide security by deploying specific defence 
mechanisms for a set of predefined attacks. Di-Sec [38], 
for example, provides a framework to model defence 
strategies. Through a training phase, nodes are able to 
learn the behaviour to adopt in case of attacks. 
The middleware proposed in this paper exploits benefits 
of these two approaches (i.e. cryptography and attack 
defence mechanisms) by providing a light but powerful 
cryptographic scheme to protect data and an intrusion 
detection system to guarantee the availability of the 
network. Moreover, since it explicitly refers to IEEE 
802.15.4-based WSN, the middleware is suitable for 
network composed by heterogeneous nodes. Usually, this 
property is not considered in middlewares that handle 
security but it turns out to become very interesting to 
deploy a real-world WSN. 

3. Security in IEEE 802.15.4 networks

To discuss the security facilities provided by IEEE 
802.15.4 it is important to highlight that the standard does 
not provide only a method to access the medium, but also 
several mechanisms to create and detect a WPAN, 
associate or disassociate with it and so on. This means 
that in a 802.15.4 network, there are several types of 
messages exchanged, such as beacon packets (used to 
synchronize the network), acknowledgments packets 
(used to notice the message reception), data packets and 
other control packets. 
As specified by the standard [18], the MAC Layer 
provides security services on each incoming and outgoing 
frame (with the exception of acknowledgement packets). 
The services supported by the standard are as follows: 

 data confidentiality;
 data authenticity;
 replay protection.

Data confidentiality is ensured by using encryption and 
decryption algorithms: the standard defines to use AES 
(Advanced Encryption Standard) with 128 bit keys. Data 
authenticity is guaranteed by using cryptographic hash 
functions that associate to each message a Message 
Authentication Code (MAC). The receiver can check it to 
authenticate the message. Finally, the usage of a 
monotonically increasing sequence number to each packet 
ensures the protection from replay attacks. It is worth 
noting that the standard can also work with no security, 
encryption only (AES-CTR), authentication only (AES-
CBC-MAC), and encryption and authentication (AES-
CCM). Each category that supports authentication comes 
in three variants depending on the size of the Message 
Authentication Code that it offers. Each variant is 

considered as a different security suite and has its own 
name. The Message Authentication Code can be either 4, 
8, or 16 bytes long.  
The IEEE 802.15.4 specification provides basic security 
mechanisms but these security features cannot work on 
their own: since the standard does not suggest any key 
management approach, in applications that require 
security a method to generate symmetric keys is needed. 
Symmetric key generation is one of the most addressed 
problems in the literature [5]. Pair-wise key pre-
distribution solutions are based on deterministic pre-
distribution of keys for each pair of nodes. Random pair-
wise key schemes are based on storing only a subset of all 
possible keys in each node. To communicate with each 
other, each node needs to negotiate a key with its peer, 
randomly selecting one key in its subset [6]. The master 
key pre-distribution scheme requires that a master key is 
distributed in the entire network and that nodes use a 
combination of it and previous exchanged nonces [22]. 
Other schemes can be found in [5]. In [25], [29] and [30], 
we have proposed a family of novel schemes called 
TAKS (Topology Authenticated Key Scheme) to generate 
topology authenticated keys for handling cryptographic 
aspects in resource constrained deployments of WSN. 
TAKS cryptographic scheme allows to authenticate each 
message exchanged in the network referring to a certified 
topology of the network. Since TAKS provides good 
results from both performance and security points of view 
[25], its usage in IEEE 802.15.4 networks is very 
encouraged. 
The complexity and distributed nature of a WSN makes 
cryptography not sufficient to ensure network security. In 
addition, to provide confidentiality, authenticity and 
integrity of messages, network security aims to make the 
system always (or mostly) available. Ensuring availability 
is more complex than other issues. Typically, this is done 
by auditing network activities, detecting potential threats 
and reacting opportunely through an Intrusion Detection 
System (IDS). IDS denotes a system that supports 
mechanisms to detect and appropriately manage (through 
reaction functions and proper countermeasures) intrusions 
and attacks in the form of malicious control and data 
messages [11]. An IDS is typically formed by three 
components: Intrusion Detection (ID) that deals with the 
detection of network intrusions by sensing suspect 
phenomena, Intrusion Reaction Logic (IRL) that 
schedules the priorities for actions on all compromised 
nodes according to a specific defensive strategy and 
Intrusion Reaction Application by performing the 
appropriate countermeasures (IRL Application). 
In this paper, we focus on Intrusion Detection and we do 
not deal with Intrusion Reaction. For what concerns 
Intrusion Detection, an IDS can be classified into three 
frameworks: anomaly based intrusion detection, misuse 
based intrusion detection and specification-based 
intrusion detection [13], [19]. Anomaly based intrusion 
detection relies on the assumption that intruders will 
demonstrate abnormal behaviour relative to the legitimate 
nodes: anomaly has to be detected by knowing the normal 
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system behaviour. Instead, the misuse intrusion detection 
relies on the assumption of an up-to-date database of 
intrusion signatures. Using them, the system can easily 
detect intrusions on the network. Specification-based 
detection systems work by defining rules for attacks. 
Sensor node behaviour is checked against each rule 
sequentially. There is a failure counter associated with 
each node. If the sensor node violates a rule, a failure 
counter is incremented. If the number of failures of a 
particular node increases over a threshold after a time 
interval t an alert about that node is generated. 
Another typical IDS classification is done with respect to 
the distribution of the code in the network [13]. There are 
the following types of IDS: 

 in purely distributed IDS intrusion detection,
algorithm is installed in every node;

 in centralized IDS, intrusion detection is performed
only by the sink node or the base station upon the
reception of processed information from the network;

 in mixed distributed-centralized IDS, suitable only
for particular types of networks, such as clustered
WSN, the detection is delegated to a particular subset
of nodes of the network. Examples of these types of
IDS are [21], [23] and [33].

Although many of these approaches can be applied in 
IEEE 802.15.4 WSNs, we cannot provide IDS examples 
focused on these networks: many works survey attacks 
and propose methods to detect them, such as [40], but, at 
the best of our knowledge, there are no papers proposing 
IDS frameworks specifically focused on these kinds of 
networks. 

4. IEEE 802.15.4-based MW architecture

This section deals with the main functional blocks of the 
proposed IEEE 802.15.4-based middleware. A high-level 
representation is given in Figure 1. 
The proposed architecture refers to a typical WSN 
protocol stack, where security facilities are now 
considered and embedded in the framework. From a 
protocol point of view, the proposed architecture specifies 
only MAC and Physical Layers to IEEE 802.15.4 and 
provides flexibility of choices on both Network and 
Application Layers. Usage of IEEE 802.15.4 is not 
limitative because it is the de-facto standard in industrial 
applications while Network Layer is not standardized as 
well, although Zigbee exploitation is quite diffuse. 
In the following, the embedding of the security services 
into the reference middleware architecture is discussed. 
Typically, data security is accounted at the Application 
Layer: a large number of protocols, such as ones used on 
the Internet, provide security directly at Application 
Layer. 

