
EAI Endorsed Transactions
on Ubiquitous Environments Research Article

1

A Middleware Approach for

IEEE 802.15.4 Wireless Sensor Networks Security

S. Marchesani1, L. Pomante1,*, M. Pugliese1 and F. Santucci1

1University of L’Aquila – DEWS (ITALY)

Abstract

Recent years have seen the growth of interest for middleware (MW) approaches in resource-constrained systems like
Wireless Sensor Networks (WSNs). In this context, available MW platforms usually provide an Application Layer with
different basic services, but do not provide security services such as secure links management or intrusion detection.
Nevertheless, since WSN applications normally require the collection of reliable data from the sensing units, secure
communications should be guaranteed even in the presence of resource constraints. So, this paper present a novel MW
approach directly tailored to an IEEE 802.15.4-based WSN. The security-related components of the proposed MW include
a light yet powerful cryptographic scheme (TAKS) and an Intrusion Detection System (WIDS). According to the
performance and overhead assessment, we may argue that the proposed architecture has potentials to be exploited in
realistic application scenarios that rely on the IEEE 802.15.4.

Keywords: security, middleware, wireless sensor networks, cryptographic scheme, intrusion detection system.

Received on 27 April 2015, accepted on 28 May 2015, published on 13 July 2015

Copyright © 2015 L. Pomante et al., licensed to ICST. This is an open access article distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and reproduction
in any medium so long as the original work is properly cited.

doi: 10.4108/ue.2.5.e1

1. Introduction
In the last years, the so called Wireless Sensor
Networks (WSNs) has attracted a lot of attentions in both
academic and industrial domains. This is mainly due to
the fact that WSNs could represent the infrastructure
able to support the Internet of Things (IoT) architecture.
In fact, a WSN is a distributed system, composed of a
set of sensor nodes and a sink node able to
communicate by means of wireless channels, that
could be used for pervasive and ubiquitous data
collection and processing. For this, WSNs have already
found application in several areas, such as
environmental monitoring, health monitoring,
intelligent building, intelligent transportations, and so on,
e.g. in [2]. In the depicted context, that is typically
resource-constrained, particular attention has been
devoted to

development of middleware platforms. A middleware is a
software platform used to hide complexity and
heterogeneity of the underlying physical platform and
network and to offer several services to the Application
Layer, eventually providing an application execution
environment [26]. When the underlying physical network
is a WSN, considering typical monitoring oriented
applications, data and system reliability are also required.
Although security is not usually included in the services
portfolio provided by middleware platforms for WSNs,
reliability involves security issues: so, a middleware for
WSNs should not ignore aspects such as secure data
transmission and intrusion detection.
This paper deals with the definition and development of a
new middleware framework to provide security in WSNs:
in particular, a reference architecture for the middleware
is proposed and the main design choices are discussed.
Moving from our previous work, we focus on a hybrid

*Corresponding author. E-mail: luigi.pomante@univaq.it

EAI Endorsed Transactions on
Ubiquitous Environments

05 -07 2015 | Volume 2| Issue 5 | e1

L. Pomante et al.

2

cryptographic scheme called TAKS and an Intrusion
Detection System (IDS) based on a simplified version of
Hidden Markov Models (HMMs) called Weak Process
Models (WPMs). The relevant feature of the presented
work is related to the fact that the proposed architecture is
tailored to real-world IEEE 802.15.4-based WSNs.
The remainder of this paper is organized as follow:
Section 2 deals with background and motivations that
have led us to propose a new middleware and also state-
of-art about middleware platforms for WSNs that handle
security is reported. Section 3 deals with the provision of
security services for IEEE 802.15.4 networks and Section
4 with the proposed middleware architecture. Section 5
and 6 are then focused on the secure transmission service
(which refers to a WSN-oriented cryptographic scheme),
the intrusion detection service and, specifically, the issues
related to implementation on the protocol stack. Finally,
Section 7 reports our validation approach while in Section
8 some conclusive comments and future works are
reported as well.

2. Background and motivations

Usually, WSNs are used in monitoring and control
applications wherein system resources are very
constrained. In particular, sensor nodes are often battery
powered and, once deployed, not easily accessible by
humans. So, the energy consumption should be carefully
optimized. Moreover, a WSN should be flexible
especially with respect to node heterogeneity. In fact, the
burden of computation may vary from node to node and
the exploitation of a heterogeneous network setup could
be beneficial.
IEEE 802.15.4 has been designed to achieve these goals.
It is a standard which specifies the Physical Layer and
Media Access Control (MAC) for low-rate wireless
personal area networks (LR-WPANs) [5]. A LR-WPAN
is a simple, low-cost communication network that allows
wireless connectivity in applications with limited power
and relaxed throughput requirements. The main objectives
of a LR-WPAN are easy installation, reliable data
transfer, short-range operation, extremely low cost, and a
reasonable battery life, while maintaining a simple and
flexible protocol. Sensor nodes produced by different
manufacturers, but following the Physical Layer
specification, would be able to correctly communicate.
Therefore, the exploitation of this standard implicitly
gives the capability to manage heterogeneous WSNs.
Moreover, IEEE 802.15.4 provides to the higher layers
two types of services: the MAC data service and the MAC
management service. The former one provides services to
exchange data in the network, while the latter one allows
to handle network management issues such as
synchronization, network formation and maintenance (e.g.
scan and association/disassociation), etc.
Generally, these services are exploited by the Network
Layer to provide multi-hop through routing table or smart
address managing in association/disassociation. There are

a lot of Network Layers suitable for IEEE 802.15.4, with
some examples reported in [9] and [43].
It is worth noting that by providing a Network Layer on
the top of the IEEE 802.15.4 MAC Layer, we have just
provided a software package that helps to hide the
complexity and heterogeneity of the underlying hardware
platforms and simplify the management of system
resources: in other words, it could be considered as a
minimal middleware. This remark is also compliant with
the classification of middlewares for WSNs provided in
[16] and [39]. Nevertheless, the middleware discussed in
this paper is more complex with respect to the approach
devised above. In addition to providing methods to route
and control the medium access through IEEE 802.15.4,
our framework embeds methods to ensure reliability of
the network based on the exploitation of a hybrid
cryptographic scheme and an intrusion detection system.
It is worth to note that in [27], [28] and [29] we have
proposed an architecture for a middleware where security
services are embedded in the mobile agent-based
middleware Agilla [1]. Here, part of the same
considerations are moved in a different context for a
different purpose: in [27], [28] and [29] the middleware is
unaware of the underlying physical network, while in our
current proposal security services are tailored to a system
prototype that explicitly relies on the IEEE 802.15.4
standard.
This approach is quite different when compared to other
related works. For example, Zigbee [43] aims to
standardize the application execution environment
covering the largest number of WSN application domains
and providing some basic services. In fact, although
Zigbee is famous for its definition of Network and
Application Layers, to put on top of IEEE 802.15.4 ones,
its specification includes a number of basic security
provisions and options. In particular, Zigbee provides
facilities to manage secure communications (for instance,
link setup and key management), ciphering frames and
controlling devices. Instead, the middleware proposed in
this paper aims to provide advanced security services
focusing on the most popular WSN application domain,
i.e. monitor and control applications. In literature, other
than ZigBee, there are several proposals of middleware
platforms that provide security through cryptography: for
instance, SM-Sens [14] uses symmetric and asymmetric
cryptography along with message authentication code to
ensure security requirements on data flows. It also
provides a method to distribute keys by exploiting
hierarchical routing and a mechanism to exclude
compromised nodes of the network. STaR [10] is a
modular, reconfigurable and transparent software
component for secure communications in WSNs. STaR
guarantees confidentiality, integrity, and authenticity by
means of encryption and/or authentication and it is totally
transparent to the application, i.e. no changes to the
original application or the communication protocol are
required. SpartanRPC [7] extends nesC programming
language to provide a link-layer Remote Procedure Call
(RPC) mechanism. All the RPC resources are protected

EAI Endorsed Transactions on
Ubiquitous Environments

05 -07 2015 | Volume 2| Issue 5 | e1

A Middleware Approach for IEEE 802.15.4 Wireless Sensor Networks Security

3

via language-level policy specification. SMEPP Light [37]
features group management, group-level security policies,
mechanisms for query injection and data collection based
on a subscribe/event mechanism, and adaptable energy
efficiency mechanisms. Other middleware proposals
provide security by deploying specific defence
mechanisms for a set of predefined attacks. Di-Sec [38],
for example, provides a framework to model defence
strategies. Through a training phase, nodes are able to
learn the behaviour to adopt in case of attacks.
The middleware proposed in this paper exploits benefits
of these two approaches (i.e. cryptography and attack
defence mechanisms) by providing a light but powerful
cryptographic scheme to protect data and an intrusion
detection system to guarantee the availability of the
network. Moreover, since it explicitly refers to IEEE
802.15.4-based WSN, the middleware is suitable for
network composed by heterogeneous nodes. Usually, this
property is not considered in middlewares that handle
security but it turns out to become very interesting to
deploy a real-world WSN.

3. Security in IEEE 802.15.4 networks

To discuss the security facilities provided by IEEE
802.15.4 it is important to highlight that the standard does
not provide only a method to access the medium, but also
several mechanisms to create and detect a WPAN,
associate or disassociate with it and so on. This means
that in a 802.15.4 network, there are several types of
messages exchanged, such as beacon packets (used to
synchronize the network), acknowledgments packets
(used to notice the message reception), data packets and
other control packets.
As specified by the standard [18], the MAC Layer
provides security services on each incoming and outgoing
frame (with the exception of acknowledgement packets).
The services supported by the standard are as follows:

 data confidentiality;
 data authenticity;
 replay protection.

