
Research Article

Android Apps Risk Evaluation: a methodology

Andrea Atzeni1, Tao Su1,∗, Madalina Baltatu2, Rosalia D’Alessandro2, Giovanni Pessiva3

1DAUIN, Politecnico di Torino - Corso Duca degli Abruzzi, 24 - 10129 Torino, ITALY
2Telecom Italia Information Technology Security Lab, Via Reiss Romoli, 274, Torino, ITALY
3Reply SpA, Via Cardinale Massaia, 83, Torino, ITALY

Abstract

Android uses a permission-based security model to limit its app’s capability. However, the user’s decision is
almost completely unrelated to the app’s risk level due to insufficient information. The platform openness and
the plethora of available software also make dangerous apps (not necessarily malware) very common.

To enhance end-user security awareness, we propose a new approach and tool to evaluate the potential risks of
Android app packages. We integrated various static and dynamic analysis techniques into a framework able to
detect suspicious activities, map them to fine-grained risk categories and evaluate them with the fuzzy logic
algorithm. This tool can retrieve and analyse large quantities of apps automatically and provides a simple logic
for other tools to integrate with. Finally, our software has been tested on a large set of real-world samples, both
benign and malicious, demonstrating its efficiency (4s/app) and a reasonable capacity to evaluate the risk of
Android app packages.

Keywords: Android application analysis, application risk level estimation, fuzzy logic algorithm

Received on 10 February 2014; accepted on 24 April 2015; published on 26 May 2015
Copyright ©c 2015 T. Su et al., licensed to ICST. This is an open access article distributed under the terms of the Creative
Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and
reproduction in any medium so long as the original work is properly cited.
doi:10.4108/ue.1.4.e5

1. Introduction

Nowadays, the vast majority (84.4%, Q3 2014, IDC) of
smartphones [1] and a huge share (67.5%, Q1, 2014, IDC)
of tablets [2] are powered by Android, a mobile operating
system based on Linux kernel and maintained by Google.
Every day, thousands of apps are published through
the official or third-party application repositories. As
shown in practice, many among this huge number
of applications contain security and privacy risks [3],
such as accessing the contacts, uploading location and
retrieving device information.

These types of dangerous behaviour are common in
both benign and malicious applications. Some are caused
by developers’ misjudgement, e.g. invoking suspicious ad-
ware or recycled codes. Some are caused deliberately to
fulfil the requirements of application functionality.

The first reason is easy to understand, while to clarify
the second one, we have the example of the instant
message application Viber, which requires access to the
user’s contact list to find out who else is also using

∗Corresponding author. Email: tao.su@polito.it

it. Moreover, as part of the authentication mechanism,
it uses the mobile phone number as user identity. For
this reason, during the account activation process, the
Viber server sends a short message to the phone number
with an activation code. Then the app installed on
the user’s device accesses the message and verifies the
activation code to confirm that the user owns the phone
number. Even if in this case there is an acceptable
reason, accessing a contact list and SMS service is as
equally risky as in malware. In scenarios like this one, the
boundary between legitimate and malicious applications
is blurred, and security-sensitive users may wisely avoid
installing too invasive software.

The Android permission-based security model leaves
the management of accessing control of device resources
to end users. However, end users have almost no useful
information about the danger of their choices, since
the potential risk of an application is not evident. For
this reason, we designed and implemented an automated
Android app analyser, based on both static and dynamic
analysis techniques, able to evaluate the potential risk
level of an Android app package (apk). The analysis
output consists of a detailed app behaviour report and a

1

EAI Endorsed Transactions
on Ubiquitous Environments

EAI Endorsed Transactions on
Ubiquitous Environments

01 -05 2015 | Volume 1| Issue 4 | e5

http://creativecommons.org/licenses/by/3.0/
mailto:<tao.su@polito.it>

T. Su et al.

simple numerical value as comprehensive risk estimation,
which can give a risk indication for both tech-savvy and
common users prior to apk installation.

One of the biggest challenges in building fully
automatic analysis systems is how to evaluate the
analysis results in order to present end users a valid
help for decision making. In fact, an automated system
can successfully deal with objective truth but less
easily with “reasonable” decisions. This phenomenon is
also true in Android app analysis environment: in all
previous researches, including static [4–10], dynamic [11–
13] or hybrid [14] analysis approaches, this final
decision is made by calling for human intervention. The
analysis modules will filter out the majority of samples
which do not trigger certain thresholds, then human
inspection is required to categorise the rest samples.
Although the filtering process can significantly reduce
the human effort, it is still inconvenient for a market-
scale analysis. Further researches address this point by
applying complex reasoning techniques (e.g. machine
learning, data mining, ...) [15–18] to make the automatic
analysers capable of taking the final decision. We, on the
contrary, adopt the fuzzy logic algorithm to overcome the
uncertainty raised by the nature of automatic analysis.
However, we do not claim the ability to directly detect
malware, since, as a matter of fact, applications can be
low-quality, buggy and risky without necessarily being
malware.

This paper makes the following major contributions:

• we propose an automatic analysis approach
exploiting both static and dynamic analysis
techniques for Android app packages, and we
map the detected activities to fine-grained risk
categories;

• we evaluate application’s risk level using the fuzzy
logic algorithm, trying to overcome/mitigate the
uncertainty limitation arose from the nature of
automatic analysis;

• we implement a prototype, evaluating its effective-
ness by analysing real-world benign and malicious
Android apps, and we discuss the results and give
an insight on the discriminating characteristics of
the results for these two sets.

The rest of the paper is organised as follows: in Sec. 2
we present the Android security model, showing the
basic mechanisms Android uses for protection, allowing
readers to understand their limitations. In Sec. 3 we
describe our analyser, including both the static and
dynamic analysis modules, as well as the fuzzy logic
system used in computing final results. After that, we
present our evaluation results in Sec. 4, and in Sec. 5 we
discuss previous work on Android application analysis
and compare them with our analyser. Finally, in Sec. 6,

we give a brief summary of our analyser and the results
we achieved.