WIDS
MAC
WIDS
MAC

WIDS
NWK
WIDS
NWK

WIDS
APP

WIDS
APP

MAC & PHY
IEEE 802.15.4
MAC & PHY

IEEE 802.15.4

NWKNWK

TAKS / ECTAKSTAKS / ECTAKS

APPAPP

TAKS / ECTAKSTAKS / ECTAKS

Figure 1. The middleware architecture 

The proposed architecture is compliant to this view 
because it provides TAKS [30] facilities (ECTAKS if 
elliptic cryptography is exploited [25]) to Application 
Layer. From a Network Layer point of view, this means 
that only the effective payload (i.e. the application packet) 
is encrypted and only the intended legal receiver can 
decrypt it. However, IEEE 802.15.4 has some interesting 
properties that we can exploit to improve the security 
level. As we have seen in previous sections, 802.15.4 
MAC Layer provides a security suite accessible by means 
of APIs provided by the MAC Layer itself. Using this 
service we can ensure the encryption of each MAC data 
packets (i.e. the entire MAC payload composed by 
Network and Application packets). We have designed the 
middleware so that encryption can be selected at one or 
both layers depending on user security requirements.  
The proposed architecture motivates further remarks 
about IDS. Our consolidated line of research is oriented 
towards a misuse-based purely distributed IDS which 
exploits the Weak Process Models (WPM) over WSN, 
denoted here as WIDS (WPM-based Intrusion Detection 
System) [27], [28], [29]. First of all, WIDS is purely 
distributed. Most literature contributions propose to put 
intelligence (usually more consuming both in 
computational resources and in memory) outside the 
WSN [15], [42]: however, if the algorithms are designed 
by considering the very constrained environment of 
WSNs, these systems can operate as functionally 
“autonomous entities” and not only for pure sensing 
operations. This choice implies two types of benefits: the 
former one consists in the distributed architecture which 
avoids the typical drawbacks presented by centralized 
solutions; the latter one is the reduction in energy 
consumption since distributed solutions do not need 
sharing information with a centralized entity (i.e. sending 
them via radio and wasting energy). However, the 
drawback is that distributed IDS need a fine 
configuration. 
Looking at the architecture, it is straightforward to remark 
the cross-layer nature of the Intrusion Detection System 
that concerns all active layers of the stack (i.e. 
Application, Network and MAC). Each active layer 
implements protocols characterized by a set of constraints 
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and rules and, for this reason, exposed to attacks by 
intruders: constraints and rules in a protocol represent 
points of weakness which can be exploited by intruders to 
induce altered behaviours on sensor nodes (e.g. a denial of 
service). For example, we can refer to a kind of attack 
known in literature as HELLO flooding. This kind of 
attack relies on the fact that wireless protocols often 
require that nodes execute an association procedure by 
sending the so-called HELLO messages. HELLO flooding 
is when the attacker continuously issues malformed 
HELLO messages to WSN nodes, which waste 
computational and memory resources that can later result 
in a denial of service. Now it is easy to understand how 
IDS is strictly based on the kind of protocol that it 
monitors. Therefore, the WIDS component of the 
middleware is conceptually the same one that we have 
proposed in [27], [28] and [29] but it is customized for the 
different protocols provided by the actual architecture. It 
is important to remember that, such an architecture, do not 
define any Network and Application Layer so, in this 
work, we do not provide any fixed approach to handle 
Intrusion Detection at this layer. 

It is of paramount importance to remark that a specific 
solution needs to be tailored to each specific protocol 
stack. In this regard, we progress by assuming that MAC 
and physical layers are compliant to IEEE 802.15.4, while 
flexibility is assumed when considering network and 
application layers. Relying on the IEEE 802.15.4 is not to 
be intended as a restriction: instead, we claim the double 
perspective of i) devising, developing and testing a 
framework for a concrete case, and ii) impacting on the 
evolution of a de-facto standard in industrial applications 
and other domains. As for network layer and application 
layer only the following not restrictive requirements are 
assumed: 

 R1: the network layer shall not allow data
transmission without association to a network;

 R2: the network layer shall implement a reactive
routing protocol and it shall be aware of the
association of new node to the network;

 R3: the application layer is concerned with the
"monitoring and control" application domain, and it
is supposed to resort on acknowledged
transmissions.

As a matter of fact, we can observe that several existing 
network layer routing protocols, such as [9] and [43], 
readily satisfy R1 and R2. At the same time, any 
monitoring and control application should be compliant to 
R3. 
In the next two sections we will give a complete overview 
of both the cryptographic scheme TAKS and the WIDS 
design, focusing on the MAC Layer of the stack. 

5. The cryptographic scheme TAKS

A high level description of the cryptographic scheme is 
firstly provided, along with an assessment of its 
robustness. Next, the implementation in the devised 
framework is presented and validated as well. 

5.1. High level description 

TAKS includes authentication, cryptographic key 
generation, and related management services. The 
authentication service is based on network topology in 
terms of neighbourhood relationships among parties. Each 
party can be authenticated if and only if the graph of the 
topological relationships between the related node and 
other nodes (not restricted to only one-hop neighbours) is 
included into the graph of authenticated topologies 
defined for that portion of the network. The function of 
Certification Authority (CA) is not centralized, but shared 
among all the parties in the network, in the sense that each 
party stores the minimum information to prove the 
authenticity of any signing party. Rationales and further 
details of the decentralized approach are provided in [24] 
and [30]. The topology-based mechanism also enables 
nomadic parties to be authenticated, as long as their local 
topological relationships are compliant to the 
authenticated ones: this approach allows to overcome 
typical limitations of purely position-based authentication 
mechanisms.  
The service for cryptographic keys generation has been 
defined and is based on vector analysis over points in 
Galois finite fields with size of the order of the key length. 
It is a hybrid scheme that inherits some features of the 
Diffie-Hellman key exchange scheme [12]. It also inherits 
other features of the classical asymmetric paradigm public 
key-private key [17]. In summary, any secret share is 
generated in a party, starting from the partial key 
components stored in any authenticated pair. For very 
critical applications, security can be further enhanced by 
introducing special elliptical curves (specified in ANSI 
standards) as point generators over Galois finite fields. In 
this latter case a larger overhead is introduced. 
While detailed descriptions can be found in [24] and [30], 
the basic behaviour is provided here: 

 Each node stores a number of vectors over a
predefined Galois finite field: these vectors define
the graph of the planned authenticated topologies for
that portion of a network (denoted with Local
Planned Topology) and the partial key components,
namely the Local Key Component and the
Transmitted Key Component. The Local Key
Component plays the role of the private key in an
asymmetric scheme, while the Transmitted Key
Component is intended as a public key. Once again,
these vectors are not keys but only partial key
components.
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 The shared secret, i.e. the symmetric key, is
computed from the key components associated to the
parties involved in the data exchange. Key
generation requires of course that a successful
authentication of the parties has been completed.
Once authenticated, the receiving party has gained

the information to decrypt the received ciphered 
message by computing the shared secret from the 
Transmitted Key Component that the transmitting 
party has sent with the ciphered message and its own 
Local Key Component. The scheme is sketched in 
Figure 2 [24]. 

Figure 2. TAKS scheme 

The setup protocol is 1-phase in the sense that the 
authentication phase and the generation phase are in fact 
executed in the same step, so that the transmitting party 
authentication information (i.e. the Local Planned 
Topology vector) is coincident with the key generation 
information (i.e. the Transmitted Key Component vector). 
This is different from the 2-phase scheme that we defined 
in an earlier work [30], where the authentication phase 
and the generation phase are separated. The secret share 
(SS) feeds both the coding and the MAC authentication 
algorithms to return the ciphered message and the 
authentication tag. The 1-phase transmission contains 3 
information elements: the ciphered message (c), the 
authentication tag () and the Transmitted Key 
Component (d). The receiving party computes its own 
version of the secret share SS’ through its Local Key 
Component and d, then computes its own version of the 
authentication tag ’: in [32] it is shown that if and only if 
=’ then SS=SS’, hence the symmetric key is established 
between the parties and the message can be successfully 
deciphered by the destination party. 