Data confidentiality is ensured by using encryption and
decryption algorithms: the standard defines to use AES
(Advanced Encryption Standard) with 128 bit keys. Data
authenticity is guaranteed by using cryptographic hash
functions that associate to each message a Message
Authentication Code (MAC). The receiver can check it to
authenticate the message. Finally, the usage of a
monotonically increasing sequence number to each packet
ensures the protection from replay attacks. It is worth
noting that the standard can also work with no security,
encryption only (AES-CTR), authentication only (AES-
CBC-MAC), and encryption and authentication (AES-
CCM). Each category that supports authentication comes
in three variants depending on the size of the Message
Authentication Code that it offers. Each variant is

considered as a different security suite and has its own
name. The Message Authentication Code can be either 4,
8, or 16 bytes long.
The IEEE 802.15.4 specification provides basic security
mechanisms but these security features cannot work on
their own: since the standard does not suggest any key
management approach, in applications that require
security a method to generate symmetric keys is needed.
Symmetric key generation is one of the most addressed
problems in the literature [5]. Pair-wise key pre-
distribution solutions are based on deterministic pre-
distribution of keys for each pair of nodes. Random pair-
wise key schemes are based on storing only a subset of all
possible keys in each node. To communicate with each
other, each node needs to negotiate a key with its peer,
randomly selecting one key in its subset [6]. The master
key pre-distribution scheme requires that a master key is
distributed in the entire network and that nodes use a
combination of it and previous exchanged nonces [22].
Other schemes can be found in [5]. In [25], [29] and [30],
we have proposed a family of novel schemes called
TAKS (Topology Authenticated Key Scheme) to generate
topology authenticated keys for handling cryptographic
aspects in resource constrained deployments of WSN.
TAKS cryptographic scheme allows to authenticate each
message exchanged in the network referring to a certified
topology of the network. Since TAKS provides good
results from both performance and security points of view
[25], its usage in IEEE 802.15.4 networks is very
encouraged.
The complexity and distributed nature of a WSN makes
cryptography not sufficient to ensure network security. In
addition, to provide confidentiality, authenticity and
integrity of messages, network security aims to make the
system always (or mostly) available. Ensuring availability
is more complex than other issues. Typically, this is done
by auditing network activities, detecting potential threats
and reacting opportunely through an Intrusion Detection
System (IDS). IDS denotes a system that supports
mechanisms to detect and appropriately manage (through
reaction functions and proper countermeasures) intrusions
and attacks in the form of malicious control and data
messages [11]. An IDS is typically formed by three
components: Intrusion Detection (ID) that deals with the
detection of network intrusions by sensing suspect
phenomena, Intrusion Reaction Logic (IRL) that
schedules the priorities for actions on all compromised
nodes according to a specific defensive strategy and
Intrusion Reaction Application by performing the
appropriate countermeasures (IRL Application).
In this paper, we focus on Intrusion Detection and we do
not deal with Intrusion Reaction. For what concerns
Intrusion Detection, an IDS can be classified into three
frameworks: anomaly based intrusion detection, misuse
based intrusion detection and specification-based
intrusion detection [13], [19]. Anomaly based intrusion
detection relies on the assumption that intruders will
demonstrate abnormal behaviour relative to the legitimate
nodes: anomaly has to be detected by knowing the normal

EAI Endorsed Transactions on
Ubiquitous Environments

05 -07 2015 | Volume 2| Issue 5 | e1

4

system behaviour. Instead, the misuse intrusion detection
relies on the assumption of an up-to-date database of
intrusion signatures. Using them, the system can easily
detect intrusions on the network. Specification-based
detection systems work by defining rules for attacks.
Sensor node behaviour is checked against each rule
sequentially. There is a failure counter associated with
each node. If the sensor node violates a rule, a failure
counter is incremented. If the number of failures of a
particular node increases over a threshold after a time
interval t an alert about that node is generated.
Another typical IDS classification is done with respect to
the distribution of the code in the network [13]. There are
the following types of IDS:

 in purely distributed IDS intrusion detection,
algorithm is installed in every node;

 in centralized IDS, intrusion detection is performed
only by the sink node or the base station upon the
reception of processed information from the network;

 in mixed distributed-centralized IDS, suitable only
for particular types of networks, such as clustered
WSN, the detection is delegated to a particular subset
of nodes of the network. Examples of these types of
IDS are [21], [23] and [33].

Although many of these approaches can be applied in
IEEE 802.15.4 WSNs, we cannot provide IDS examples
focused on these networks: many works survey attacks
and propose methods to detect them, such as [40], but, at
the best of our knowledge, there are no papers proposing
IDS frameworks specifically focused on these kinds of
networks.

4. IEEE 802.15.4-based MW architecture

This section deals with the main functional blocks of the
proposed IEEE 802.15.4-based middleware. A high-level
representation is given in Figure 1.
The proposed architecture refers to a typical WSN
protocol stack, where security facilities are now
considered and embedded in the framework. From a
protocol point of view, the proposed architecture specifies
only MAC and Physical Layers to IEEE 802.15.4 and
provides flexibility of choices on both Network and
Application Layers. Usage of IEEE 802.15.4 is not
limitative because it is the de-facto standard in industrial
applications while Network Layer is not standardized as
well, although Zigbee exploitation is quite diffuse.
In the following, the embedding of the security services
into the reference middleware architecture is discussed.
Typically, data security is accounted at the Application
Layer: a large number of protocols, such as ones used on
the Internet, provide security directly at Application
Layer.

WIDS
MAC
WIDS
MAC

WIDS
NWK
WIDS
NWK

WIDS
APP

WIDS
APP

MAC & PHY
IEEE 802.15.4
MAC & PHY

IEEE 802.15.4

NWKNWK

TAKS / ECTAKSTAKS / ECTAKS

APPAPP

TAKS / ECTAKSTAKS / ECTAKS

Figure 1. The middleware architecture

The proposed architecture is compliant to this view
because it provides TAKS [30] facilities (ECTAKS if
elliptic cryptography is exploited [25]) to Application
Layer. From a Network Layer point of view, this means
that only the effective payload (i.e. the application packet)
is encrypted and only the intended legal receiver can
decrypt it. However, IEEE 802.15.4 has some interesting
properties that we can exploit to improve the security
level. As we have seen in previous sections, 802.15.4
MAC Layer provides a security suite accessible by means
of APIs provided by the MAC Layer itself. Using this
service we can ensure the encryption of each MAC data
packets (i.e. the entire MAC payload composed by
Network and Application packets). We have designed the
middleware so that encryption can be selected at one or
both layers depending on user security requirements.
The proposed architecture motivates further remarks
about IDS. Our consolidated line of research is oriented
towards a misuse-based purely distributed IDS which
exploits the Weak Process Models (WPM) over WSN,
denoted here as WIDS (WPM-based Intrusion Detection
System) [27], [28], [29]. First of all, WIDS is purely
distributed. Most literature contributions propose to put
intelligence (usually more consuming both in
computational resources and in memory) outside the
WSN [15], [42]: however, if the algorithms are designed
by considering the very constrained environment of
WSNs, these systems can operate as functionally
“autonomous entities” and not only for pure sensing
operations. This choice implies two types of benefits: the
former one consists in the distributed architecture which
avoids the typical drawbacks presented by centralized
solutions; the latter one is the reduction in energy
consumption since distributed solutions do not need
sharing information with a centralized entity (i.e. sending
them via radio and wasting energy). However, the
drawback is that distributed IDS need a fine
configuration.
Looking at the architecture, it is straightforward to remark
the cross-layer nature of the Intrusion Detection System
that concerns all active layers of the stack (i.e.
Application, Network and MAC). Each active layer
implements protocols characterized by a set of constraints

L. Pomante et al.

EAI Endorsed Transactions on
Ubiquitous Environments

05 -07 2015 | Volume 2| Issue 5 | e1

A Middleware Approach for IEEE 802.15.4 Wireless Sensor Networks Security

5

and rules and, for this reason, exposed to attacks by
intruders: constraints and rules in a protocol represent
points of weakness which can be exploited by intruders to
induce altered behaviours on sensor nodes (e.g. a denial of
service). For example, we can refer to a kind of attack
known in literature as HELLO flooding. This kind of
attack relies on the fact that wireless protocols often
require that nodes execute an association procedure by
sending the so-called HELLO messages. HELLO flooding
is when the attacker continuously issues malformed
HELLO messages to WSN nodes, which waste
computational and memory resources that can later result
in a denial of service. Now it is easy to understand how
IDS is strictly based on the kind of protocol that it
monitors. Therefore, the WIDS component of the
middleware is conceptually the same one that we have
proposed in [27], [28] and [29] but it is customized for the
different protocols provided by the actual architecture. It
is important to remember that, such an architecture, do not
define any Network and Application Layer so, in this
work, we do not provide any fixed approach to handle
Intrusion Detection at this layer.

It is of paramount importance to remark that a specific
solution needs to be tailored to each specific protocol
stack. In this regard, we progress by assuming that MAC
and physical layers are compliant to IEEE 802.15.4, while
flexibility is assumed when considering network and
application layers. Relying on the IEEE 802.15.4 is not to
be intended as a restriction: instead, we claim the double
perspective of i) devising, developing and testing a
framework for a concrete case, and ii) impacting on the
evolution of a de-facto standard in industrial applications
and other domains. As for network layer and application
layer only the following not restrictive requirements are
assumed:

 R1: the network layer shall not allow data
transmission without association to a network;

 R2: the network layer shall implement a reactive
routing protocol and it shall be aware of the
association of new node to the network;

 R3: the application layer is concerned with the
"monitoring and control" application domain, and it
is supposed to resort on acknowledged
transmissions.

As a matter of fact, we can observe that several existing
network layer routing protocols, such as [9] and [43],
readily satisfy R1 and R2. At the same time, any
monitoring and control application should be compliant to
R3.
In the next two sections we will give a complete overview
of both the cryptographic scheme TAKS and the WIDS
design, focusing on the MAC Layer of the stack.

5. The cryptographic scheme TAKS

A high level description of the cryptographic scheme is
firstly provided, along with an assessment of its
robustness. Next, the implementation in the devised
framework is presented and validated as well.