2. Android Security Model

Android operating system is based on the Linux kernel,
and inherits many of its security features. For example,
it takes advantage of the user-based permissions model
to manage application execution; a unique Linux user
identifier (UID) is assigned to every installed package.
Consequently, applications are “sandboxed” in kernel-
level and run as different users in separate processes.

Applications for Android are written in Java and run
on a proprietary Virtual Machine called Dalvik (DVM).
While the classic Java Virtual Machine is stack-based,
Dalvik is instead register-based, which makes it faster
on ARM microprocessors present on the majority of
mobile devices. Java sources are compiled into class files
using the Java Compiler (javac), and then converted into
Dalvik bytecode (dex files) using the dx tool. The related
resources (e.g., images and strings) are also compiled
with the command aapt into a single file.

All the files are then packaged using apkbuilder
into an apk (Android Package) file, which is, basically
a zip compressed archive. This file is then signed
with jarsigner, using a self-generated certificate. This
certificate is checked by the underlying system only once,
at the installation time.

Fundamentally, the components of an apk file are:

• a META-INF directory:

– MANIFEST.MF, the manifest file containing
the list of resources and their SHA1 digest;

– CERT.RSA, the certificate of the developer;

– CERT.SF, the SHA-1 digests of the resources
in the MANIFEST.MF file.

• a lib directory, containing the compiled code
specific to a software layer of a given processor,
splits into more sub-directories, armeabi, x86 or
mips;

• a res directory, that contains raw resources which
are not compiled into resource.arsc;

• an optional assets directory, that contains
application assets that can be retrieved by
AssetManager1;

• AndroidManifest.xml, an additional Android mani-
fest file, describing the name, version, access rights,
referenced library files for the application. The
file may be Android binary XML format that can
be converted into human-readable plaintext XML
format with other tools like AXMLPrinter [19];

1Provides access to an application’s raw asset files.

2

EAI Endorsed Transactions on
Ubiquitous Environments

01 -05 2015 | Volume 1| Issue 4 | e5

Android Apps Risk Evaluation: a methodology

• classes.dex, the source code of the application that
is compiled in Dalvik executable format;

• resources.arsc, a file containing various types of
pre-compiled resource, such as binary XML.

The manifest file contains the essential data needed by
the operating system needs in order to install and run the
application, including:

• the name of the Java code package, which can be
used as a unique identifier for the application;

• the application components (activities, services,
broadcast receivers and content providers);

• the list of permissions required by the application;

• the minimum/target level of the Android API
(SDK version) required;

• the external libraries that the application must be
dynamically linked to;

• the features of the device used (e.g., hardware
sensors).

From the security point of view, the list of
permissions required by the app and the used features
(e.g., hardware sensors) are of particular interests.
Sensitive APIs are intended for usage by trusted
applications alone and are protected through the
permissions security mechanism. Therefore, explicit
permissions must be required a prior to installation, for
example, the camera functions, location data, telephony
functions, SMS/MMS functions and the network
connections. Each permission is identified by a unique
label, for example android.permission.SEND SMS,
android.permission.INTERNET, etc.. At installation
time, the user is required to approve the permission list
requested by the app, as shown in Fig. 1. If an application
tries to use a feature whose permission is not granted, the
system will throw an exception or return no results.

The permission-based model, while being intuitive for
developers and users, presents some security flaws. As
demostrated in practice, by itself it is not enough to
prevent malicious software. For example, TapLogger [20]
is a proof-of-concept key-logger which does not need any
permission; it uses information from motion sensors of
the device to deduce which keys the user has tapped.
Another possible way to circumvent the Android security
mechanism is by means of dynamic code loading. The
code can be pre-stored inside the apk or even downloaded
from the Internet at run-time, such code may contain
malicious parts that are much more difficult to detect.

3. Android Application Evaluator

In mobile environment, either due to the software
vulnerabilities or the users’ tendency to allow more
permissions than needed as well as the developers’
inclination to ask for more than necessary, risky

Figure 1. Permissions requested by an application.

operations can easily cause privacy leaks or money losses
for the device owner.

To better inform users, our risk evaluator herein
exploits various techniques, based on both static and
dynamic analysis.

The goal of our system is to express, with a simple
numerical value, the potential damage that the analysed
app can cause to device and/or user; this value is called
“risk score”. The purpose of this value is to give a quick
indication to the users, who can subsequently choose how
to manage the potential source of threat, e.g., carefully
read the detailed report provided by our tool.

In our context, the word “risk” is used for alerting
about a tangible danger (e.g., a privilege escalation
is signalled when a specific shell command is present,
money risk when short messages are sent or phone calls
are made, etc.). Conservatively, it also flags a potentially
dangerous situation (e.g., the presence of a generic
embedded binary executable), as well as potentially
malicious behaviour patterns (e.g., read and then send
the contact list). Each situation is mapped to a specific
risk category according to different analysis patterns, as
indicated in the following subsections.

3.1. Static Analysis

Static analysis is the process of analysing the source code
of an application without actually executing it. Usually
the starting point is decompiling the application’s binary
and generating a representation of the source code.

In Android, the first step is to unpackage the apk files
(e.g., with a simple unzip command). The application
manifest file (AndroidManifest.xml) is usually a key

3
EAI Endorsed Transactions on

Ubiquitous Environments
01 -05 2015 | Volume 1| Issue 4 | e5

T. Su et al.

source of information, and many tools exist to make
it human readable (e.g. AAPT, the Android Asset
Packaging Tool included in the Android SDK). By
reading the manifest content, a number of tools can
be employed to point out possible security issues. For
example, Manitree [21], among a number of others,
searches for the services shared with other apps without
an intent filter or an explicit permission requirement,
which would allow accessing from other apps. Meanwhile,
since malware often sets higher priority values to forerun
other app requests, the tool also looks at the intents’ and
the actions’ priority values searching for insecure points.

In case the application has to be used in a trusted
environment (e.g., on a device with sensitive data
stored), a complete static analysis would require human
inspections. To fully understand what an application
does, the main file (classes.dex) has to be decompiled
into human-readable codes. Different tools exist to dump
Dalvik bytecode or to convert it to other low-level
representations (e.g., Smali [22]). Generally, the result
is easily understandable, unless obfuscation techniques
have been used. Depending on the analysis goal, the
preferred human-readable representation can differ. For
example, an assembly-like representation, which is often
easier to re-compile but harder to read, would be a better
choice in order to modify and repackage the app.