5.2. Security analysis  

TAKS security analysis has been led by answering the 
following questions: 

 Is TAK a real cryptographic key? I.e. which is the
entropy per binit associated to TAK? A bit string can
be regarded as a cryptographic key if its associated
entropy per binit raises unity [34] so that each key
behaves as a truly pseudo-random number. In [24]
and [30] is shown that this requirement has been met
in TAKS.

 How much a single node is secure, i.e. how much
complex is the inverse problem to break TAK
(security level in a single node)? In [30] has been
proven that the security level in a single node is
higher than the discrete logarithm problem:
Equations show that the relationship between key
components is not simply a discrete logarithm, which
is one of most difficult problem in GF(q) algebra,
because they appear both as multiplying factor of the
exponentiation operator and in the exponent.

 How much a network is secure, i.e. how many nodes
an attacker should compromise to break TAK
(security level in the network)? This security level is
calculated by evaluating the complexity to break the
cryptographic key with all nodes in the network
available. The T-Security concept is here introduced:
given a network with N nodes, a cryptographic key is
T-Secure if an attacker should capture N1T 
nodes in the network to gain enough information to
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crack the key. The best case is when NT  , because 
in this case the cryptographic key never can be 
violated as there is no enough information shared in 
the network to do that. This result can be achieved if 
a share of the information needed to generate 
cryptographic keys is external to the network (i.e. 
residing in an external server). In [30] has been 
analytically shown that TAKS is N-secure 
(i.e. NT  ). 

5.3. Design and implementation 

The procedure including TAKS algorithms has been 
designed and implemented in terms of a set of modules on 
top of an intermediate bridge layer: this enables code re-
usage across the implementations on top of network and 
MAC layers that are described in the following.  

TAKS Layer 
In order to enable easy integration with IEEE 802.15.4-
based stacks, the TAKS modules have been designed by 
resorting to the typical paradigm of service primitives 
largely exploited also by IEEE standard [18]. As a 
consequence, any service exposed or required by TAKS 
can fall within one of the four generic types: request to 
require a service, indication to be informed about an 
internal layer event, response to complete a procedure 
previously invoked by an indication primitive, and 
confirm to convey the results of one or more associated 
previous service requests. Moving along this line, we 
were able to come up with the finite state machine in 
Figure 3 for the logic implemented on sensor nodes. In 
particular, for the specific interests of this section, we 
analyze how state machine evolves in packet transmission 
and reception. 
It easily turns out from [24] that a packet transmission by 
means of a TAKS component requires more than one 
transmission across the wireless link: we call the sequence 
of packet exchanged by nodes as a TAKS transaction. 
Normally TAKS state machine is in IDLE state. In this 
condition, a state transition can only be induced by a 
TAKS transaction that starts. Of course, for a given node 
two different procedures are interested when a 
transmitting or a receiving transaction is considered. 
When a transmission is required, TAKS component has to 
send both deciphering information and encrypted data. 
Therefore, the component first checks by means of the 
lookup_destination() function whether the transaction is 
allowed, i.e. it checks if it has the destination Topology 
Vector in his Local Planned Topology. If transmission is 
allowed, a random number is generated with rand() 
function and the deciphering information is calculated by 
multiplying the scalar random with the Topology Vector 
owned by the node. After calculating deciphering 
information, the component logic requests its transmission 
(event a in Figure 3) to the destination node of the 
original packet and it put the state machine in 
KT_TX_REQED state. The transmission result (event b 

in Figure 3) is notified by the corresponding confirm 
function. If an error is returned the previous procedure is 
rerun until to reach a threshold. If a successful 
transmission is notified, the corresponding TAK is 
computed by performing the inner_product() function on 
the Local Key Component and the destination Topology 
Vector, and then multiplying the resulting scalar with the 
opposite of the random scalar generated earlier. Such a 
scalar is then set as a ciphering key: this progression is 
maintained in the state machine evolving in the 
SET_KEY_REQED_OUT state. Also in this case, the 
correct key setting is notified by a confirm function (event 
c in Figure 3). The encrypted packet is transmitted only if 
the key has been successfully set (PKT_TX_REQED 
state). At the corresponding confirm reception (event d in 
Figure 3), the state PKT_TXED is achieved wherever the 
confirmation to higher layer is sent and the machine is 
automatically reset (event e in Figure 3). 

Figure 3. TAKS state machine implemented on the 
top of IEEE 802.15.4 MAC layer 

When the reception is a considered in a node, the 
transaction is started by a plaintext packet reception in 
IDLE state (event f in Figure 3). When this packet is 
received by the TAKS component, the logic assumes that 
it contains deciphering information, so TAK is calculated 
as inner product between deciphering information and the 
Local Key Component owned by the node. This 
information is mapped on the state machine evolving in 
the SET_KEY_REQED_IN state. In this state the new 
calculated key setting is requested. At the occurrence of 
the corresponding confirm message (event g in Figure 3), 
the machine comes back to the IDLE state: the underlying 
layer is correctly set and it is only needed to wait for the 
encrypted packet. When the packet is received (event h in 
Figure 3), the decryption is automatically performed and, 
if the packet is also authenticated, it is also notified to the 
higher layer (state PKT_RXED). At this point, the 
machine is automatically reset in the IDLE state (event i 
in Figure 3). 

The Bridge Layer 
In this sub-section the main functionalities implemented 
by the bridge layer are discussed. Services provided by 
the bridge layer are transmission request and 
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corresponding confirmation, packet reception, and set key 
request and corresponding confirm. Implementation of 
these services is different depending on if they interface 
with MAC or network layer. While other services are 
rather standard and do not deserve specific descriptions, 
the set key request service on the top of MAC layer is of 
particular interest. In fact, IEEE 802.15.4 MAC layer 
handles security internally and interfacing with its 
primitives is needed. [18] defines an incoming and an 
outgoing frame security procedure and some parameters 
need to be set to allow a correct secured communications. 
In the following, a brief description is reported. 
When a packet transmission is requested, MAC layer 
decides to secure the frame, i.e. to encrypt or authenticate 
it, according to a given security level. Moreover, a node 
stores a minimum security level for each other node with 
which it can communicate. When the MAC layer 
processes a received packet, it filters any of them with a 
security level score below a minimum security level. 
Since the TAKS procedure defines that deciphering 
information has to be transmitted in plaintext, we have set 
the minimum security levels to non restrictive values. 
Another important parameter is the key identification 
mode. [18] defines how to store keys in a key table 
indexed by an identifier. This identifier can be explicit, if 
it is user defined, or implicit, if it can be implicitly 
deduced from addressing information. An explicit key 
identification implies a further overhead with respect to 
the normal security overhead due to identifier 
transmission. This enables the receiving side to know the 
identifier of the key to be used to decrypt the message. 
For this reason the implicit key mode is typically 
preferred and we have made this choice too in our 
implementation. 

5.4. Cost and performance analysis 

In this section, we report the cost analysis of the proposed 
scheme. This analysis aims to evaluate the complexity of 
the scheme regardless of encryption and decryption 
algorithms and message authentication coder (since they 
are always needed and could be freely selected by the 
network planner). As shown in [24], if n and σ(i) are the 
key size in bytes and the cardinality of the set of eligible 
neighbours respectively, then random generation and 
addition cost O(n), multiplication and inner product cost 
O(n2) and the scan of all possible neighbours costs 
O(σ(i)). 
Since a sending transaction is a serialized call of rand(), 
lookup_destination(), inner_product() and multiply(), we 
can affirm that the computational complexity of TAKS 
encryption is O(n2+σ(i)) ≈ O(n2). Similarly, since a 
receiving transaction is driven by the complexity of 
inner_product(), we can affirm that computational 
complexity of TAKS decryption is O(n2) as well. 
Moreover, the spatial complexity, due to the creation of 
temporary structures for mathematical calculations, is 
O(n+σ(i)). 