5.1. High level description

TAKS includes authentication, cryptographic key
generation, and related management services. The
authentication service is based on network topology in
terms of neighbourhood relationships among parties. Each
party can be authenticated if and only if the graph of the
topological relationships between the related node and
other nodes (not restricted to only one-hop neighbours) is
included into the graph of authenticated topologies
defined for that portion of the network. The function of
Certification Authority (CA) is not centralized, but shared
among all the parties in the network, in the sense that each
party stores the minimum information to prove the
authenticity of any signing party. Rationales and further
details of the decentralized approach are provided in [24]
and [30]. The topology-based mechanism also enables
nomadic parties to be authenticated, as long as their local
topological relationships are compliant to the
authenticated ones: this approach allows to overcome
typical limitations of purely position-based authentication
mechanisms.
The service for cryptographic keys generation has been
defined and is based on vector analysis over points in
Galois finite fields with size of the order of the key length.
It is a hybrid scheme that inherits some features of the
Diffie-Hellman key exchange scheme [12]. It also inherits
other features of the classical asymmetric paradigm public
key-private key [17]. In summary, any secret share is
generated in a party, starting from the partial key
components stored in any authenticated pair. For very
critical applications, security can be further enhanced by
introducing special elliptical curves (specified in ANSI
standards) as point generators over Galois finite fields. In
this latter case a larger overhead is introduced.
While detailed descriptions can be found in [24] and [30],
the basic behaviour is provided here:

 Each node stores a number of vectors over a
predefined Galois finite field: these vectors define
the graph of the planned authenticated topologies for
that portion of a network (denoted with Local
Planned Topology) and the partial key components,
namely the Local Key Component and the
Transmitted Key Component. The Local Key
Component plays the role of the private key in an
asymmetric scheme, while the Transmitted Key
Component is intended as a public key. Once again,
these vectors are not keys but only partial key
components.

EAI Endorsed Transactions on
Ubiquitous Environments

05 -07 2015 | Volume 2| Issue 5 | e1

6

 The shared secret, i.e. the symmetric key, is
computed from the key components associated to the
parties involved in the data exchange. Key
generation requires of course that a successful
authentication of the parties has been completed.
Once authenticated, the receiving party has gained

the information to decrypt the received ciphered
message by computing the shared secret from the
Transmitted Key Component that the transmitting
party has sent with the ciphered message and its own
Local Key Component. The scheme is sketched in
Figure 2 [24].

Figure 2. TAKS scheme

The setup protocol is 1-phase in the sense that the
authentication phase and the generation phase are in fact
executed in the same step, so that the transmitting party
authentication information (i.e. the Local Planned
Topology vector) is coincident with the key generation
information (i.e. the Transmitted Key Component vector).
This is different from the 2-phase scheme that we defined
in an earlier work [30], where the authentication phase
and the generation phase are separated. The secret share
(SS) feeds both the coding and the MAC authentication
algorithms to return the ciphered message and the
authentication tag. The 1-phase transmission contains 3
information elements: the ciphered message (c), the
authentication tag () and the Transmitted Key
Component (d). The receiving party computes its own
version of the secret share SS’ through its Local Key
Component and d, then computes its own version of the
authentication tag ’: in [32] it is shown that if and only if
=’ then SS=SS’, hence the symmetric key is established
between the parties and the message can be successfully
deciphered by the destination party.

5.2. Security analysis

TAKS security analysis has been led by answering the
following questions:

 Is TAK a real cryptographic key? I.e. which is the
entropy per binit associated to TAK? A bit string can
be regarded as a cryptographic key if its associated
entropy per binit raises unity [34] so that each key
behaves as a truly pseudo-random number. In [24]
and [30] is shown that this requirement has been met
in TAKS.

 How much a single node is secure, i.e. how much
complex is the inverse problem to break TAK
(security level in a single node)? In [30] has been
proven that the security level in a single node is
higher than the discrete logarithm problem:
Equations show that the relationship between key
components is not simply a discrete logarithm, which
is one of most difficult problem in GF(q) algebra,
because they appear both as multiplying factor of the
exponentiation operator and in the exponent.

 How much a network is secure, i.e. how many nodes
an attacker should compromise to break TAK
(security level in the network)? This security level is
calculated by evaluating the complexity to break the
cryptographic key with all nodes in the network
available. The T-Security concept is here introduced:
given a network with N nodes, a cryptographic key is
T-Secure if an attacker should capture N1T
nodes in the network to gain enough information to

EAI Endorsed Transactions on
Ubiquitous Environments

05 -07 2015 | Volume 2| Issue 5 | e1

L. Pomante et al.

A Middleware Approach for IEEE 802.15.4 Wireless Sensor Networks Security

7

crack the key. The best case is when NT , because
in this case the cryptographic key never can be
violated as there is no enough information shared in
the network to do that. This result can be achieved if
a share of the information needed to generate
cryptographic keys is external to the network (i.e.
residing in an external server). In [30] has been
analytically shown that TAKS is N-secure
(i.e. NT).

5.3. Design and implementation

The procedure including TAKS algorithms has been
designed and implemented in terms of a set of modules on
top of an intermediate bridge layer: this enables code re-
usage across the implementations on top of network and
MAC layers that are described in the following.

TAKS Layer
In order to enable easy integration with IEEE 802.15.4-
based stacks, the TAKS modules have been designed by
resorting to the typical paradigm of service primitives
largely exploited also by IEEE standard [18]. As a
consequence, any service exposed or required by TAKS
can fall within one of the four generic types: request to
require a service, indication to be informed about an
internal layer event, response to complete a procedure
previously invoked by an indication primitive, and
confirm to convey the results of one or more associated
previous service requests. Moving along this line, we
were able to come up with the finite state machine in
Figure 3 for the logic implemented on sensor nodes. In
particular, for the specific interests of this section, we
analyze how state machine evolves in packet transmission
and reception.
It easily turns out from [24] that a packet transmission by
means of a TAKS component requires more than one
transmission across the wireless link: we call the sequence
of packet exchanged by nodes as a TAKS transaction.
Normally TAKS state machine is in IDLE state. In this
condition, a state transition can only be induced by a
TAKS transaction that starts. Of course, for a given node
two different procedures are interested when a
transmitting or a receiving transaction is considered.
When a transmission is required, TAKS component has to
send both deciphering information and encrypted data.
Therefore, the component first checks by means of the
lookup_destination() function whether the transaction is
allowed, i.e. it checks if it has the destination Topology
Vector in his Local Planned Topology. If transmission is
allowed, a random number is generated with rand()
function and the deciphering information is calculated by
multiplying the scalar random with the Topology Vector
owned by the node. After calculating deciphering
information, the component logic requests its transmission
(event a in Figure 3) to the destination node of the
original packet and it put the state machine in
KT_TX_REQED state. The transmission result (event b

in Figure 3) is notified by the corresponding confirm
function. If an error is returned the previous procedure is
rerun until to reach a threshold. If a successful
transmission is notified, the corresponding TAK is
computed by performing the inner_product() function on
the Local Key Component and the destination Topology
Vector, and then multiplying the resulting scalar with the
opposite of the random scalar generated earlier. Such a
scalar is then set as a ciphering key: this progression is
maintained in the state machine evolving in the
SET_KEY_REQED_OUT state. Also in this case, the
correct key setting is notified by a confirm function (event
c in Figure 3). The encrypted packet is transmitted only if
the key has been successfully set (PKT_TX_REQED
state). At the corresponding confirm reception (event d in
Figure 3), the state PKT_TXED is achieved wherever the
confirmation to higher layer is sent and the machine is
automatically reset (event e in Figure 3).

Figure 3. TAKS state machine implemented on the
top of IEEE 802.15.4 MAC layer

When the reception is a considered in a node, the
transaction is started by a plaintext packet reception in
IDLE state (event f in Figure 3). When this packet is
received by the TAKS component, the logic assumes that
it contains deciphering information, so TAK is calculated
as inner product between deciphering information and the
Local Key Component owned by the node. This
information is mapped on the state machine evolving in
the SET_KEY_REQED_IN state. In this state the new
calculated key setting is requested. At the occurrence of
the corresponding confirm message (event g in Figure 3),
the machine comes back to the IDLE state: the underlying
layer is correctly set and it is only needed to wait for the
encrypted packet. When the packet is received (event h in
Figure 3), the decryption is automatically performed and,
if the packet is also authenticated, it is also notified to the
higher layer (state PKT_RXED). At this point, the
machine is automatically reset in the IDLE state (event i
in Figure 3).

The Bridge Layer
In this sub-section the main functionalities implemented
by the bridge layer are discussed. Services provided by
the bridge layer are transmission request and

EAI Endorsed Transactions on
Ubiquitous Environments

05 -07 2015 | Volume 2| Issue 5 | e1

8

corresponding confirmation, packet reception, and set key
request and corresponding confirm. Implementation of
these services is different depending on if they interface
with MAC or network layer. While other services are
rather standard and do not deserve specific descriptions,
the set key request service on the top of MAC layer is of
particular interest. In fact, IEEE 802.15.4 MAC layer
handles security internally and interfacing with its
primitives is needed. [18] defines an incoming and an
outgoing frame security procedure and some parameters
need to be set to allow a correct secured communications.
In the following, a brief description is reported.
When a packet transmission is requested, MAC layer
decides to secure the frame, i.e. to encrypt or authenticate
it, according to a given security level. Moreover, a node
stores a minimum security level for each other node with
which it can communicate. When the MAC layer
processes a received packet, it filters any of them with a
security level score below a minimum security level.
Since the TAKS procedure defines that deciphering
information has to be transmitted in plaintext, we have set
the minimum security levels to non restrictive values.
Another important parameter is the key identification
mode. [18] defines how to store keys in a key table
indexed by an identifier. This identifier can be explicit, if
it is user defined, or implicit, if it can be implicitly
deduced from addressing information. An explicit key
identification implies a further overhead with respect to
the normal security overhead due to identifier
transmission. This enables the receiving side to know the
identifier of the key to be used to decrypt the message.
For this reason the implicit key mode is typically
preferred and we have made this choice too in our
implementation.