In our case, the static analysis is implemented through
several modules, which leverage extensively on the
androguard APIs [23], an effective set of tools written
in Python which helps implementing various static
analysis methods on Android applications. We extended
it through two complementary modules, Behaviour and
FileScan.

Behaviour module. Behaviour is the first static
analysis module, aims to check 1) whether the
permissions required by the application are effectively
used and 2) the critical APIs usage in order to finds out
potential dangerous operations.

As the first step, Behaviour scans the app’s manifest,
retrieving the required permission list. Afterwards, it
decompiles the app to obtain the source code, and the
source code is analysed to find out what APIs are invoked
and which operations the app attempts to execute.
The tool can further check potential risks, e.g. privacy
violations, frauds, device abuse and so on. In the final
step, it correlates the APIs used with the requested
permissions and detect incoherencies among them. A
detailed list of all the behaviour patterns Behaviour
identifies and their violated risk categories are shown in
the appendix F.1.

In order to provide more details on the types of
menace posed by dangerous operations, we enlarged the
androrisk risk taxonomy and enable Behaviour module
to map all the Android permissions [24] to an increased
number of risk categories. The source code which lead

to dangerous activities is mapped to the following risk
categories:

• root privileges escalation, target app contains
functionalities which require or exploit root
privilege;

• encrypted code, target app uses crypto algorithms
which can be used to obfuscate code;

• binary code, target app uses JNI, native code;

• internet, target app contains the Internet related
activities;

• dangerous, target app calls dangerous APIs and
permissions;

• dynamic code loading, target app calls for external
libraries when executing;

• exploit, target app invokes functionalities which
can be exploited (e.g., gingerbread exploit for
Android 2.3 [25]);

• phone, target app contains functionalities which
can affect the phone (e.g. enabling WIFI, accessing
to phone settings);

• SMS activities, target app invokes
API/functionalities which permits to handle
SMS;

• money, target app contains activities that costs
phone owner’s money (e.g., phone calls, sending
SMS);

• signature, target app declares Signature permission
in the manifest2;

• signature system, target app declares Signature-
ORSystem permission in the manifest3;

• privacy violation, target app contains activities
which violate user’s privacy (e.g., accessing to
contacts, GPS location).

The rationale behind this mapping is to enumerate
and characterise the possible danger the user might
face, and present this result in a way which is
immediately meaningful to the users. Some of the

2 Signature permission is a permission that the system grants only
if the requesting application is signed with the same certificate
as the application that declared the permission. If the certificates
match, the system automatically grants the permission without
notifying the user or asking for the user’s explicit approval.
3SignatureOrSystem permission is a permission that the system
grants only to applications that are in the Android system image
or that are signed with the same certificate as the application that
declared the permission. So this permission should never be granted
to third party developers besides the ones that publish the OS
image. This permission should be used only in very special cases
when multiple vendors have applications built into a system image
and need to share specific features explicitly because they have
to be built together. In general, this and the previous permission
should not be used by ‘common’ applications. Since when the OS
grant them, the application can do some critical operations, even
without user notification.

4
EAI Endorsed Transactions on

Ubiquitous Environments
01 -05 2015 | Volume 1| Issue 4 | e5

Android Apps Risk Evaluation: a methodology

mappings are straightforward (e.g., the root privileges
escalation activity is categorised into the homologous
risk category). Some other activities are mapped into
multiple risk categories; for example, the Internet
activities are categorised into both Internet and Money
risk categories. In this way, we can evaluate the app’s
dangerousness based on both the detected activities
and on a finer-grained level of risk categories and their
violation occurrences, which are more understandable by
end users. Thanks to this more accurate categorisation,
the evaluator can compute the risk score which
accurately reflects the app’s behaviour.

FileScan module. FileScan is the second static analysis
module, which analyses every file stored inside the app
package. It is structured as a Python class which can
recursively analyse apk files, as well as zip, tar, gzip and
rar archives. After analysing every file stored inside the
archive, it computes a risk score which represents the
potential harm posed by that apk. It can provide various
information about the apk file (e.g., files list, checksums,
URLs and phone numbers found inside them), point
out suspicious behaviour patterns (e.g., hidden files,
shell scripts with potentially dangerous commands) and
identify known infected files (e.g., embedded malware
apk, infected native libraries).

FileScan accomplishes all these task by means of
a recursive approach, it automatically analyses every
single file and identifies its type using the magic number
analysis. Magic number analysis uses the magic number
(a 2-byte identifier at the beginning of the file), as well
as specific patterns, in order to identify the format of a
file without relying on its extension. The output of this
analysis is the MIME type of the file, a standard two-
parts identifier, which is used by FileScan to correctly
categorise the file.

Many malware apps attempt to conceal their purposes,
and often alter file names to use some innocuous
extension (e.g. png) and deceive anyone who would
quickly analyse the app content; for example the malware
families of DroidDream and GingerMaster use this trivial
technique. FileScan can identify the dangerous files even
if they have been renamed; moreover, it considers the
case of a renamed critical file (embedded application
or binary) as a clear sign of malicious intention. In
order to decide whether the extension of a file has
been changed, two approaches are used: comparing the
extension against a list of valid extensions (white list
approach) and against a list of invalid ones (black list
approach).

Embedded apps are apk files stored inside another app
package, that can be installed or loaded at run-time
through dynamic code injection. Many static analysis
systems are not able to detect and analyse them
properly; some malware use this technique to carry
another application with other functionalities. The elf

binaries, either executables or shared libraries, can be
used by the app for a direct access to the system APIs.
Usually they are used for performance or compatibility
reasons, and they can be called from the main application
as external libraries. Such code is more difficult to be
detected and analysed; moreover, since the system call
interface of Linux kernel is directly exposed to the native
code, it can be used to exploit the system vulnerabilities.
Shell script files are textual files containing commands,
which our module can identify as threats; for example,
they can be used to perform privilege escalation attacks.