The computational cost has been then evaluated in terms 
of execution time on the Atmel Zigbit [4] platform, that is 
provided of an 8 MHz clock (this is the reference platform 
for the WSN that has been deployed in our lab). With 
respect to the three main components involved by TAKS, 
i.e. deciphering information computation and key
computation at both sender and receiver sides, the
evaluated execution time turn out to be 5.1 ms, 7.2 ms and
4.8 ms, respectively. All these results have been obtained
by using IAR Workbench for AVR compiler with medium
level optimization.
To complete our analysis, we have measured the
computation time for encryption, decryption and
authentication tag generation time with the assumption
that the cipher text length is one AES block: the times are
406 s for both encryption and decryption, and 570 s for
authentication tag generation. It is worth noting that
Zigbit radio component integrates an AES engine
accessible via Serial Peripheral Interface (SPI) and
performing hardware accelerated encryption and
decryption [3]. For what concern energy consumption, we
can observe that Zigbit microcontroller power
consumption is negligible with respect to consumption of
the transceiver in active modes [4]. This allows to
approximate TAKS energy overhead to the TAKS radio
overhead intended as the ratio between TAKS packet
overhead and packet payload size of the typical packet
exchanged in the network. Figure 4 shows relationship
between TAKS overhead and packet payload size.
Supposing that the typical packet fits in two AES blocks
the packet payload size is 32 bytes. If link-layer
protection is activated, for each packet TAKS requires the
transmission of the deciphering information (48 bytes).
Moreover, if end-to-end encryption is activated additional
48 bytes are needed. Therefore, activating single facility,
TAKS overhead (i.e. TAKS radio overhead) is 1.5x while
activating both facilities at the same time the overhead is
3x. It is worth noting that above analysis refers to a case
wherein each transmission requires a new key generation
and then deciphering information needs to be sent at each
packet transmission. Some caching techniques can be
implemented to reduce overhead and energy consumption.

Figure 4. Relationship between TAKS overhead and 
packet payload size 
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6. WIDS-based intrusion detection

This section presents a description of our WPM-based 
IDS (WIDS), starting from a high level description and an 
analysis of security issues; then, a case study with details 
of our novel implementation is discussed. Finally, 
performance metrics are presented. 

6.1 High level description 

A Weak Process Models (WPM) is a particular sub-class 
of  Hidden Markov Chains, where the many-to-many 
relationship between observables and states (which 
represent the possible phases during an attack engage) is 
made quite deterministic, by assigning to state transitions 
just 0/1 weights, rather than stochastic by assigning 
probability weights. This simplification avoids the 
needing of historical sequences of events, to derive the 
probability weights to assign to state transitions and, 
therefore, the implementation of a Viterbi estimators that 
is very expensive in terms of computational and memory 
requirements. Details on WIDS can be found in [32], here 
the basic behaviour will be provided. A WPM estimator 
computes the score associated to the set of possible state 
sequences corresponding to the sequence of observables 
that can occur during the time interval of interest. As 

shown in [32], the detection performance can be set 
arbitrarily high according to the accuracy of the threat 
representation. States in WPM are classified according to 
the estimated hazardousness of the threat in that state: 
Low Potential Attack (LPA) and High Potential Attack 
(HPA). We assume that until threats are confined in LPA 
states, no reactions should be issued. When in HPA, a 
reaction should be performed on the hazardousness 
weight (score) associated to the estimated state sequence. 
It is worth noting that, in line of principle, also unknown 
attacks can be detected whenever they show, during the 
time interval of interest, a behaviour in part similar to 
other classified attacks. To provide an outline of the 
WIDS behaviour, it is sufficient to consider WPMs as 
Finite State Machines (FSMs). During intrusion detection 
session, when predefined events occur, WIDS evaluates 
state transitions on WPMs modelling the database of 
attacks. When a HPA state is reached, the sequence of 
events is considered so serious to notify the IR 
component. An example of the overall process is sketched 
in Figure 5. The observables associated to each state in 
the WPM are represented into brackets. In Figure 5 are 
shown state transitions corresponding to the sequence of 
events (3,1,4,2,5,6). All the events not referable to initial 
state (green), final state (red) or to specific state transition 
compliant to the WPM are discarded. Alarms are raised 
when state 3 or 4 is reached. 
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Figure 5. A Weak Process Model example 

6.2 Security analysis 

WIDS security analysis has been approached by reducing 
ambiguous observables as much as possible. As formerly 
shown in [32], the rate for false positives (FPR) and false 
negatives (FNR) or mis-detections strongly depends on 
the accuracy of threat modelling by WPM. If any state 
sequence in WPM could be associated to a threat 
behaviour, FPR could be arbitrarily reduced. If any 
abnormal behaviour of the WSN could be mapped into a 
WPM state, FNR could be arbitrarily reduced too. Both 

the approaches comes at the cost of further states to be 
introduced, hence more computation and memory 
requirements. If these approaches cannot be fully adopted, 
alternative sub-optimal solutions can be considered as 
follow: 

 Introducing further states associated to certain threat
observables in paths where at least one state is
associated to ambiguous observables. This approach
surely lowers FPR and FNR, as the longer the path to
detect hazardous events the more reliable would be
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an alarm. A drawback is that long paths, would 
reduce the reactivity in the monitoring service.  

 Introducing a further class of states associated to
ambiguous observables. This approach can reduce
FPR or FNR as "ad-hoc" countermeasures can be
applied to nodes where alarms from dubious
observables are generated (e.g. node quarantine
rather than link release).

6.3 Design and implementation 

This section deals with the novel design and 
implementation of WIDS. Firstly, we define a realistic 
case study for WIDS application: from earlier 
assumptions, we derive a set of common attacks on which 
WIDS is built. Next, implementation issues as well as 
performance evaluation are detailed. 

Case Study 
Let us start with a survey of possible attacks that can be 
performed in a generic WSN. Then, we illustrate the case 
study defined to validate our IDS. Finally, we describe the 
aggregate WPM implemented in our IDS. 
Following a misuse-based approach, the main issue is to 
define the set of threats to be modelled, as a good misuse-
based IDS should necessarily have a good threats 
database. Then, it is possible to design and implement 
identified threats. Given the IDS layered architecture, 
threats can be classified into layers, from the physical 
layer to the application one. For what concerns physical 
layer, IEEE 802.15.4-based networks are subject to the 
typical wireless physical attack, i.e. radio jamming. [41] 
classifies jamming activities in constant, deceptive, 
random and reactive jamming. For what concerns IEEE 
802.15.4 MAC layer, [35] and [41] report the following 
attacks: link-layer jamming, backoff manipulation, replay-
protection, nonce attack, GTS attack, ACK attack. 
The network layer is responsible of routing services, 
therefore a complete network layer attack list can be 

defined without referring to the specific protocol adopted 
by the layer itself. For example, [20] defines the following 
attack categories: spoofed, altered, or replayed routing 
information, selective forwarding, sinkhole attack, sybil 
attack, wormhole, HELLO flood attack. 
Finally, since the WSN application layer is generally 
simpler, we neglect attacks at this layer; in any case those 
attacks should be considered as application protocol 
specific and are not considered here. 
It is worth of mention that our case study covers the most 
important application context of WSNs, that is monitoring 
and control applications. When energy awareness cannot 
be neglected, IEEE 802.15.4 provides beacon-enabled 
networks, that are preferred to nonbeacon-enabled ones. 
To instantiate a beacon-enabled network to correctly 
handle energy consumption in every node, tree-based 
routing protocols have to be chosen. In such protocols, a 
reactive approach allows to route messages without 
wasting memory and without sending additional messages 
to populate routing tables. 
Therefore, in our case study, only a subset of the attacks 
listed above can occur. For example, GTS attack is not 
considered, since it is too particular and not meaningful in 
the considered domain. Moreover, if TAKS is used, nonce 
attack cannot occur since keys are one shot. In fact, it 
should be noted that, in such a context, we require that a 
node performs the IEEE 802.15.4 MAC layer association 
to transmit data in the network. According to [18], the 
association procedure can be done by exploiting 
authentication features. If we plan to use MAC layer 
cryptography, attacks by means of spoofing, altering and 
replying routing information are not possible since 
messages are authenticated. Moreover, sinkhole and 
selective forwarding attacks can be considered as 
overlapping and most of the network layer attacks listed 
above can be actuated only if nodes are tampered and 
keys are stolen. However, this last situation can be 
detected by using our IDS with the aggregate threat model 
presented in Figure 6. 