5.4. Cost and performance analysis

In this section, we report the cost analysis of the proposed
scheme. This analysis aims to evaluate the complexity of
the scheme regardless of encryption and decryption
algorithms and message authentication coder (since they
are always needed and could be freely selected by the
network planner). As shown in [24], if n and σ(i) are the
key size in bytes and the cardinality of the set of eligible
neighbours respectively, then random generation and
addition cost O(n), multiplication and inner product cost
O(n2) and the scan of all possible neighbours costs
O(σ(i)).
Since a sending transaction is a serialized call of rand(),
lookup_destination(), inner_product() and multiply(), we
can affirm that the computational complexity of TAKS
encryption is O(n2+σ(i)) ≈ O(n2). Similarly, since a
receiving transaction is driven by the complexity of
inner_product(), we can affirm that computational
complexity of TAKS decryption is O(n2) as well.
Moreover, the spatial complexity, due to the creation of
temporary structures for mathematical calculations, is
O(n+σ(i)).

The computational cost has been then evaluated in terms
of execution time on the Atmel Zigbit [4] platform, that is
provided of an 8 MHz clock (this is the reference platform
for the WSN that has been deployed in our lab). With
respect to the three main components involved by TAKS,
i.e. deciphering information computation and key
computation at both sender and receiver sides, the
evaluated execution time turn out to be 5.1 ms, 7.2 ms and
4.8 ms, respectively. All these results have been obtained
by using IAR Workbench for AVR compiler with medium
level optimization.
To complete our analysis, we have measured the
computation time for encryption, decryption and
authentication tag generation time with the assumption
that the cipher text length is one AES block: the times are
406 s for both encryption and decryption, and 570 s for
authentication tag generation. It is worth noting that
Zigbit radio component integrates an AES engine
accessible via Serial Peripheral Interface (SPI) and
performing hardware accelerated encryption and
decryption [3]. For what concern energy consumption, we
can observe that Zigbit microcontroller power
consumption is negligible with respect to consumption of
the transceiver in active modes [4]. This allows to
approximate TAKS energy overhead to the TAKS radio
overhead intended as the ratio between TAKS packet
overhead and packet payload size of the typical packet
exchanged in the network. Figure 4 shows relationship
between TAKS overhead and packet payload size.
Supposing that the typical packet fits in two AES blocks
the packet payload size is 32 bytes. If link-layer
protection is activated, for each packet TAKS requires the
transmission of the deciphering information (48 bytes).
Moreover, if end-to-end encryption is activated additional
48 bytes are needed. Therefore, activating single facility,
TAKS overhead (i.e. TAKS radio overhead) is 1.5x while
activating both facilities at the same time the overhead is
3x. It is worth noting that above analysis refers to a case
wherein each transmission requires a new key generation
and then deciphering information needs to be sent at each
packet transmission. Some caching techniques can be
implemented to reduce overhead and energy consumption.

Figure 4. Relationship between TAKS overhead and
packet payload size

EAI Endorsed Transactions on
Ubiquitous Environments

05 -07 2015 | Volume 2| Issue 5 | e1

L. Pomante et al.

A Middleware Approach for IEEE 802.15.4 Wireless Sensor Networks Security

9

6. WIDS-based intrusion detection

This section presents a description of our WPM-based
IDS (WIDS), starting from a high level description and an
analysis of security issues; then, a case study with details
of our novel implementation is discussed. Finally,
performance metrics are presented.

6.1 High level description

A Weak Process Models (WPM) is a particular sub-class
of Hidden Markov Chains, where the many-to-many
relationship between observables and states (which
represent the possible phases during an attack engage) is
made quite deterministic, by assigning to state transitions
just 0/1 weights, rather than stochastic by assigning
probability weights. This simplification avoids the
needing of historical sequences of events, to derive the
probability weights to assign to state transitions and,
therefore, the implementation of a Viterbi estimators that
is very expensive in terms of computational and memory
requirements. Details on WIDS can be found in [32], here
the basic behaviour will be provided. A WPM estimator
computes the score associated to the set of possible state
sequences corresponding to the sequence of observables
that can occur during the time interval of interest. As

shown in [32], the detection performance can be set
arbitrarily high according to the accuracy of the threat
representation. States in WPM are classified according to
the estimated hazardousness of the threat in that state:
Low Potential Attack (LPA) and High Potential Attack
(HPA). We assume that until threats are confined in LPA
states, no reactions should be issued. When in HPA, a
reaction should be performed on the hazardousness
weight (score) associated to the estimated state sequence.
It is worth noting that, in line of principle, also unknown
attacks can be detected whenever they show, during the
time interval of interest, a behaviour in part similar to
other classified attacks. To provide an outline of the
WIDS behaviour, it is sufficient to consider WPMs as
Finite State Machines (FSMs). During intrusion detection
session, when predefined events occur, WIDS evaluates
state transitions on WPMs modelling the database of
attacks. When a HPA state is reached, the sequence of
events is considered so serious to notify the IR
component. An example of the overall process is sketched
in Figure 5. The observables associated to each state in
the WPM are represented into brackets. In Figure 5 are
shown state transitions corresponding to the sequence of
events (3,1,4,2,5,6). All the events not referable to initial
state (green), final state (red) or to specific state transition
compliant to the WPM are discarded. Alarms are raised
when state 3 or 4 is reached.

1
(1,6)

2
(4)

4
(3,5)

5
(1,3,6)

3
(2,4)

100

010010000

000990

010000100

099001

00000

S s = shpa| slpa

al[01| 01] a l[02| 00]

1

100

99
-100

a l = a l[s]

-100

1

-99

99

-100

-100

0

4

5
3

1

5

2

3
4

1

5

1
(1,6)

2
(4)

4
(3,5)

5
(1,3,6)

3
(2,4)

100

010010000

000990

010000100

099001

00000

S s = shpa| slpa

al[01| 01] a l[02| 00]

1

100

99
-100

a l = a l[s]

-100

1

-99

99

-100

-100

0

4

5
3

1

5

2

3
4

1

5

Figure 5. A Weak Process Model example

6.2 Security analysis

WIDS security analysis has been approached by reducing
ambiguous observables as much as possible. As formerly
shown in [32], the rate for false positives (FPR) and false
negatives (FNR) or mis-detections strongly depends on
the accuracy of threat modelling by WPM. If any state
sequence in WPM could be associated to a threat
behaviour, FPR could be arbitrarily reduced. If any
abnormal behaviour of the WSN could be mapped into a
WPM state, FNR could be arbitrarily reduced too. Both

the approaches comes at the cost of further states to be
introduced, hence more computation and memory
requirements. If these approaches cannot be fully adopted,
alternative sub-optimal solutions can be considered as
follow:

 Introducing further states associated to certain threat
observables in paths where at least one state is
associated to ambiguous observables. This approach
surely lowers FPR and FNR, as the longer the path to
detect hazardous events the more reliable would be

EAI Endorsed Transactions on
Ubiquitous Environments

05 -07 2015 | Volume 2| Issue 5 | e1

10

an alarm. A drawback is that long paths, would
reduce the reactivity in the monitoring service.

 Introducing a further class of states associated to
ambiguous observables. This approach can reduce
FPR or FNR as "ad-hoc" countermeasures can be
applied to nodes where alarms from dubious
observables are generated (e.g. node quarantine
rather than link release).

6.3 Design and implementation

This section deals with the novel design and
implementation of WIDS. Firstly, we define a realistic
case study for WIDS application: from earlier
assumptions, we derive a set of common attacks on which
WIDS is built. Next, implementation issues as well as
performance evaluation are detailed.

Case Study
Let us start with a survey of possible attacks that can be
performed in a generic WSN. Then, we illustrate the case
study defined to validate our IDS. Finally, we describe the
aggregate WPM implemented in our IDS.
Following a misuse-based approach, the main issue is to
define the set of threats to be modelled, as a good misuse-
based IDS should necessarily have a good threats
database. Then, it is possible to design and implement
identified threats. Given the IDS layered architecture,
threats can be classified into layers, from the physical
layer to the application one. For what concerns physical
layer, IEEE 802.15.4-based networks are subject to the
typical wireless physical attack, i.e. radio jamming. [41]
classifies jamming activities in constant, deceptive,
random and reactive jamming. For what concerns IEEE
802.15.4 MAC layer, [35] and [41] report the following
attacks: link-layer jamming, backoff manipulation, replay-
protection, nonce attack, GTS attack, ACK attack.
The network layer is responsible of routing services,
therefore a complete network layer attack list can be

defined without referring to the specific protocol adopted
by the layer itself. For example, [20] defines the following
attack categories: spoofed, altered, or replayed routing
information, selective forwarding, sinkhole attack, sybil
attack, wormhole, HELLO flood attack.
Finally, since the WSN application layer is generally
simpler, we neglect attacks at this layer; in any case those
attacks should be considered as application protocol
specific and are not considered here.
It is worth of mention that our case study covers the most
important application context of WSNs, that is monitoring
and control applications. When energy awareness cannot
be neglected, IEEE 802.15.4 provides beacon-enabled
networks, that are preferred to nonbeacon-enabled ones.
To instantiate a beacon-enabled network to correctly
handle energy consumption in every node, tree-based
routing protocols have to be chosen. In such protocols, a
reactive approach allows to route messages without
wasting memory and without sending additional messages
to populate routing tables.
Therefore, in our case study, only a subset of the attacks
listed above can occur. For example, GTS attack is not
considered, since it is too particular and not meaningful in
the considered domain. Moreover, if TAKS is used, nonce
attack cannot occur since keys are one shot. In fact, it
should be noted that, in such a context, we require that a
node performs the IEEE 802.15.4 MAC layer association
to transmit data in the network. According to [18], the
association procedure can be done by exploiting
authentication features. If we plan to use MAC layer
cryptography, attacks by means of spoofing, altering and
replying routing information are not possible since
messages are authenticated. Moreover, sinkhole and
selective forwarding attacks can be considered as
overlapping and most of the network layer attacks listed
above can be actuated only if nodes are tampered and
keys are stolen. However, this last situation can be
detected by using our IDS with the aggregate threat model
presented in Figure 6.