In order to determine if a file is malicious, FileScan can
look up checksums of the files using the Malware Hash
Registry online service4, and retrieving the detection
rate for that file. It also uses a limited set of checksums
associated with infected binaries from known families of
malware, in order to speed up the analysis process and
be able to identify malicious file even when the online
lookup service is not available.

Concisely, the risk categories considered and estimated
by FileScan are the followings:

• hidden elf binary, analysed apk archive contains an
ELF file which is not in the standard directory and
has unexpected extension;

• hidden apk, the archive contains an embedded apk
file with an unexpected extension;

• hidden text, the archive has a textual file with an
invalid extension;

• infected elf binary, the archive has an ELF detected
as infected;

• infected dex code, the archive contains a dex file
which is detected as infected;

• input shell, the archive contains a shell script;

• shell install, the archive contains a shell script with
install commands;

• shell privilege, the archive has a shell script
containing commands usable to perform a privilege
escalation;

• shell other, the archive has a shell script containing
dangerous shell commands.

FileScan is also able to look for URLs and phone
numbers inside textual files, which could be used by
the app to communicate with malicious C&C (command
& control) servers, to make phone calls or send
short messages to. URLs and phone numbers are also
searched in the string dictionary in the application
package, which is contained in the compiled resource file
(resources.arsc). The regular expression used for URL
addresses is able to identify URLs with escape characters
or formatted parameters, which could be manipulated by
the application to produce valid addresses. Moreover, a

4www.team-cymru.org/MHR.html

5
EAI Endorsed Transactions on

Ubiquitous Environments
01 -05 2015 | Volume 1| Issue 4 | e5

www.team-cymru.org/MHR.html

T. Su et al.

white list of the most common URLs is used to filter
out irrelevant results. The regular expression used for
phone numbers is able to find potential phone numbers
composed by 4 or more digits, but the false positive
rate in this case is significant and manual controls are
needed. However, this shortcoming can be mitigated by
combining the results from FileScan with the analysis
result of the dynamic analysis module, which is able to
identify phone numbers and URL addresses used during
the sample’s execution.

FileScan is, to the best of our knowledge, the first tool
capable to automatically analyse all the files in Android
app package and detect these kinds of menace. Although
it is not able to defeat more advanced techniques (e.g.,
file encryption), it can quickly and efficiently identify a
wide set of dangerous alternatives. In our opinion, at
the moment it achieves the best result for an automated
analysis of this type.

3.2. Dynamic Analysis

Dynamic analysis is the run-time analysis of applications,
performed by executing the samples inside a controlled
environment. The environment should be instrumented
to collect various types of information during the
execution, which can be used in a real environment
or in an emulated one. Emulation is the cheaper
solution, but it suffers some limitations. For example,
the emulated environment might not connect to
the real communication network and some specific
firmwares cannot be satisfactorily emulated. The obvious
advantage of a real environment is the accuracy of the
answers and the connection to the real world, but it
is much more complex and expensive to manage in a
secure way. For the sake of reproducibility, we chose the
approach of emulation.

Our dynamic analysis module is developed on top
of Droidbox [26], a well-known open-source dynamic
analysis tool for Android applications. Droidbox lies in
the security analysis suite category. It is an open-sourced
sandbox for Android apps [26], which uses tainted data
tracking and function call monitoring techniques. It is
developed by Patrik Lantz using Python programming
language. The following information will be shown when
the analysis ends.

• digest of the analysis package;

• network operations;

• file system accesses;

• services started and classes loaded through
DexClassLoader;

• cryptographic operations performed using Android
API;

• tainted data which leave the system through
network, file or SMS;

• broadcast receivers;

• SMS(es) sent and phone number(s) called.

Even though the original version of Droidbox can
provide a comprehensive analysis result of the apps, it
is quite inefficient to import and generate output. Our
module enriches Droidbox in a number of ways, especially
from the input and output data processing points of
view. The modified version can input the selected apps
continuously from a set of samples, and create a clean
virtual device image for each of them. In order to simplify
the work for further analysis, we extended the tool’s
output, such that all detected activities and relevant
information (e.g. phone numbers, URLs and file names
used by the sample) are stored in separated files. In
this way, dynamic analysis can be totally automatic to
analyse multiple number of samples; this is, to the best
of our knowledge, very rare in dynamic analysis systems.

Analogous to static analysis modules, the activities
detected by dynamic analysis module are mapped into
the following risk categories, to provide a finer-grained
basis for the fuzzy evaluation system.

• encrypted code, target app uses Android encryption
APIs;

• binary code, target app invokes dex class loader,
that may execute external code;

• dynamic code loading, target app calls system’s
native functions;

• exploit risk, target app contains and runs an
exploit;

• internet, target app uses Internet service;

• money risk, target app executes money cost
operations;

• SMS activities, target app accesses or sends SMS;

• privacy violation, target app collects private data
(e.g., device ID, contacts, IMEI);

• phone abuse, target app harms the system’s
integrity.

The detailed mappings between detected activities and
their risk categories are shown in the appendix F.2.

Our automatic dynamic analyser is very effective
against risky apps which execute dangerous operations
directly after they are installed and started by adb. If
some stealth techniques are used, for example a hidden
trigger, our analyser, as most automatic systems, needs
human interactions to trigger the dangerous operations.
Moreover, new generation malware is capable to find
out whether it is running inside an emulator [27], more
advanced malware can even detect whether it is running
inside a device belonging to a security analyst for
research purposes (which usually has stored no personal
data inside). Nevertheless, in most cases, the risk scores
our analyser computes can offer realistic and reliable
danger level estimations from a fully automatic analysis
point of view.

6
EAI Endorsed Transactions on

Ubiquitous Environments
01 -05 2015 | Volume 1| Issue 4 | e5

Android Apps Risk Evaluation: a methodology

Another drawback of the dynamic analysis consists in
its time-consuming nature. The emulator needs to start
up a clean Android virtual device image for each apk, and
then it has to wait for the tested app to finish all its initial
operations. In average, in order to obtain reasonable
results, a complete analysis of a single sample should take
up to 5 minutes and no less than 3 minutes. Therefore, for
the sake of efficiency, in many cases dynamic analysis is
only performed on apks which are classified as “risky” by
the static analysis modules (i.e., the static analysis risk
score is situated above a threshold), in order to confirm
the dangerousness of the sample.