Figure 6. Aggregate WPM designed for threat detection 

WIDS Layer 
In this sub-section, the aggregate threat model presented 
in Figure 6 is described, by analyzing modelled threats 
and moving from the highest layer to the lowest one. It 
should be noted that our IDS currently allows to detect 

anomalies on control data only: some attacks based on 
node cloning and consequent admissible data injection are 
considered out of scope. In fact, this latter category of 
attacks can be detected by only analyzing data and using 
approaches such as the ones described in [31]. Therefore, 
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in the present paper all the attacks based on correct but 
malicious data injection are excluded from our database. 
This also means that we can exclude application layer 
attacks since the two communication peers are always 
considered trusted. In the following, network layer attacks 
are firstly considered. 

Selective forwarding. Routing algorithms are based on the 
assumption that the nodes forward received messages. In 
a selective forwarding attack, malicious nodes do not 
forward certain messages and ensure that they are not 
propagated further. Many approaches are proposed in 
literature to detect selective forwarding attacks. As in 
[32], we exploit the TAKS authenticated acknowledgment 
packet sent by the application layer to check if it is 
compliant to R3. Deterministic selective forwarding 
attacks can be easily detected with retransmission, while 
random selective forwarding needs statistic analysis. In 
Figure 6, the observable O1 means that an application 
layer acknowledgment has not been received and so a 
LPA is raised. If the number of this anomalies exceeds a 
programmable threshold (observable O2), an HPA is 
raised. Packet transmissions and receptions are mapped 
with observable O3 and O4 respectively and, if their 
difference exceeds a threshold (observable O5), an LPA is 
raised. If this occurs several times (observable O6) the 
HPA is raised. 

Sinkhole. In a sinkhole attack, the adversary goal is to lure 
nearly all the traffic from a particular area through a 
compromised node. With a tree-based reactive routing 
protocol, sinkhole is equivalent to selective forwarding 
wherein all packets are dropped, therefore it is already 
manageable with previous countermeasures. 
Sybil. In this attack, a single node presents multiple 
identities to other nodes in the network. According with 
requirement R1, a node can communicate only if it has 
been associated to a coordinator, using TAKS procedures 
to perform an authenticated association. To associate with 
a coordinator, a device has to send his ephemeral 
Topology Vector (i.e. the deciphering information) whose 
direction (i.e. vector direction) is unique in a network. We 
should distinguish two cases: the case where the attacker 
uses the same topology vector for its different identities 
and the case where the attacker uses different topology 
vectors for its different identities. Both cases can be easily 
detected. In the former one, the attack can be detected by 
maintaining associated information for the Local Planned 
Topology in each coordinator. By checking this 
information when an association request is received, it is 
possible to detect the attack. In the latter case, an attacker 
cannot use neighbour topology vector because the attack 
can be detected as in the former case. For this reason, 
attacker should use a topology vector not compliant to the 
planned topology and so the coordinator cannot build a 
correct key and authenticate the received authentication 
request. Both anomalies are represented in Figure 6 with 
observables O7 and O8 respectively. If they occur, a LPA 
is raised and if they occur again a HPA is launched. 

Wormhole. In the wormhole attack, an adversary tunnels 
messages received in one part of the network and replies 
them in a different part. Then, this attack can be 
performed only if at least two nodes have been totally 
compromised. Assuming wormhole attack between two 
non overlapping sub-trees as unique meaningful case, the 
attack can be easily detected. Our routing protocol implies 
a unique routing path; furthermore, an application layer 
address uniquely defines a network layer one. Therefore, 
a wormhole attack can be always detected by checking the 
correctness of the sub-tree from which a message is 
received, i.e. checking if the node from which the 
message is received can be a router for the node identified 
by the application layer address stored in the message 
itself. In Figure 6, detection of previous anomaly is 
represented by the observable O9. If it occurs, 
immediately a LPA is raised and, if it occurs again, a 
HPA is launched. 

Hello flood. In Hello flood attack, the adversary 
convinces network nodes that it can provide a very high-
quality route to the base station but those nodes 
sufficiently far away from the adversary would be sending 
packets into oblivion. Several approaches to detect hello 
flood aim to check the link bi-directionality, e.g. [32]. 
Differently from some other protocols, IEEE 802.15.4 
MAC layer association procedure requires a bi-directional 
exchange of packets and the association can be completed 
only if the link is stable. However, when the link is not 
stable, the association procedure fails in a certain timeout. 
Usually, this event (represented in Figure 6 with 
observable O10) can be considered as an anomaly and a 
LPA is launched when it happens. If this anomaly repeats 
for a certain number of times (observable O11), a HPA is 
raised. 

MAC layer attacks are considered in the following. 

ACK Attack. Non broadcast transmissions between two 
IEEE 802.15.4 MAC peers are generally characterized by 
an acknowledgment by the receiver. Acknowledgment 
packets are not encrypted and can be linked to the 
transmitted packet by means of a sequence number. An 
eavesdropper can listen to the un-encrypted sequence 
number, corrupt the frame by interferencing at receiving 
time and send a fake ACK frame with the related 
sequence number to the sender in order to fool the sender 
as if the ACK were coming from the receiver. Therefore, 
a sender cannot be sure if the received frame is either 
coming from the intended receiver or from another node. 
Since there is no integrity protection provided on ACK 
frames, this weakness should be addressed at higher 
layers, e.g. by making the receiver able to send back an 
authenticated acknowledgement to the sender. In our case 
study, an acknowledgment attack can be performed in two 
cases: on a command frame (specifically on association 
frame) or on a data frame. MAC commands are generally 
used to request information to another peer (e.g. 
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association response, data request, etc.) so they initiate 
procedures that use timeouts to be fault-tolerant. Elapsing 
of these timeouts should be monitored to detect 
anomalies. In the data frame case, although it is possible 
to provide a link-layer authenticated acknowledgement, 
we have chosen to implement only the end-to-end 
alternative, since it allows to save energy and to detect 
anyway this anomaly even if less reactively. For these 
reasons, we do not need further monitoring to detect ACK 
attacks. 

Replay-protection attack. Replay protection mechanism is 
a built-in mechanism provided by IEEE 802.15.4 that 
allows to detect the replay attack, i.e. the retransmission 
of a previously transmitted packet. It is implemented by 
sending a frame counter together with the packet. At each 
packet reception, the frame counter is compared with the 
previously obtained counter. If the current counter is 
equal to or less than the previous one, then the frame is 
rejected. However, the replay protection mechanism 
provided in the IEEE 802.15.4 specification is subjected 
to replay-protection attack which can be accomplished by 
an adversary by sending many frames containing large 
counters to a legitimate receiver. When another legitimate 
sender transmits a frame with a lower counter, it will be 
rejected according to replay protection procedure. 
Detection of this attack is straightforward: it is sufficient 
to monitor frame counters and raise an alarm when 
anomalies are detected. This can be observed also by 
WPM of Figure 6: if a frame counter anomaly (i.e. 
observable O12) is detected a LPA alarm is raised, and if 
it occurs again a HPA is delivered. 