Figure 6. Aggregate WPM designed for threat detection

WIDS Layer
In this sub-section, the aggregate threat model presented
in Figure 6 is described, by analyzing modelled threats
and moving from the highest layer to the lowest one. It
should be noted that our IDS currently allows to detect

anomalies on control data only: some attacks based on
node cloning and consequent admissible data injection are
considered out of scope. In fact, this latter category of
attacks can be detected by only analyzing data and using
approaches such as the ones described in [31]. Therefore,

EAI Endorsed Transactions on
Ubiquitous Environments

05 -07 2015 | Volume 2| Issue 5 | e1

L. Pomante et al.

A Middleware Approach for IEEE 802.15.4 Wireless Sensor Networks Security

11

in the present paper all the attacks based on correct but
malicious data injection are excluded from our database.
This also means that we can exclude application layer
attacks since the two communication peers are always
considered trusted. In the following, network layer attacks
are firstly considered.

Selective forwarding. Routing algorithms are based on the
assumption that the nodes forward received messages. In
a selective forwarding attack, malicious nodes do not
forward certain messages and ensure that they are not
propagated further. Many approaches are proposed in
literature to detect selective forwarding attacks. As in
[32], we exploit the TAKS authenticated acknowledgment
packet sent by the application layer to check if it is
compliant to R3. Deterministic selective forwarding
attacks can be easily detected with retransmission, while
random selective forwarding needs statistic analysis. In
Figure 6, the observable O1 means that an application
layer acknowledgment has not been received and so a
LPA is raised. If the number of this anomalies exceeds a
programmable threshold (observable O2), an HPA is
raised. Packet transmissions and receptions are mapped
with observable O3 and O4 respectively and, if their
difference exceeds a threshold (observable O5), an LPA is
raised. If this occurs several times (observable O6) the
HPA is raised.

Sinkhole. In a sinkhole attack, the adversary goal is to lure
nearly all the traffic from a particular area through a
compromised node. With a tree-based reactive routing
protocol, sinkhole is equivalent to selective forwarding
wherein all packets are dropped, therefore it is already
manageable with previous countermeasures.
Sybil. In this attack, a single node presents multiple
identities to other nodes in the network. According with
requirement R1, a node can communicate only if it has
been associated to a coordinator, using TAKS procedures
to perform an authenticated association. To associate with
a coordinator, a device has to send his ephemeral
Topology Vector (i.e. the deciphering information) whose
direction (i.e. vector direction) is unique in a network. We
should distinguish two cases: the case where the attacker
uses the same topology vector for its different identities
and the case where the attacker uses different topology
vectors for its different identities. Both cases can be easily
detected. In the former one, the attack can be detected by
maintaining associated information for the Local Planned
Topology in each coordinator. By checking this
information when an association request is received, it is
possible to detect the attack. In the latter case, an attacker
cannot use neighbour topology vector because the attack
can be detected as in the former case. For this reason,
attacker should use a topology vector not compliant to the
planned topology and so the coordinator cannot build a
correct key and authenticate the received authentication
request. Both anomalies are represented in Figure 6 with
observables O7 and O8 respectively. If they occur, a LPA
is raised and if they occur again a HPA is launched.

Wormhole. In the wormhole attack, an adversary tunnels
messages received in one part of the network and replies
them in a different part. Then, this attack can be
performed only if at least two nodes have been totally
compromised. Assuming wormhole attack between two
non overlapping sub-trees as unique meaningful case, the
attack can be easily detected. Our routing protocol implies
a unique routing path; furthermore, an application layer
address uniquely defines a network layer one. Therefore,
a wormhole attack can be always detected by checking the
correctness of the sub-tree from which a message is
received, i.e. checking if the node from which the
message is received can be a router for the node identified
by the application layer address stored in the message
itself. In Figure 6, detection of previous anomaly is
represented by the observable O9. If it occurs,
immediately a LPA is raised and, if it occurs again, a
HPA is launched.

Hello flood. In Hello flood attack, the adversary
convinces network nodes that it can provide a very high-
quality route to the base station but those nodes
sufficiently far away from the adversary would be sending
packets into oblivion. Several approaches to detect hello
flood aim to check the link bi-directionality, e.g. [32].
Differently from some other protocols, IEEE 802.15.4
MAC layer association procedure requires a bi-directional
exchange of packets and the association can be completed
only if the link is stable. However, when the link is not
stable, the association procedure fails in a certain timeout.
Usually, this event (represented in Figure 6 with
observable O10) can be considered as an anomaly and a
LPA is launched when it happens. If this anomaly repeats
for a certain number of times (observable O11), a HPA is
raised.

MAC layer attacks are considered in the following.

ACK Attack. Non broadcast transmissions between two
IEEE 802.15.4 MAC peers are generally characterized by
an acknowledgment by the receiver. Acknowledgment
packets are not encrypted and can be linked to the
transmitted packet by means of a sequence number. An
eavesdropper can listen to the un-encrypted sequence
number, corrupt the frame by interferencing at receiving
time and send a fake ACK frame with the related
sequence number to the sender in order to fool the sender
as if the ACK were coming from the receiver. Therefore,
a sender cannot be sure if the received frame is either
coming from the intended receiver or from another node.
Since there is no integrity protection provided on ACK
frames, this weakness should be addressed at higher
layers, e.g. by making the receiver able to send back an
authenticated acknowledgement to the sender. In our case
study, an acknowledgment attack can be performed in two
cases: on a command frame (specifically on association
frame) or on a data frame. MAC commands are generally
used to request information to another peer (e.g.

EAI Endorsed Transactions on
Ubiquitous Environments

05 -07 2015 | Volume 2| Issue 5 | e1

12

association response, data request, etc.) so they initiate
procedures that use timeouts to be fault-tolerant. Elapsing
of these timeouts should be monitored to detect
anomalies. In the data frame case, although it is possible
to provide a link-layer authenticated acknowledgement,
we have chosen to implement only the end-to-end
alternative, since it allows to save energy and to detect
anyway this anomaly even if less reactively. For these
reasons, we do not need further monitoring to detect ACK
attacks.

Replay-protection attack. Replay protection mechanism is
a built-in mechanism provided by IEEE 802.15.4 that
allows to detect the replay attack, i.e. the retransmission
of a previously transmitted packet. It is implemented by
sending a frame counter together with the packet. At each
packet reception, the frame counter is compared with the
previously obtained counter. If the current counter is
equal to or less than the previous one, then the frame is
rejected. However, the replay protection mechanism
provided in the IEEE 802.15.4 specification is subjected
to replay-protection attack which can be accomplished by
an adversary by sending many frames containing large
counters to a legitimate receiver. When another legitimate
sender transmits a frame with a lower counter, it will be
rejected according to replay protection procedure.
Detection of this attack is straightforward: it is sufficient
to monitor frame counters and raise an alarm when
anomalies are detected. This can be observed also by
WPM of Figure 6: if a frame counter anomaly (i.e.
observable O12) is detected a LPA alarm is raised, and if
it occurs again a HPA is delivered.

Backoff manipulation. This attack is realized by means of
a node that transmits valid packets cheating applying
backoff algorithm. Given a specific network, it is possible
to simulate the network behaviour using proper IEEE
802.15.4 models, such as [8] in OMNET. In particular,
from these simulations, we can estimate parameters such
as the maximum number of attempts for transmission (let
this number be n). Therefore, a backoff manipulation
attack can be detected by monitoring the number of
attempts that a node performs before to transmit. In our
case study, we have planned to monitor transmissions that
require n-2, n-1 and more in excess of n tentatives. All
this three events are considered as anomalies; when they
happen, an LPA is raised (observables O13, O15 and O17
respectively) and, if the number of attempts exceeds a
programmable threshold (observable O14, O16 and O18
respectively), a HPA is delivered.

Link-layer jamming. Link layer jamming is a more
complicated type of attack among the jamming ones. An
intelligent adversary, who wisely uses the link layer
protocol logics, can be as defective as a blind radio
jammer but consuming less energy and decreasing
probability to be detected. For example, in IEEE 802.15.4
networks it is possible to be reactive to beacon
transmission or other frame transmission, i.e. command or

data frames. Both cases can be easily detected: in the
former case by using the same approach used for random
jamming and in the latter case by monitoring data
transitions that fail. In Figure 6, observable O29 means
link layer acknowledgement packet lost and, if the
number of lost packets exceeds a threshold, a LPA is
raised. If this occurs again the corresponding HPA is
delivered.

In the following, we consider attacks at the physical layer
(i.e. jamming). [41] classifies this type of attack in
constant jamming, deceptive jamming, reactive jamming,
random jamming and link-layer jamming.

Constant jamming. The constant jammer continuously
emits a radio signal. For this reason, it can be detected
only in transmission mode, since it does not allow any
transmission and then reception in radio range area. IEEE
802.15.4 MAC layer Specification [18] defines that some
packets (i.e. beacon and ACK packet) do not require
CSMA/CA for their transmission. In fact, specific timing
constraints ensure the reception of these packets.
Therefore, continuous jamming can be detected by
performing the clear channel assessment before sending
beacon or ACK packet. Nevertheless, some strict timing
constraints on ACK packet transmission imply to exclude
them from our strategy and then, only clear channel
assessment before sending beacon is exploited. Moreover,
a constant jamming implies that transmission Quality of
Service (QoS) is surely not satisfied. This means that it
can be also recognized by monitoring the transmission
rate: if it is under a certain threshold, an anomaly can be
detected. Summarizing, if a clear channel assessment
before beacon transmission is unsuccessful (observable
O19), a LPA is raised and, if it occurs again in a certain
timeout, a HPA is launched. Moreover, constant jamming
can be detected if the number of clear channel assessment
failures (observable O20) exceeds a defined threshold
(observable O21). When this occurs, a LPA is raised and
if it occurs again (observable 022), a HPA is delivered.