3.3. Applications Risk Evaluation

The fuzzy logic is widely used in decision making sys-
tems. As stated by Prof. Zadeh in [28], “fuzzy logic is a
precise logic of imprecision and approximate reasoning”.
It is capable to converse, reason and make rational
decisions in an environment of imprecision, uncertainty,
incomplete information, conflicting information, partial-
ity of truth and partiality of possibility, which is exactly
the case of Android application risk level estimation.

However, the fuzzy logic is not the only option,
and other scoring algorithms can also be adopted. As
a matter of fact, we keep the analysis modules and
evaluation system separate intentionally, to facilitate
further experiments with alternative scoring algorithms.

In spite of the scoring algorithm, the risky activities
detected and their mappings to risk categories remain
most valuable outputs, which allow end users a fine-
grained inspection of the application’s characteristics.

Based on the fuzzy logic rules, the evaluator outputs
a risk score, which gives a quick indication to the users
about how dangerous the app may be, so that they can
give permission informed about the potential sources of
threat. It should be noted that, in our context, the word
“risk” is used for alerting about a tangible danger, not
necessarily the presence of malware.

To make the evaluator as flexible as possible, the fuzzy
logic risk scoring system is embedded alongside the three
analysis modules as indicated before, so that the modules
can be used independently (to have a quick feedback) or
together in cascade (to have a fully detailed insight).

Fuzzy interpretation of risk states. The input of the
fuzzy logic system are derived from the risk categories
and their corresponding violation frequencies in each
module. For each risk category, the dangerousness level
to end users is not equal. For instance, the risk categories
associated to money and privacy are considered the
most dangerous ones as they are the biggest concerns
to end users. Therefore, we defined four separated states
domains for each risk category, from the least to the most
dangerous estimation, they are LOW, AVERAGE, HIGH and
UNACCEPTABLE risk states. Linguistic logic is used since

human understandability matters to the end users while
it can be easily interpreted using the fuzzy logic.

Fuzzy sets assign a truth-value called probability

in the range [0,1] to each possible value of the
domain. These values form a possibility distribution
over a continuous or discrete space. The violation
occurrences combined with truth-value of each risk
category determine its state. If we consider the violation
occurrence as a discrete space [0,+∞) with increment
equals to one, then we can present graphically the
possibility distribution of the state given the risk
category.

As an example: the risk states associated to
BINARY RISK in Behaviour module is defined below and
shown in Fig. 2.

• Definitely LOW from 0 to 6, and not LOW if higher
than 10;

• Not AVERAGE if lower than 6, AVERAGE at 10
and not AVERAGE if higher than 15;

• Not HIGH if lower than 10, HIGH at 20 and not
HIGH if higher than 24;

• Not UNACCEPTABLE if lower than 23, and
absolutely UNACCEPTABLE if higher than 30.

Figure 2. Adjectives defined for BINARY RISK.

For instance, if the violation occurrence is 7, then
BINARY RISK is 75% in LOW risk state and 25% in AVERAGE

state.
The scoring system can be tuned to better adapt to

specific context (e.g., security sensitive environments).
For example, to give more weight to BINARY RISK, the
adjectives for each risk state can be reduced hence
BINARY RISK reaches UNACCEPTABLE state with less
violation occurrences.

Selecting the boundaries for these adjectives is
challenging. The expected outcome is the realistic risk
level of analysed samples; therefore we needed to improve
our experience to achieve this result. The tool requires
iterative tuning, so that the most relevant risk categories
(e.g., MONEY, PRIVACY) weight more than others (e.g.
INTERNET), until the final result is meaningful for the
end users.

At the end of this step, each sample should have a set
of risk states for all categories.

7

EAI Endorsed Transactions on
Ubiquitous Environments

01 -05 2015 | Volume 1| Issue 4 | e5

T. Su et al.

However, filescan, requires different settings. Since it
looks for the most peculiar behaviour of the apk archive
(as a matter of facts, they are most likely to be malicious
behaviour), we set the risk categories differently than
other modules. The risk states are set to be “HIGH” once
filescan detects a corresponding event, so its tolerance
is stricter; therefore the results from filescan have more
influence compared with the other two modules.

Computing fuzzy risk level. To combine the states of
all risk categories in the scoring system, the fuzzy logic
rules are required. However, before defining these rules,
the output of the rules were defined and their adjectives
were associated using singleton functions to simplify
the computation as following:

• NULL RISK to Singleton(0.0);

• AVERAGE RISK to Singleton(30.0);

• HIGH RISK to Singleton(70.0);

• UNACCEPTABLE RISK to Singleton(100.0).

Defining the fuzzy logic rules that associate the
fuzzified input variables (i.e. the risk state set) to the
output adjectives is a key domain in influencing the
final result. In the current configuration, the system is
governed by more than 100 rules aggregated in these
three analysis modules. All the rules will be evaluated,
and if true they will contribute to the final risk score.

To give a very simple example with parameters
defined in Fig. 2, if a rule states:

IF BINARY RISK IS AVERAGE THEN output IS

HIGH RISK

In the case that the violation occurrence is 7, and this
is the only rule in the scoring system, the risk score will
be:

(truth level) ∗ (adjective) = 0.25 ∗ 70 = 17.5

If, the only rule in the system is changed to following:

IF BINARY RISK IS LOW THEN output IS

AVERAGE RISK

then with the same input value, the output risk score
will be:

(truth level) ∗ (adjective) = 0.75 ∗ 30 = 22.5

The last step of computing the risk score is called
defuzzification, which can be performed using several
different methods. In our case, the fuzzy logic systems
in all three modules use the Centroid Method, which
means to calculate the centre of gravity for the area
under the curve. Thanks to the choice of singleton

function, this computation is simple to understand. The

formula is the following:

COG =

∑b
x=a uA(χ)x∑b
x=a uA(χ)

Variables a and b represent the attributes in the fuzzy
logic system, from NULL RISK to UNACCEPTABLE RISK.
While uA(χ) indicates the truth level for all the
attributes, and x is the adjectives for each attribute.