Backoff manipulation. This attack is realized by means of 
a node that transmits valid packets cheating applying 
backoff algorithm. Given a specific network, it is possible 
to simulate the network behaviour using proper IEEE 
802.15.4 models, such as [8] in OMNET. In particular, 
from these simulations, we can estimate parameters such 
as the maximum number of attempts for transmission (let 
this number be n). Therefore, a backoff manipulation 
attack can be detected by monitoring the number of 
attempts that a node performs before to transmit. In our 
case study, we have planned to monitor transmissions that 
require n-2, n-1 and more in excess of n tentatives. All 
this three events are considered as anomalies; when they 
happen, an LPA is raised (observables O13, O15 and O17 
respectively) and, if the number of attempts exceeds a 
programmable threshold (observable O14, O16 and O18 
respectively), a HPA is delivered. 

Link-layer jamming. Link layer jamming is a more 
complicated type of attack among the jamming ones. An 
intelligent adversary, who wisely uses the link layer 
protocol logics, can be as defective as a blind radio 
jammer but consuming less energy and decreasing 
probability to be detected. For example, in IEEE 802.15.4 
networks it is possible to be reactive to beacon 
transmission or other frame transmission, i.e. command or 

data frames. Both cases can be easily detected: in the 
former case by using the same approach used for random 
jamming and in the latter case by monitoring data 
transitions that fail. In Figure 6, observable O29 means 
link layer acknowledgement packet lost and, if the 
number of lost packets exceeds a threshold, a LPA is 
raised. If this occurs again the corresponding HPA is 
delivered. 

In the following, we consider attacks at the physical layer 
(i.e. jamming). [41] classifies this type of attack in 
constant jamming, deceptive jamming, reactive jamming, 
random jamming and link-layer jamming. 

Constant jamming. The constant jammer continuously 
emits a radio signal. For this reason, it can be detected 
only in transmission mode, since it does not allow any 
transmission and then reception in radio range area. IEEE 
802.15.4 MAC layer Specification [18] defines that some 
packets (i.e. beacon and ACK packet) do not require 
CSMA/CA for their transmission. In fact, specific timing 
constraints ensure the reception of these packets. 
Therefore, continuous jamming can be detected by 
performing the clear channel assessment before sending 
beacon or ACK packet. Nevertheless, some strict timing 
constraints on ACK packet transmission imply to exclude 
them from our strategy and then, only clear channel 
assessment before sending beacon is exploited. Moreover, 
a constant jamming implies that transmission Quality of 
Service (QoS) is surely not satisfied. This means that it 
can be also recognized by monitoring the transmission 
rate: if it is under a certain threshold, an anomaly can be 
detected. Summarizing, if a clear channel assessment 
before beacon transmission is unsuccessful (observable 
O19), a LPA is raised and, if it occurs again in a certain 
timeout, a HPA is launched. Moreover, constant jamming 
can be detected if the number of clear channel assessment 
failures (observable O20) exceeds a defined threshold 
(observable O21). When this occurs, a LPA is raised and 
if it occurs again (observable 022), a HPA is delivered.  

Deceptive jamming. This attack means that a node 
continuously injects regular packets to the channel 
without any gap between subsequent packet 
transmissions. It should be noted that infinite preamble 
transmission is considered as a deceptive jamming, so a 
distinction is needed between the case when a packet 
jamming is passed by physical layer to an upper layer or 
not. In the former case, a deceptive jamming causes the 
reception data queue saturation while the latter case can 
be handled as a constant jamming. For this reason, 
deceptive jamming can be detected by adding to the 
policy for constant jamming also the monitoring of 
received message queue saturation (observable O23). If it 
is observed, a LPA is raised and if it occurs again a HPA 
is launched. 

Reactive jamming. The reactive jammer stays quiet when 
the channel is idle, but starts transmitting a radio signal as 
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soon as it senses activity on the channel. For this reason, 
reactive jamming can be detected only by the node that 
receives corrupted packets. By analyzing timing 
distribution of corrupted packets, reactive jamming can be 
easily detected in turn. In particular, in Fig. 3 the 
observable O24 means that a corrupted packet has been 
received. It is worth noting that this observable cannot be 
considered as an anomaly, so alarm is not raised. But if a 
threshold is exceeded (that is represented by observable 
O25), a LPA is delivered. If this happens a number of 
times that exceeds another programmable threshold 
(observable O26), a HPA is raised. 

Random jamming. Random jamming takes place when the 
attacker transmits and sleeps randomly. Given its feature, 
random jamming can be detected by using a proper mix of 
the previous approaches: clear channel assessment failed 
threshold, received corrupted packets threshold and 
beacon corruption can be evaluated together and the alarm 
raised if a weighted sum of these events exceeds another 
threshold. This approach is implemented with a WPM 
identified by X29, X30 and X31 states. 

Implementation issues 
From a user perspective the ID component discussed in 
this paper can be seen as a black box that is able to 
provide both LPA and HPA notifications. To accomplish 
this service, the component only needs to know if a 
certain event occurs. Therefore, the APIs provided by the 
component are input_occured(), raise_LPA() and 
raise_HPA(). While events of interest have been surveyed 
in the previous sub-section for each kind of attack, design 
and implementation issues are discussed in this sub-
section. 
As already stated, WPMs are particularly appealing from 
an implementation perspective: in particular, conventional 
implementation techniques for state machines can be still 
applied. A finite state machine can be implemented 
directly in the code or by using proper data structures. The 
latter choice gives some more pros with respect to the 
former one, as we pointed out in [24]. 
Therefore, we defined the data structure shown in Figure 
7 to represent a WPM with a state space composed of 4 
states, an observable space composed of 3 observables 
and the following state-observable relationship. 

Figure 7. A WPM example and its corresponding implementation 

The data structure stores for each state Xi: 

 if it is a LPA, a HPA or none;
 a handler to execute a proper function when Xi is

reached;
 its adjacency list, i.e. the list of states reachable from

Xi and the observable that allows state change.

Figure 7 also includes a graphical sketch of the WPM 
implementation model. We can observe that state X2 or 
X4 is reachable from state X1 or X3 if observable O1 or 
O3 is revealed. Therefore, the first and third lists contain 
the couples (X2, O1) and (X4, O3). 
In the following, a WPM is modelled as a dynamic 
process where observables act as inputs to the process 
itself. By exploiting the data structure defined before, the 

computation of the system dynamics is performed as 
follows: the current state is stored in a proper variable (its 
default value is reset state X0) and, when an observable is 
revealed, say Oi, the list associated to the current state is 
scanned while checking for the item (Xi, Oi). If it is 
found, the current state is updated to Xi. This approach 
allows to shorten the computation time with respect to the 
state space representation approach. 
As hidden state machines, more states can be associated 
to a single observable and therefore, given an observable 
sequence on a WPM, more state traces can co-exist. Thus, 
it is important to provide a container structure to save 
multiple traces. We have adopted a bidirectional list to 
obtain good performance in both trace inserting and 
deleting. 
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How to save each trace in memory is another key point. 
By exploiting Markov property (i.e. each attack is 
modelled as a memory-less process), we can save only the 
actual state for each trace. Then, in the following we 
denote with lsi the last state of trace i maintained in the 
bidirectional list. This choice has an interesting 
consequence: since current states of current traces are 
maintained in memory to allow the algorithm to evolve, 
the score can be considered unnecessary. In fact, score 
calculus (that could result expensive since it requires 
arithmetic operations), can be replaced by a lighter state 
typology checking. 
Therefore, when an observable Oi occurs, i.e. when 
input_occurred() is called: 

 all stored traces are tested, i.e. for i from 0 to size of
the stored traces set, if there is a couple (Xi, Oi) in
the adjacency list associated to the last state of the
trace lsi, the last state of the trace lsi is updated to Xi.
Xi state type is checked and an alarm is raised if it is
a LPA or HPA state calling raise_LPA() or
raise_HPA();

 a new trace is tested, i.e. if there is a couple (X, O) in
the adjacency list of initial state X0, a new trace is
created and inserted in the set. In both cases,
eventual handler associated to x is called.