Deceptive jamming. This attack means that a node
continuously injects regular packets to the channel
without any gap between subsequent packet
transmissions. It should be noted that infinite preamble
transmission is considered as a deceptive jamming, so a
distinction is needed between the case when a packet
jamming is passed by physical layer to an upper layer or
not. In the former case, a deceptive jamming causes the
reception data queue saturation while the latter case can
be handled as a constant jamming. For this reason,
deceptive jamming can be detected by adding to the
policy for constant jamming also the monitoring of
received message queue saturation (observable O23). If it
is observed, a LPA is raised and if it occurs again a HPA
is launched.

Reactive jamming. The reactive jammer stays quiet when
the channel is idle, but starts transmitting a radio signal as

EAI Endorsed Transactions on
Ubiquitous Environments

05 -07 2015 | Volume 2| Issue 5 | e1

L. Pomante et al.

A Middleware Approach for IEEE 802.15.4 Wireless Sensor Networks Security

13

soon as it senses activity on the channel. For this reason,
reactive jamming can be detected only by the node that
receives corrupted packets. By analyzing timing
distribution of corrupted packets, reactive jamming can be
easily detected in turn. In particular, in Fig. 3 the
observable O24 means that a corrupted packet has been
received. It is worth noting that this observable cannot be
considered as an anomaly, so alarm is not raised. But if a
threshold is exceeded (that is represented by observable
O25), a LPA is delivered. If this happens a number of
times that exceeds another programmable threshold
(observable O26), a HPA is raised.

Random jamming. Random jamming takes place when the
attacker transmits and sleeps randomly. Given its feature,
random jamming can be detected by using a proper mix of
the previous approaches: clear channel assessment failed
threshold, received corrupted packets threshold and
beacon corruption can be evaluated together and the alarm
raised if a weighted sum of these events exceeds another
threshold. This approach is implemented with a WPM
identified by X29, X30 and X31 states.

Implementation issues
From a user perspective the ID component discussed in
this paper can be seen as a black box that is able to
provide both LPA and HPA notifications. To accomplish
this service, the component only needs to know if a
certain event occurs. Therefore, the APIs provided by the
component are input_occured(), raise_LPA() and
raise_HPA(). While events of interest have been surveyed
in the previous sub-section for each kind of attack, design
and implementation issues are discussed in this sub-
section.
As already stated, WPMs are particularly appealing from
an implementation perspective: in particular, conventional
implementation techniques for state machines can be still
applied. A finite state machine can be implemented
directly in the code or by using proper data structures. The
latter choice gives some more pros with respect to the
former one, as we pointed out in [24].
Therefore, we defined the data structure shown in Figure
7 to represent a WPM with a state space composed of 4
states, an observable space composed of 3 observables
and the following state-observable relationship.

Figure 7. A WPM example and its corresponding implementation

The data structure stores for each state Xi:

 if it is a LPA, a HPA or none;
 a handler to execute a proper function when Xi is

reached;
 its adjacency list, i.e. the list of states reachable from

Xi and the observable that allows state change.

Figure 7 also includes a graphical sketch of the WPM
implementation model. We can observe that state X2 or
X4 is reachable from state X1 or X3 if observable O1 or
O3 is revealed. Therefore, the first and third lists contain
the couples (X2, O1) and (X4, O3).
In the following, a WPM is modelled as a dynamic
process where observables act as inputs to the process
itself. By exploiting the data structure defined before, the

computation of the system dynamics is performed as
follows: the current state is stored in a proper variable (its
default value is reset state X0) and, when an observable is
revealed, say Oi, the list associated to the current state is
scanned while checking for the item (Xi, Oi). If it is
found, the current state is updated to Xi. This approach
allows to shorten the computation time with respect to the
state space representation approach.
As hidden state machines, more states can be associated
to a single observable and therefore, given an observable
sequence on a WPM, more state traces can co-exist. Thus,
it is important to provide a container structure to save
multiple traces. We have adopted a bidirectional list to
obtain good performance in both trace inserting and
deleting.

EAI Endorsed Transactions on
Ubiquitous Environments

05 -07 2015 | Volume 2| Issue 5 | e1

14

How to save each trace in memory is another key point.
By exploiting Markov property (i.e. each attack is
modelled as a memory-less process), we can save only the
actual state for each trace. Then, in the following we
denote with lsi the last state of trace i maintained in the
bidirectional list. This choice has an interesting
consequence: since current states of current traces are
maintained in memory to allow the algorithm to evolve,
the score can be considered unnecessary. In fact, score
calculus (that could result expensive since it requires
arithmetic operations), can be replaced by a lighter state
typology checking.
Therefore, when an observable Oi occurs, i.e. when
input_occurred() is called:

 all stored traces are tested, i.e. for i from 0 to size of
the stored traces set, if there is a couple (Xi, Oi) in
the adjacency list associated to the last state of the
trace lsi, the last state of the trace lsi is updated to Xi.
Xi state type is checked and an alarm is raised if it is
a LPA or HPA state calling raise_LPA() or
raise_HPA();

 a new trace is tested, i.e. if there is a couple (X, O) in
the adjacency list of initial state X0, a new trace is
created and inserted in the set. In both cases,
eventual handler associated to x is called.

This approach is very suitable for states with a very short
adjacency list: when this condition is satisfied, the
procedure results very efficient. When the adjacency list
is not too short, the scan procedure to find new states
could be long and thus too expensive. In this situation,
exploiting an indexing data structure for observable
instead of state as in Figure 7 could be more convenient.
This consideration is exploited to store adjacency list of
reset state: as showed by the WPM of Figure 6, about half
of any WPM states are linked to the reset state and this
implementation strategy yields both memory saving and
better computation performance. Moreover, since most of
the WPM states have associated a reset timeout, we have
chosen to store for each state an additional information
representing possible reset observable. Intuitively, this
allows to save a lot of memory by observing that WPMs
are generally not deep trees and that initial states have
generally a reset observable associated to them.

6.4 Cost and performance analysis
In this sub-section, we describe the cost analysis of the
proposed ID component and its execution time. This
means that input_occurred() computational complexity
and spatial complexity of the data structure representing
WPM discussed in the previous sub-section are both
discussed.
For what concerns input_occurred() cost, two phases need
to be distinguished: a former phase that aims to update
existing traces and a latter one that evaluates new traces
creation by analyzing the reset state adjacency.
Current trace updating consists in a trace scanning to
check if the occurred observable determines a trace

update. For each stored trace, adjacency list of
corresponding last state is checked: therefore, if the worst
case is considered, this task costs O(t*n), where t is the
maximum number of traces and n the number of WPM
states. Nevertheless, in a real WPM state adjacency list
size can be considered constant with respect to the
number of states, so in real cases computational
complexity can be approximated to O(t).
Instead, new trace creation consists in a scanning of reset
state adjacency list. We remember that, for reset state,
differently from other ones, adjacency list is an array
where each position corresponds to an observable;
furthermore, it points to the state list reachable from the
reset state if corresponding observable occurs. With this
data structure, the second phase cost in worst case
assumption is O(n). Nevertheless, the cost can be
considered linear only when WPM moves from reset state
with a limited number of observables. In real cases, this is
not verified and the size of lists associated to observables
can be considered constant. Therefore, in meaningful
cases, second phase computational complexity can be
approximated to O(1).
Finally, input_occurred() computational complexity is
O(t*n) in the worst case, but can be considered equal to
O(t) in real-world application.
For what concerns spatial complexity, the following
expression approximates memory occupancy (expressed
in byte) with n equals to states number, ni equals to initial
states, o represents number of observables and t is the
maximum traces number:

S(n, ni, o, t) = 7(n-1) + 4(n -ni) +2o + 3ni + 10t

Therefore, the spatial complexity of our ID component is
S(n+o), since n and o upper bound both ni and t. Applying
the above formula to WPM represented in Figure 6 and
assuming t equals to 5, the total data memory required by
the component is 448 bytes.
Our IDS performances have been evaluated on Atmel
Zigbit [4] nodes running with 8 MHz clock, considering
the two phases of the algorithm, i.e. traces updating and
creation.
For what concerns trace updating function, given a
generic input and a trace, it is necessary to distinguish two
cases: an update hit when the input implies a real update
of the trace and an update miss when function simply
verifies that input does not imply a real update. In the first
case, the function spends near 85 μs to accomplish its
task, while in the second case only about 17 μs are
needed. This figure has been obtained under the
assumption of only one trace lying in memory. Therefore
with the assumption of five traces in memory, we have
verified that the entire task requires about 150 μs, since it
performs four update miss and an update hit.
For what concerns trace creation function, the same
consideration holds true: also in this case, an input can
imply a trace creation hit or miss. When the observable
(i.e. the input to the function) requires a single trace
creation, the function spends 100 μs approximately to

EAI Endorsed Transactions on
Ubiquitous Environments

05 -07 2015 | Volume 2| Issue 5 | e1

L. Pomante et al.

A Middleware Approach for IEEE 802.15.4 Wireless Sensor Networks Security

15

accomplish its task, while it spends about 25 μs in trace
creation miss case. Moreover, if trace creation requires a
trace deletion due to trace number threshold exceeding,
additional 30 μs are needed.
Overall, for the WPM considered, the worst case is when
double trace creation is required with trace memory
saturated: in this case five update miss occurs followed by
two traces creation with deletion. In this case, the IDS
algorithm is performed in only 350 μs.