As an example, the final risk score with only two rules
defined before and input value equals to 7, is computed
as:

Risk score =
(0.25 ∗ 70) + (0.75 ∗ 30)

0.25 + 0.75
= 40.0

Of course, there are rules with more complex
conditions in our fuzzy logic system. They combine
multiple risk categories using logical operators like
AND, OR and NOT, which will highlight some specific
dangerous operations treated as heuristics. For example
in dynamic analysis module, leaking data to the
Internet operation will violate PHONE STATE RISK and
INTERNET RISK. Hence, if both risk categories are at HIGH
risk state, then the final risk score should be significantly
increased. Similarly, for other obvious dangerous actions,
there are corresponding rules to leverage the final score.
On the contrary, if certain risk category combinations
are in LOW state, the final risk score will decrease.

The rules with FALSE condition will give no
contribution. Otherwise, the rule’s output will concur
to the final risk score. Hence, apps with less obvious
dangerous operations will have smaller risk scores than
the ones with more obvious dangerous operations. Even
though in some cases, less risky apps may have more
violation occurrence in certain risk category. Thus, the
result is not monotonic solely based on the occurrences
but leverage more on the heuristics, which gives more
accurate indications of application’s risk level. The same
type of heuristics is applied in all three modules. For
example in Behaviour module, if the application has
permissions to access user’s contact and in the mean time
has the permission to send data through the Internet,
the final risk score is higher than the one only has the
permission to send data through the Internet. Even in
some case, the latter can send data more times than
the former when the behaviour is confirmed using the
dynamic analysis module.

4. Experimental results

To perform an extensive testing of the system,
we developed an additional software module, the
AppsDownloader, which is based on the unofficial open
source project named Android Market API [29]; it
can automatically retrieve free apps from any Android
repositories and also from the local file system.

8

EAI Endorsed Transactions on
Ubiquitous Environments

01 -05 2015 | Volume 1| Issue 4 | e5

Android Apps Risk Evaluation: a methodology

Figure 3. Danger level evaluator testing architecture.

Exploiting the AppsDownloader and the workflow
described in Fig. 3, we tested our analyser against a set of
41000 free goodware applications (this set will be referred
as market set); and a set of 1488 known malware samples
from 90 distinct families, from the Android Genome
Project [30] and ContagioMiniDump [31] (this set will
be referred as malware set).

The number of goodware is significantly higher than
the number of known malware. This follows the real
world situation: there are magnitudes more goodware
developers than malware developers. Meanwhile, even
though the number of goodware sample is imbalanced
with the number of malware sample, this huge number
of application samples can be used to show the efficiency
of our evaluator in a meaningful way. Thanks to Android
Genome Project [30], the malware dataset we used in our
experiments is one of the largest compared with previous
work.

Figure 4. Behaviour module results: app risk scores
distribution, market vs. malware.

In the first place, as shown in Fig. 4, 40% of the market
apks obtained a risk score greater than 70 tested using
Behaviour module, while 88% of malware apks obtained
a risk score greater than 70. The result is in accordance
with Felt’s result [5], which shows one-third of apps in
Google Play are over-permissioned. For this reason, the
discrimination power of Behaviour is limited. However,
risk score is only for indicating risk level, thus apps

Figure 5. Behaviour module results: average app risk value
per category, market vs. malware.

exceed this threshold will be considered risky in the case
of permission abuse and calling potentially dangerous
APIs. The threshold is set to be 70 is not the final
settlement, it is only a choice based on our experiences. If
a stricter criteria is needed, this threshold can be reduced
to 60. But in this case, more application samples need to
analysed dynamically, and much more time and resources
are needed.

From the risk score distribution, we can also see
that the scores of free applications are concentrated
in the interval from 60 to 80, while the scores of
known malware are in the intervals from 70 to 90. The
histogram from Fig. 5 shows the distribution of average
app risk scores for each risk category in both market and
malware sets. The distribution patterns are contrasting.
Known malware has conspicuous peaks on Dangerous

API, Money and Privacy risk categories, while market
apps have a smoother distribution.

To reason about the limited discrimination power of
our Behaviour module, we studied in more depth about
the distinguishing characteristics of the malware and the
goodware dataset. The result shows that the patterns
of goodware and malware referring to the requested
permissions and the identified behaviour is quite similar.

As shown in Fig. 6, the five most common permissions
required by the goodware are:

• INTERNET;

• ACCESS NETWORK STATE

• READ PHONE STATE

• WRITE EXTERNAL STORAGE

• READ CONTACTS

Figure 6. The top 20 required permissions of goodware.

9

EAI Endorsed Transactions on
Ubiquitous Environments

01 -05 2015 | Volume 1| Issue 4 | e5

T. Su et al.

Figure 7. The top 20 required permissions of malware.

Three of these permissions are also the most requested
ones by known malware as illustrated in Fig. 7. For
this reason, we presume and confirm that, it is quite
hard to find the differences between goodware and
malware by only examining the requested permission
list. Some research uses the permission combination to
indicate the potential privacy risk level, such as [32].
However, by solely relying on permissions and their
combination patterns, it is extremely difficult (sometimes
just not possible) to discriminate between malware and
goodware.

Further results on possible differences between the
behaviour of goodware and malware samples are
illustrated in Fig. 8 and Fig. 9. Of the top five identified
behaviour patterns, four of them are the same for the
two datasets. They are:

• REFLECTION, java reflection, makes it possible to
inspect classes, interfaces, fields and methods at
run-time, without knowing the name of the class,
methods, etc.;

• DYN RCV, app is loading one or more receivers5

dynamically, without declaring them in the
manifest file;

• HTTP, app is trying to issue a HTTP connection;

• TEL MANAGER, app is trying to get telephony service
information on the device.

The most interesting point here is that, goodware
tends to use DYN CLASS LOAD during the execution, which
can invoke code from shared libraries or even external
parties, putting user’s device in danger. The figures are
another evidence that solely rely on behaviour patterns
is not enough to discriminate goodware from malware,
as in the same case of permissions.