This approach is very suitable for states with a very short 
adjacency list: when this condition is satisfied, the 
procedure results very efficient. When the adjacency list 
is not too short, the scan procedure to find new states 
could be long and thus too expensive. In this situation, 
exploiting an indexing data structure for observable 
instead of state as in Figure 7 could be more convenient. 
This consideration is exploited to store adjacency list of 
reset state: as showed by the WPM of Figure 6, about half 
of any WPM states are linked to the reset state and this 
implementation strategy yields both memory saving and 
better computation performance. Moreover, since most of 
the WPM states have associated a reset timeout, we have 
chosen to store for each state an additional information 
representing possible reset observable. Intuitively, this 
allows to save a lot of memory by observing that WPMs 
are generally not deep trees and that initial states have 
generally a reset observable associated to them. 

6.4 Cost and performance analysis 
In this sub-section, we describe the cost analysis of the 
proposed ID component and its execution time. This 
means that input_occurred() computational complexity 
and spatial complexity of the data structure representing 
WPM discussed in the previous sub-section are both 
discussed. 
For what concerns input_occurred() cost, two phases need 
to be distinguished: a former phase that aims to update 
existing traces and a latter one that evaluates new traces 
creation by analyzing the reset state adjacency. 
Current trace updating consists in a trace scanning to 
check if the occurred observable determines a trace 

update. For each stored trace, adjacency list of 
corresponding last state is checked: therefore, if the worst 
case is considered, this task costs O(t*n), where t is the 
maximum number of traces and n the number of WPM 
states. Nevertheless, in a real WPM state adjacency list 
size can be considered constant with respect to the 
number of states, so in real cases computational 
complexity can be approximated to O(t). 
Instead, new trace creation consists in a scanning of reset 
state adjacency list. We remember that, for reset state, 
differently from other ones, adjacency list is an array 
where each position corresponds to an observable; 
furthermore, it points to the state list reachable from the 
reset state if corresponding observable occurs. With this 
data structure, the second phase cost in worst case 
assumption is O(n). Nevertheless, the cost can be 
considered linear only when WPM moves from reset state 
with a limited number of observables. In real cases, this is 
not verified and the size of lists associated to observables 
can be considered constant. Therefore, in meaningful 
cases, second phase computational complexity can be 
approximated to O(1). 
Finally, input_occurred() computational complexity is 
O(t*n) in the worst case, but can be considered equal to 
O(t) in real-world application. 
For what concerns spatial complexity, the following 
expression approximates memory occupancy (expressed 
in byte) with n equals to states number, ni equals to initial 
states, o represents number of observables and t is the 
maximum traces number: 

S(n, ni, o, t) = 7(n-1) + 4(n -ni) +2o + 3ni + 10t 

Therefore, the spatial complexity of our ID component is 
S(n+o), since n and o upper bound both ni and t. Applying 
the above formula to WPM represented in Figure 6 and 
assuming t equals to 5, the total data memory required by 
the component is 448 bytes. 
Our IDS performances have been evaluated on Atmel 
Zigbit [4] nodes running with 8 MHz clock, considering 
the two phases of the algorithm, i.e. traces updating and 
creation.  
For what concerns trace updating function, given a 
generic input and a trace, it is necessary to distinguish two 
cases: an update hit when the input implies a real update 
of the trace and an update miss when function simply 
verifies that input does not imply a real update. In the first 
case, the function spends near 85 μs to accomplish its 
task, while in the second case only about 17 μs are 
needed. This figure has been obtained under the 
assumption of only one trace lying in memory. Therefore 
with the assumption of five traces in memory, we have 
verified that the entire task requires about 150 μs, since it 
performs four update miss and an update hit. 
For what concerns trace creation function, the same 
consideration holds true: also in this case, an input can 
imply a trace creation hit or miss. When the observable 
(i.e. the input to the function) requires a single trace 
creation, the function spends 100 μs approximately to 
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accomplish its task, while it spends about 25 μs in trace 
creation miss case. Moreover, if trace creation requires a 
trace deletion due to trace number threshold exceeding, 
additional 30 μs are needed. 
Overall, for the WPM considered, the worst case is when 
double trace creation is required with trace memory 
saturated: in this case five update miss occurs followed by 
two traces creation with deletion. In this case, the IDS 
algorithm is performed in only 350 μs. 

7. Validation

This section deals with validation of the implementations 
of the cryptographic scheme TAKS and the intrusion 
detection system WIDS described in previous sections. 
Main TAKS functionalities have been already validated in 
[24] and [30] where a TAKS implementation for TinyOS
[36] has been proposed. With respect to [24], the scheme
discussed in this work is characterized by two different
phases: a key agreement with the transmission of
deciphering information and the effective data
transmission. We have validated the novel state machine
by checking the correctness of all possible paths. In
particular, two aspects have been taken into account.
The first issue regards fault tolerance with respect to
packet transmission and reception errors. For example, it
has been checked that errors such as transmissions to not
active nodes, do not compromise the subsequent
communications: indeed, although in Figure 3 this aspect
is omitted to simplify the discussion, when packets
retransmissions exceed a programmable threshold, the
state machine is reset and able to accept new
communications. Failures due to this kind of transmission
error are very simple to reproduce and then correct
behaviour verification is straightforward: we have verified
that nodes sending data are able to start several TAKS
transactions even if they have not been correctly
completed. Since packet retransmission is also adopted
for channel access failures, this verification has allowed to
verify (by design) TAKS with respect to this kind of error.
Instead, when we consider reception errors we need to
verify that the state machine is able to receive packets
following an abnormally completed TAKS transaction.
Since we cannot have a data transmission without a key
agreement between parties, we need to verify that nodes
are able to perform two consecutive agreements. This
behaviour has been verified by using two nodes (i.e. a
transmitter and a receiver) and by forcing the transmitter
to send two different key agreement packets for each
transaction. In this condition, the receiver has been able to
correctly decrypt each message exchanged with the
transmitter.
Previous tests allow to verify correctness of TAKS
implementation in very simple networks composed by
only two nodes. But when network grows, we have more
transmissions and receptions occurring with simultaneous
transactions. In each single node, transmission operations
are serialized and then concurrent outgoing transactions