7. Validation

This section deals with validation of the implementations
of the cryptographic scheme TAKS and the intrusion
detection system WIDS described in previous sections.
Main TAKS functionalities have been already validated in
[24] and [30] where a TAKS implementation for TinyOS
[36] has been proposed. With respect to [24], the scheme
discussed in this work is characterized by two different
phases: a key agreement with the transmission of
deciphering information and the effective data
transmission. We have validated the novel state machine
by checking the correctness of all possible paths. In
particular, two aspects have been taken into account.
The first issue regards fault tolerance with respect to
packet transmission and reception errors. For example, it
has been checked that errors such as transmissions to not
active nodes, do not compromise the subsequent
communications: indeed, although in Figure 3 this aspect
is omitted to simplify the discussion, when packets
retransmissions exceed a programmable threshold, the
state machine is reset and able to accept new
communications. Failures due to this kind of transmission
error are very simple to reproduce and then correct
behaviour verification is straightforward: we have verified
that nodes sending data are able to start several TAKS
transactions even if they have not been correctly
completed. Since packet retransmission is also adopted
for channel access failures, this verification has allowed to
verify (by design) TAKS with respect to this kind of error.
Instead, when we consider reception errors we need to
verify that the state machine is able to receive packets
following an abnormally completed TAKS transaction.
Since we cannot have a data transmission without a key
agreement between parties, we need to verify that nodes
are able to perform two consecutive agreements. This
behaviour has been verified by using two nodes (i.e. a
transmitter and a receiver) and by forcing the transmitter
to send two different key agreement packets for each
transaction. In this condition, the receiver has been able to
correctly decrypt each message exchanged with the
transmitter.
Previous tests allow to verify correctness of TAKS
implementation in very simple networks composed by
only two nodes. But when network grows, we have more
transmissions and receptions occurring with simultaneous
transactions. In each single node, transmission operations
are serialized and then concurrent outgoing transactions

are not possible. Instead, transactions interleaving could
happen at the receiver side since it is possible that two
nodes start TAKS operations simultaneously towards the
same receiver. This aspect has been checked by means of
a stress test. A test network has been setup, which is
composed by a receiver acting as a 802.15.4 coordinator,
two transmitters acting as devices, and a sniffer. Two
transmitting nodes have been configured to continuously
send known and progressive strings, and the receiver has
been configured to send decrypted strings on its serial
port. When analyzing the messages exchanged by nodes
logged by the sniffer node, we have been able to check
that our TAKS implementation properly handles packet
interleaving. We have observed that the coordinator has
been able to correctly decrypt messages even if TAKS
transactions were interleaved. Given the result of the
previous tests, we can consider TAKS suitable for
arbitrary size networks.
For what concerns WIDS, validation has concerned two
different aspects: the former one is related to check
correctness of the implemented algorithm, the latter one is
related to the validation on real nodes soliciting IDS with
real attackers.
To check IDS correctness we have focused on its
underlying algorithm. We have tested on a personal
computer (PC) exactly the same implementation of the
algorithm running on the Zigbit platform: this has been
possible by simulating the behaviour of Atmel stack on a
PC while replacing the stack itself with a software library
offering the same Application Programming Interface
(API) offered by the Atmel component. Fortunately, the
IDS algorithm exploits only few of the operating system
services provided by the stack, i.e. timers to reset traces.
In fact, by operating with the Atmel stack, the operating
system services are similar to services primitives
described in section 5.3.1, i.e. responses to a request are
provided as deferred or asynchronous callbacks. To
provide an event driven programming approach exploiting
the PC multithreading environment is straightforward:
each request creates a new thread that introduces a
specific delay and then calls the proper callback. By
exploiting this environment, we are able to simulate the
behaviour of the Atmel stack with the availability of all
useful operating system services (e.g. terminal, accurate
timers, file system, etc.). As an example, Figure 8 shows
the code of API functions implemented to simulate timer
behaviour.
Several tests have been conducted to study the evolution
of the algorithm. Each of them has required: 1) the design
of a specific sequence of observables that are suitable to
solicit part of the algorithm; 2) the coding and consequent
running of such sequences in the simulated environment.
It is worth noting that, in the simulated environment, each
test appears as a series of calls to input_occurred() and to
the sleep function offered by the PC operating system.
They are then simpler to code with respect to direct
operations on Atmel stack. As discussed in Section 6.4, a
complete coverage of the algorithm can be obtained by
analyzing trace creation and updating.

EAI Endorsed Transactions on
Ubiquitous Environments

05 -07 2015 | Volume 2| Issue 5 | e1

16

/*Thread's code*/
void* wait_for_ms(void* arg)
{
 mytimer_t p;

p.id = ((mytimer_t*)arg)->id;
p.handler = ((mytimer_t*)arg)->handler;
p.timeout = ((mytimer_t*)arg)->timeout;
free(arg);
struct timespec req, rem;

 rem.tv_sec = p.timeout / 1000000;
 rem.tv_nsec = p.timeout % 1000000;

 do
 {
 memcpy(&req,&rem,sizeof(struct timespec));
 nanosleep(&req, &rem);
 }while((rem.tv_sec !=0) && (rem.tv_nsec != 0));

p.handler();

 pthread_mutex_lock(&mutex);
 timers[p.id] = 0;
 pthread_mutex_unlock(&mutex);
 pthread_exit(NULL);
 return NULL;
}

/*Simulated start timer API command*/
bool bridge_layer_start_timer(uint8_t id, uint32_t timeout,
 void (* handler) (void))
{
 if((id < MAX_TIMERS) && (id != 0))
 {
 mytimer_t* p = malloc(sizeof(mytimer_t));
 p->id = id;
 p->handler = handler;
 p->timeout = timeout;

 pthread_mutex_lock(&mutex);
 pthread_create(&timers[id], NULL, wait_for_ms, p);
 pthread_mutex_unlock(&mutex);
 return true;
 }
 return false;
}

Figure 8. API functions to simulate timer behaviour

Therefore, trace creation hit or miss and trace update hit
or miss have been solicited in the simulated environment
and their correctness has been checked. The detection of
all the attacks has been validated at simulation level
providing ad-hoc and random sequences of observables in
input to the algorithm and analyzing its responses.
This first kind of validation has allowed to functionally
validate the algorithm, but it does not allow to completely
validate IDS since it should be running on nodes. For this
reason, a second phase validation has been conducted
directly on nodes and soliciting them with some real
attacks.
For example, the radio component mounted on board of a
Zigbit platform provides Continuous Transmission Test
Mode that we have exploited to validate several attacks
based on jamming. Trivially, it has been possible to build
a continuous jammer node by simply activating this mode.
Then, to validate detection of continuous jamming attack,
we have built a network composed by two nodes,
specifically a device exchanging data with a coordinator
and both them running WIDS. When we have turned on
the jammer in the range of the nodes, both of them have
detected the attack although in different ways: the
coordinator assessing the channel before transmitting
beacons and the device by means of the threshold on
retransmissions.
Instead, by interleaving Continuous Transmission Test
Mode with idle mode according to random generated time

periods, it has been possible to realize a random jammer.
Random jamming attack detection has been tested in the
same conditions described above and with the same result.
Both nodes have detected the attack adopting the same
strategies even if detection of this attack requires more
time than continuous jamming depending on the
pseudorandom sequence generated by the attacker.
Instead, by enabling the transmission mode for a certain
time at the reception of any packet, we have validated
reactive jamming. This attack has mainly affected
acknowledgement receptions since these packets are
transmitted without access control. In our test network,
only the device node has been able to detect this attack
since it is the only node that requires acknowledgement
reception.
When dealing with MAC layer attacks, Continuous
Transmission Test Mode has been used again to validate
backoff manipulation attack by enabling transmission at
each beacon reception for a certain time. In our test
network and in the absence of an attack, we can assume
that a device node does not assess the channel more than
two times for each transmission. In fact, [18] sets to 2 the
number of backoff periods that need to be clear of channel
activity before the transmission can start. By monitoring
the transmissions that require more than two backoff
periods, we have been able to efficiently detect the
backoff manipulation attack as explained in Section 6.3.2.
Obviously, this parameter should be properly set when
network size increases.
Another MAC attack that we have decided to reproduce is
the replay attacker: it is very simple to reproduce since
Atmel MAC layer handles frame counter via software and
then the attacker can be obtained by deleting the
instruction responsible of this increment. In this manner,
the attacker node sends packets with the same frame
counter, thus implying the occurrence of the observable
O12 on a node running WIDS. We have verified that, if
we program the attacker node to send messages to one of
the two nodes in the test network, the interested node is
able to detect the attack.

8. Conclusions and future works

The middleware proposed in this paper aims to provide
advanced security services to applications that rely on a
real-world WSN protocol stack where lower layers are
compliant to the IEEE 802.15.4 standard. Our approach
makes this middleware suitable for a wide set of
applications since IEEE 802.15.4 is the de-facto standard
used for realistic WSN deployment. Our work proposes
TAKS adaption to be implemented on the top of the IEEE
802.15.4 MAC Layer (i.e. topology-based key agreement
protocol for 802.15.4 networks) and a set of design
choices that we have identified to implement WIDS while
guaranteeing availability of the network.
Performances have also been measured. It has been shown
that, on the ZigBit microcontroller (i.e. Atmel
ATmega1281 running at 8 MHz), TAKS execution time is

EAI Endorsed Transactions on
Ubiquitous Environments

05 -07 2015 | Volume 2| Issue 5 | e1

L. Pomante et al.

A Middleware Approach for IEEE 802.15.4 Wireless Sensor Networks Security

17

about 10 ms. TAKS introduces a radio overhead factor of
3x or 1.5x depending on whether both end-to-end and
link-layer cryptography are activated simultaneously or
not. On the same microcontroller WIDS evolves in only
350 μs and requires only 448 bytes memory space. The
proposed middleware has been implemented and its
validation has been carried out by emulating external
stimulus and collecting the responses of various
algorithmic components in elementary scenarios.
Nevertheless, an extensive validation has been planned in
a large scale test-bed that we are deploying in our
departmental facilities.