After Behaviour analysis, FileScan module tested
both sets. The result is shown in Fig. 10, 99% of the
market apks has a null risk score, while 40% of the
malware apks has a risk score greater than 80. The
distribution of applications on FileScan risks categories
is shown in Fig. 11, we can see that the HiddenElf,
ShellPrivilege and HiddenText are the most violated

5receivers enable applications to receive intents that are broadcast
by the system or by other applications, even when other
components of the application are not running.

Figure 8. The top 20 identified behaviours of goodware.

Figure 9. The top 20 identified behaviours of malware.

Figure 10. FileScan module results: app risk scores
distribution, market vs. malware.

Figure 11. FileScan module results: app percentage per
violating risk category, market vs. malware.

risk categories by known malware. In our dataset,
the samples with peaking risk score (i.e., 100) are
mostly from GingerMaster, which contains shell install
commands inside the package.

Dynamic analysis works as a confirmation mechanism,
to prove the dangerousness of suspicious apps. To the
application samples which have static analysis risk scores
above the threshold (70 for Behaviour, and non-zero
for FileScan), they are subsequently analysed by the
dynamic analysis module. The results are shown in

10

EAI Endorsed Transactions on
Ubiquitous Environments

01 -05 2015 | Volume 1| Issue 4 | e5

Android Apps Risk Evaluation: a methodology

Figure 12. Dynamic analysis module result: app risk scores
distribution, market vs. malware.

Figure 13. Dynamic analysis module result: app violation
percentage per risk category, market vs. malware.

Fig. 12 and Fig. 13: 50% of market apks obtained
a risk score greater than 50, while 80% of malware
apks exceed the same threshold. Since the analysed
samples are labelled as “risky” application before they
are analysed by the dynamic analysis module, we set a
smaller value as the threshold to alert the end users.
As shown in Fig. 13, almost all known malware violate
the DYNAMIC risk, which is derived from the use of
system’s native functions, such as dynamic code loading.
This suggests that dynamic code loading needs stricter
control in the future. Only known malware exploit the
activities related to the BINARY (BaseBridge samples)
and the SMS (HippoSMS and FakePlayer samples) risk.
Moreover, the phone numbers, URL addresses and the
activities detected during execution are valuable, since
they indicate the real behaviour of the analysed samples
after their installation and initiation.

No final combined result of all three analysis modules
will be presented, since there is no obvious way to
put weight to these three results: all three analysis
modules have their scopes of analysis, and need the
others to balance theirs result. For this reason, combining
the individual result of these three modules is not a
good choice. A much better approach is to extensively
leverage on the fuzzy logic algorithm, before combining
the outputs of each analysis modules, these outputs can

be pre-configured to be mapped into the risk categories
as a whole set. Thus, there will be only one fuzzy logic
evaluator to evaluate all the outputs of three modules
as a whole. However, in this way, since the fuzzy logic
evaluator requires the output of all three modules, the
flexibility of the analyser is removed. As a trade-off,
we only provide the individual results of the analysis
module, and do not combine them as a final result.

From an overall perspective, the analysis of the
market apks gave an unexpected high risk values on
Internet, exploit, phone and dangerous APIs risk
categories, while the malware set gave high values on the
others, like money, dynamic, and privacy risk categories,
and the significant risks on archive files (HiddenElf,
ShellPrivilege and HiddenText). As far as malware
set is concerned, user privacy violation is the most
important risk category encountered, whilst, for market
apks, the dangerous APIs risk category is the highest.

Besides the risk scores, the analysis system exposes
and confirms 288 suspect URL addresses and 5 phone
numbers identified in the tested applications. We found
that the most frequent URL addresses detected are
PayPal websites which provide payment services, and
often among them we can find collectors of the leaked
information. Regarding the mis-usage of SMS and
phone calls, only certain known malware tries these
unauthorised communications, since they are pretty easy
to be detected by the users.

Figure 14. embedded commands in market apps.

We also investigated the most common shell
commands encountered in the apps from both the market
and the malware datasets. The results are presented
in Fig. 14 and Fig. 15. Since the number of goodware
samples is magnitude more than the number of malware
samples, there are more commands detected in the
goodware samples. We detected 379 different commands
with different arguments in all these 41000 free market
applications. chmod has been detected 221 times, and of
31.93% (71) times it is chmod 755 and of 13.19% (29)
times it is chmod 777. While in the malware dataset,

11

EAI Endorsed Transactions on
Ubiquitous Environments

01 -05 2015 | Volume 1| Issue 4 | e5

T. Su et al.

Figure 15. embedded commands in malware apps.

we only detected 46 different commands with different
arguments. On the contrary to goodware dataset, the
most detected command is /system/bin; it has been
detected 47 times. Although only a limited number
of analysed apps contain FileScan targeted activities,
the results show that, practically, there is no difference
between the most recurrent commands identified in both
sets.

A significant result of our tests is that the market apks
could not be as innocuous as the users are inclined to
think. This may be an effect of a poor programming
or presence of potentially unwanted codes (mainly due
to adware or recycled code), but the risk is there,
even for apps that users may be tempted to trust.
The main critics to developers is the permission abuse
(i.e. permissions requested but not used), the presence
of recycled dangerous code and the use of dangerous
APIs, where alternatives do exist. All these weaknesses
transform apks into attractive and powerful targets for
trojans6, which can exploit these over-permissioned apks
to unrestricted acts on end user devices.

5. Related work

Our analyser aims to inspect a market-scale number of
applications without any human interaction, and tries to
overcome the uncertainty that arises from the nature of
automatic analysis. Its goal is to highlight the risk level of
Android applications but not to directly detect malware.

As stated in Sec. 2, Android relies on permissions
to limit the apps’ functionality. The principle of
“least privilege” is recommended and suggests that
an application requests only the most restrictive set
of permissions for performing the task at hand.
Unfortunately, this principle is seldom respected,
because of either Android’s disorganised documents on

6A Trojan horse, or Trojan, in computing is a generally non-self-
replicating type of malware program containing malicious code
that, when executed, carries out actions determined by the nature
of the Trojan, typically causing loss or theft of data, and possible
system harm.