are not possible. Instead, transactions interleaving could 
happen at the receiver side since it is possible that two 
nodes start TAKS operations simultaneously towards the 
same receiver. This aspect has been checked by means of 
a stress test. A test network has been setup, which is 
composed by a receiver acting as a 802.15.4 coordinator, 
two transmitters acting as devices, and a sniffer. Two 
transmitting nodes have been configured to continuously 
send known and progressive strings, and the receiver has 
been configured to send decrypted strings on its serial 
port. When analyzing the messages exchanged by nodes 
logged by the sniffer node, we have been able to check 
that our TAKS implementation properly handles packet 
interleaving. We have observed that the coordinator has 
been able to correctly decrypt messages even if TAKS 
transactions were interleaved. Given the result of the 
previous tests, we can consider TAKS suitable for 
arbitrary size networks.  
For what concerns WIDS, validation has concerned two 
different aspects: the former one is related to check 
correctness of the implemented algorithm, the latter one is 
related to the validation on real nodes soliciting IDS with 
real attackers.  
To check IDS correctness we have focused on its 
underlying algorithm. We have tested on a personal 
computer (PC) exactly the same implementation of the 
algorithm running on the Zigbit platform: this has been 
possible by simulating the behaviour of Atmel stack on a 
PC while replacing the stack itself with a software library 
offering the same Application Programming Interface 
(API) offered by the Atmel component. Fortunately, the 
IDS algorithm exploits only few of the operating system 
services provided by the stack, i.e. timers to reset traces. 
In fact, by operating with the Atmel stack, the operating 
system services are similar to services primitives 
described in section 5.3.1, i.e. responses to a request are 
provided as deferred or asynchronous callbacks. To 
provide an event driven programming approach exploiting 
the PC multithreading environment is straightforward: 
each request creates a new thread that introduces a 
specific delay and then calls the proper callback. By 
exploiting this environment, we are able to simulate the 
behaviour of the Atmel stack with the availability of all 
useful operating system services (e.g. terminal, accurate 
timers, file system, etc.). As an example, Figure 8 shows 
the code of API functions implemented to simulate timer 
behaviour. 
Several tests have been conducted to study the evolution 
of the algorithm. Each of them has required: 1) the design 
of a specific sequence of observables that are suitable to 
solicit part of the algorithm; 2) the coding and consequent 
running of such sequences in the simulated environment. 
It is worth noting that, in the simulated environment, each 
test appears as a series of calls to input_occurred() and to 
the sleep function offered by the PC operating system. 
They are then simpler to code with respect to direct 
operations on Atmel stack. As discussed in Section 6.4, a 
complete coverage of the algorithm can be obtained by 
analyzing trace creation and updating. 
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/*Thread's code*/ 
void* wait_for_ms(void* arg) 
{ 
  mytimer_t p; 

p.id = ((mytimer_t*)arg)->id;
p.handler = ((mytimer_t*)arg)->handler;
p.timeout = ((mytimer_t*)arg)->timeout;
free(arg);
struct timespec req, rem;

  rem.tv_sec = p.timeout / 1000000; 
  rem.tv_nsec = p.timeout % 1000000; 

  do 
  { 
    memcpy(&req,&rem,sizeof(struct timespec)); 
    nanosleep(&req, &rem); 
  }while((rem.tv_sec !=0) && (rem.tv_nsec != 0)); 

p.handler();

  pthread_mutex_lock(&mutex); 
  timers[p.id] = 0; 
  pthread_mutex_unlock(&mutex); 
  pthread_exit(NULL); 
  return NULL; 
} 

/*Simulated start timer API command*/ 
bool bridge_layer_start_timer(uint8_t id, uint32_t timeout,
     void (* handler) (void)) 
{ 
  if((id < MAX_TIMERS) && (id != 0)) 
  { 
    mytimer_t* p = malloc(sizeof(mytimer_t)); 
    p->id = id; 
    p->handler = handler; 
    p->timeout = timeout; 

    pthread_mutex_lock(&mutex); 
    pthread_create(&timers[id], NULL, wait_for_ms, p); 
    pthread_mutex_unlock(&mutex); 
    return true; 
  } 
  return false; 
} 

Figure 8. API functions to simulate timer behaviour 

Therefore, trace creation hit or miss and trace update hit 
or miss have been solicited in the simulated environment 
and their correctness has been checked. The detection of 
all the attacks has been validated at simulation level 
providing ad-hoc and random sequences of observables in 
input to the algorithm and analyzing its responses. 
This first kind of validation has allowed to functionally 
validate the algorithm, but it does not allow to completely 
validate IDS since it should be running on nodes. For this 
reason, a second phase validation has been conducted 
directly on nodes and soliciting them with some real 
attacks. 
For example, the radio component mounted on board of a 
Zigbit platform provides Continuous Transmission Test 
Mode that we have exploited to validate several attacks 
based on jamming. Trivially, it has been possible to build 
a continuous jammer node by simply activating this mode. 
Then, to validate detection of continuous jamming attack, 
we have built a network composed by two nodes, 
specifically a device exchanging data with a coordinator 
and both them running WIDS. When we have turned on 
the jammer in the range of the nodes, both of them have 
detected the attack although in different ways: the 
coordinator assessing the channel before transmitting 
beacons and the device by means of the threshold on 
retransmissions.  
Instead, by interleaving Continuous Transmission Test 
Mode with idle mode according to random generated time 

periods, it has been possible to realize a random jammer. 
Random jamming attack detection has been tested in the 
same conditions described above and with the same result. 
Both nodes have detected the attack adopting the same 
strategies even if detection of this attack requires more 
time than continuous jamming depending on the 
pseudorandom sequence generated by the attacker. 
Instead, by enabling the transmission mode for a certain 
time at the reception of any packet, we have validated 
reactive jamming. This attack has mainly affected 
acknowledgement receptions since these packets are 
transmitted without access control. In our test network, 
only the device node has been able to detect this attack 
since it is the only node that requires acknowledgement 
reception.  
When dealing with MAC layer attacks, Continuous 
Transmission Test Mode has been used again to validate 
backoff manipulation attack by enabling transmission at 
each beacon reception for a certain time. In our test 
network and in the absence of an attack, we can assume 
that a device node does not assess the channel more than 
two times for each transmission. In fact, [18] sets to 2 the 
number of backoff periods that need to be clear of channel 
activity before the transmission can start. By monitoring 
the transmissions that require more than two backoff 
periods, we have been able to efficiently detect the 
backoff manipulation attack as explained in Section 6.3.2. 
Obviously, this parameter should be properly set when 
network size increases. 
Another MAC attack that we have decided to reproduce is 
the replay attacker: it is very simple to reproduce since 
Atmel MAC layer handles frame counter via software and 
then the attacker can be obtained by deleting the 
instruction responsible of this increment. In this manner, 
the attacker node sends packets with the same frame 
counter, thus implying the occurrence of the observable 
O12 on a node running WIDS. We have verified that, if 
we program the attacker node to send messages to one of 
the two nodes in the test network, the interested node is 
able to detect the attack. 

8. Conclusions and future works

The middleware proposed in this paper aims to provide 
advanced security services to applications that rely on a 
real-world WSN protocol stack where lower layers are 
compliant to the IEEE 802.15.4 standard. Our approach 
makes this middleware suitable for a wide set of 
applications since IEEE 802.15.4 is the de-facto standard 
used for realistic WSN deployment. Our work proposes 
TAKS adaption to be implemented on the top of the IEEE 
802.15.4 MAC Layer (i.e. topology-based key agreement 
protocol for 802.15.4 networks) and a set of design 
choices that we have identified to implement WIDS while 
guaranteeing availability of the network. 
Performances have also been measured. It has been shown 
that, on the ZigBit microcontroller (i.e. Atmel 
ATmega1281 running at 8 MHz), TAKS execution time is 
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about 10 ms. TAKS introduces a radio overhead factor of 
3x or 1.5x depending on whether both end-to-end and 
link-layer cryptography are activated simultaneously or 
not. On the same microcontroller WIDS evolves in only 
350 μs and requires only 448 bytes memory space. The 
proposed middleware has been implemented and its 
validation has been carried out by emulating external 
stimulus and collecting the responses of various 
algorithmic components in elementary scenarios. 
Nevertheless, an extensive validation has been planned in 
a large scale test-bed that we are deploying in our 
departmental facilities. 
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