Acknowledgments
The research leading to these results has received funding
from the European Union Seventh Framework
Programme [FP7/2007-2013] under grant agreements n°
257462 HYCON2 Network of excellence and n° 240555
ERC SG VISION. The development of the middleware
platform also fits in the frame of “Ricostruire” and
“SMILING” projects supported by the Italian Ministry of
Economic Development to enhance technology transfer in
the RIDITT framework.

References

[1] AGILLA Home Page, http: // mobilab.wustl.edu / projects /
agilla /, 2015.

[2] I. F. Akyildiz IF, W. Su,Y. Sankarasubramaniam, E.
Cayirci, “A survey on sensor networks”, IEEE
Communications Magazine, 2002.

[3] Atmel Corporation, “AT86RF212 Data Sheet”,
www.atmel.com / images / doc8168.pdf , 2015.

[4] Atmel Corporation, “ZigBit™ 700/800/900 MHz Wireless
Modules - ATZB-900-B0 Datasheet”, www.atmel.com /
Images / doc8227.pdf , 2015.

[5] S. A. Camtepe, B. Yener, “Key Distribution Mechanisms
for Wireless Sensor Networks: A Survey”, Techical Report
TR-05-07, 2005.

[6] H. Chan, A. Perrig, D. Song, “Random Key Predistribution
Schemes for Sensor Networks,” IEEE Symposium on
Research in Security and Privacy, 2003.

[7] P. Chapin, C. Skalka, “SpartanRPC: Secure WSN
middleware for cooperating domains”, Proceedings of the
Seventh IEEE International Conference on Mobile Ad-hoc
and Sensor Systems, 2010.

[8] F. Chen, F. Dressler, “A Simulation Model of IEEE
802.15.4 in OMNeT++,” Proc. of FGSN - Poster Session,
Jul. 2007.

[9] A. Cunha, M. Alves, A. Koubaa, “Implementation Details
of the Time Division Frame Scheduling Approach for
Zigbee Cluster-Tree Networks”, IPP-HURRAY Technical
Report, HURRAY-TR-070102, Jan 2007.

[10] R. Daidone, G. Dini, M. Tiloca, “STaR: a Reconfigurable
and Transparent middleware for WSNs security”,
Proceedings of the 2nd International Conference on Sensor
Networks (SENSORNETS 2013), 2013.

[11] D. E. Denning, “An Intrusion-Detection Model”, IEEE
Transactions on Software Engineering, vol. SE-13, no. 2,
Feb. 1987.

[12] W. Diffie, M. E. Hellman, “New Directions in
Cryptography,” IEEE Trans. Information Theory, vol. 22,
no. 6, pp. 644-654, Nov. 1976.

[13] A. H. Farooqi, F. A. Khan, “Intrusion Detection Systems
for Wireless Sensor Networks: A Survey”, Communication
and Networking, pp. 234-241, 2009.

[14] L.H. Freitas, K.A. Bispo, N.S. Rosa, P.R.F. Cunha, “SM-
Sens: Security middleware for Wireless Sensor Networks”,
Proceedings of the Information Infrastructure Symposium,
2009.

[15] S. Gupta, R. Zheng, A, M.K. Cheng, “An Anomaly
Detection System for Wireless Sensor Networks”,
Proceedings of IEEE International Conference on Mobile
Ad hoc and Sensor Systems, 2007.

[16] S. Hadim, N. Mohamed, “Middleware: Middleware
Challenges and Approaches for Wireless Sensor
Networks”, IEEE Distrib. Syst. Online, 2006.

[17] M. E. Hellman, “An Overview of Public Key
Cryptography,” IEEE Communications Society Magazine,
vol. 16, no. 6, pp. 24-32, Nov. 1978.

[18] IEEE 802.15.4-2006 standard, http: // standards.ieee.org /
getieee802 / download / 802.15.4-2006.pdf, 2015.

[19] S. Kaplantzis, “Classification techniques for network
intrusion detection” , Technical Report, Monash University,
2004.

[20] C. Karlof, D. Wagner, “Secure Routing in Wireless Sensor
Networks: Attacks and Countermeasures”, Ad Hoc
Networks, vol. 1, pp.293 -315, 2003.

[21] I. Krontiris, T. Dimitriou, “Towards Intrusion Detection in
Wireless Sensor Networks”, Proceedings of 13th European
Wireless Conference, Paris, 2007.

[22] B. Lai, S. Kim, I. Verbauwhede, “Scalable session key
construction protocol for wireless sensor networks”, IEEE
Workshop on Large Scale RealTime and Embedded
Systems (LARTES), 2002.

[23] C.E. Loo, M.Y. Ng, C. Leckie, M. Palaniswami, “Intrusion
Detection for Routing Attacks in Sensor Networks”,
International Journal of Distributed Sensor Networks, 2006.

[24] S. Marchesani, L. Pomante, M. Pugliese, F. Santucci, “A
Middleware Approach to Provide Security in IEEE
802.15.4 Wireless Sensor Networks,” Proc. of the 6th
International Conference on Mobile Wireless Middleware,
Operating Systems and Applications, pp. 85-93, Nov. 2013.

[25] S. Marchesani, L. Pomante, M. Pugliese, F. Santucci,
“Definition and Development of a Topology-based
Cryptographic Scheme for Wireless Sensor Networks”, 4th
International Conference on Sensor Systems and Software
(S-Cube 2013), Lucca, 2013.

[26] C. Mascolo, S. Hailes, “Survey of middleware for
networked embedded systems”, Technical Report for
Project: Reconfigurable Ubiquitous Networked Embedded
Systems,University College London, 2005.

[27] L. Pomante, M. Pugliese, S. Marchesani, F. Santucci,
“WINSOME: A Middleware Platform for the Provision of
Secure Monitoring Services over Wireless Sensor
Networks”, 9th International Wireless Communications &
Mobile Computing Conference (IWCMC 2013), Cagliari,
2013.

[28] M. Pugliese, L. Pomante, F. Santucci, “Agent-based
Scalable Design of a Cross-Layer Security Framework for
Wireless Sensor Networks Monitoring Applications”,
Proceedings of the International Workshop on Scalable Ad
Hoc and Sensor Networks (SASN2009), Saint Petersburg,
2009.

EAI Endorsed Transactions on
Ubiquitous Environments

05 -07 2015 | Volume 2| Issue 5 | e1

18

[29] M. Pugliese, L. Pomante, F. Santucci, “Secure Platform
over Wireless Sensor Networks”, INTECH Publishers,
ISBN 978-953-51-0218-2, 2012.

[30] M. Pugliese, F. Santucci, “Pair-wise Network Topology
Authenticated Hybrid Cryptographic Keys for Wireless
Sensor Networks using Vector Algebra”, Proceedings 4th
IEEE Intern. Workshop on Wireless Sensor Networks
Security (WSNS08), Atlanta, 2008.

[31] M. Pugliese, F. Santucci, “The Mean-Variance Estimator
Technique in Monitoring Applications using Mobile
Agents over Wireless Sensor Networks,” Proc. of the 6th
International Conference on Mobile Wireless Middleware,
Operating Systems and Applications, pp. 110-119, Nov.
2013.

[32] M. Pugliese, A. Giani, F. Santucci, “Weak Process Models
for Attack Detection in a Clustered Sensor Network using
Mobile Agents,” Proc. of the 1st International Conference
on Sensor Systems and Software, pp. 33-50, Sep. 2009.

[33] R. Roman, J. Zhou, J., Lopez, “Applying Intrusion
Detection Systems to WSNs”, IEEE Consumer
Communications and Networking Conference, vol. 1, pp.
640–644, 2006.

[34] C.E. Shannon, “A Mathematical Theory of Cryptography,”
Technical Report MM 45-110-02, Bell Labs., Sep. 1945.

[35] R. Sokullu, I. Korkmaz, O. Dagdeviren, A. Mitseva, and N.
R. Prasad, “An Investigation on IEEE 802.15.4 MAC Layer
Attacks”, Proc. International Symposium on Wireless
Personal Media Communications, Dec. 2007.

[36] TinyOS homepage, http://www.tinyos.com, 2015.
[37] C. Vairo, M. Albano, S. Chessa, “A Secure Middleware for

Wireless Sensor Networks”, Proceedings of the 5th Annual
International Conference on Mobile and Ubiquitous
Systems: Computing, Networking, and Services, 2008.

[38] M. Valero, S. S. Jungy, A. S. Uluagacy, Y. Li, R. Beyahy,
“Di-Sec: A Distributed Security Framework for
Heterogeneous Wireless Sensor Networks”, Proceedings of
the IEEE INFOCOM Conference, 2012.

[39] M. Wang, J. Cao, J. Li, S. K. Das, “Middleware for
Wireless Sensor Networks: A Survey”, J. Comput. Sci.
Technol., 2008.

[40] Y. Xiao, S. Sethi, H.-H. Chen, B. Sun, ”Security services
and enhancements in the IEEE 802.15.4 wireless sensor
networks”, in Proceedings of IEEE GLOBECOM’05, vol.3,
2005.

[41] W. Xu, K. Ma, W. Trappe, Y. Zhang, ”Jamming sensor
networks: attack and defense strategies”, IEEE Network,
vol.20, no.3, pp. 41-47, Jun. 2006.

[42] Q. Zhang, T. Yu, P. Ning, “A Framework for Identifying
Compromised Nodes in WSNs”, ACM Transaction
Information System Security 11(12), 2008

[43] ZigBee Alliance: ZigBee Document 053474r17, ZigBee
Specification. ZigBee Alliance, Jan. 2008.

EAI Endorsed Transactions on
Ubiquitous Environments

05 -07 2015 | Volume 2| Issue 5 | e1

L. Pomante et al.