Permissions7 or developers’ tendencies to require more
than needed, which could easily bring risks for the
users. Thus, many methodologies available to check the
requested permission in search of risks of misbehaviour.
In [33], the authors use probabilistic generative models
for evaluating the potential risk of analysed applications.
However, this evaluation system relies solely on the
number of permissions required by the sample and
gives monotonic results. Another tool in this category
is Stowaway [5]; it identifies app permission abuses, by
mapping the permissions required in the manifest to
the invoked APIs, and detects the incoherencies between
them. In their experiments, one-third of the apps were
found to be overprivileged. A more effective approach
is proposed in [34], the authors evaluate app risks on
the basis of how rarely permissions are required for
apps in a specific category, like navigating or games.
However, since Android’s permission model fails to
fully control application behaviour, analysing solely the
permissions requested can only be a starting point, but it
is incomplete for a reliable evaluation of the application’s
risks.

Other non-permission-based static analysis approaches
are also proposed.

Taint analysis addresses the problem of analysing
Android apps based on their data flows. In [6], the
authors propose FLOWDROID, a novel and highly
precise static taint analysis for Android apps. With the
help of Android-specific challenges like the application
life-cycle or callback methods, FLOWDROID can give
more concrete results about the data leakage. CHEX [7],
AndroidLeaks [8], LeakMiner [9] all use the same static
taint analysis approach to analyse data leakage caused
by Android apps.

Inter-component communication (ICC) is also a
studying point to analyse Android apps. In [35], the
authors recast ICC analysis to infer the locations and
substance of all inter- and intra-app communication in
an Android environment. In this way, it can detect
dangerous communications between applications and
identify new types of the risky operations such as
transitive privilege usage [36]. Similarly, ComDroid [10]
also attempts to identify security risk in Android apps by
analysing inter-application communications. However,
the same as in the permission-based approach, the
analysis results using previous methods can only cover
partially the surface of Android application risk analysis.

One important component in applications is adver-
tisement libraries, especially for free applications. Many
developers include such libraries to obtain some remuner-
ation for their effort, but few of them fully understand
the risk implication or fully control their behaviour.

7http://developer.android.com/guide/topics/security/

permissions.html

12
EAI Endorsed Transactions on

Ubiquitous Environments
01 -05 2015 | Volume 1| Issue 4 | e5

http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/security/permissions.html

Android Apps Risk Evaluation: a methodology

AdRisk [37] analyses in-app advertisement libraries, and
systematically identifies the potential risks. The results
show these libraries may also contain potential dangerous
operations ranging from leaking user’s private informa-
tion to executing untrusted code. We suspect that, it
is one of the reasons that benign apps have unexpected
high risk scores.

RiskRanker [4], among others, has a broader coverage.
It exploits a proactive scheme that requires no malware
specimen and their signatures. It provides two orders
of risk analysis, firstly by statically analysing whether
sample exploits platform-level vulnerabilities, and
secondly searching for specific behaviour patterns, which
malware commonly adopt but that is uncommon among
legitimate apps. The result shows that RiskRanker is
quite efficient to detect zero-day malware. But the
detection mechanism can be easily circumvented by
informed malware developers. Our work shares the
same goal with RiskRanker, to identify the application
risk in advance but, our analyser provides a broader
coverage. Our static analyser extends this approach
with the FileScan module, which analyses all the files
stored in apks. It is able to pin point dangerous and
potentially malicious files, such as embedded apps or
hidden commands. In this way, by combining the analysis
performed by Behaviour and FileScan modules, our
static analyser strives to cover a larger surface and
gives more concrete results of the risk level of analysed
samples. Furthermore, our dynamic analysis module
provides a thorough analysis of the analysed app running
in an emulated environment, showing the real behaviour
of the suspicious samples, and possibly confirming its
potential risks.

DroidRanger [14] uses a permission-based behavioural
footprinting and heuristics-based filtering to analyse
Android applications, and call for dynamic monitor to
detect the maliciousness. The analysis result, supported
by human inspection, shows this system is effective
for both known and zero-day malware detection. Our
analyser works with a similar approach, using the
static analysis to highlight suspicious apps, and the
dynamic analysis module to confirm the dangerousness.
Yet, we have different purposes. DroidRanger aims to
detect malware in the official and third-party markets,
with maliciousness confirmed by human experts. On
the contrary, our analyser aims to evaluate application
risk entirely without human inspection, while the final
decision is made by the fuzzy logic scoring algorithm.

Dynamic analysis techniques follow another path.
TaintDroid [11] exploits taint analysis on data flow in
an emulated environment. It is still the state of the
art taint tracking system for Android. It taints sensitive
data and tracks them in the operating system, and gives
alerts when they leave the device at taint sinks. However,
it has significant false positive rate when tracked data
contain configuration identifiers. Moreover, the native

library loader used in the image has to be modified so
that applications can only execute in user-space and with
native system libraries.

DroidScope [12] supports virtualisation-based malware
analysis, and provides both OS-level and Java-level
semantics. On top of DroidScope, the authors develop
several analysis tools to collect behavioural information.

VetDroid [13], on the contrary, reconstructs app’s
behaviour with permission use analysis. Dynamic
analysis requires a significant amount of time, usually
no less than 2 minutes for a complete run. Moreover,
the false positive and negative rates are relatively high.
Furthermore, it is hard to be automated and to detect
hidden triggered operations. Thus, the information
collected is most likely to be incomplete. Hence it
is advisable to be used as a confirmation mechanism
instead of a stand-alone evaluation tool, as what we have
in our analyser.

In order to process market-scale apps, a fully auto-
mated analyser is required, however using retrieved
information to make clever and automatic decisions is
a challenging task. In previous works, machine learn-
ing techniques have been introduced to overcome this
problem. In this context, MAST [15] uses Multiple Cor-
respondence Analysis (MCA) technique to measure the
correlation between the declared indicators of function-
alities to be presented in app’s package. It needs a large
dataset (including both benign and malware samples)
as the training data, then applies the correlations to
the analysed samples. Similarly, in [16], the authors
apply pattern mining technique to permission request
patterns of Android apps. They discover the correlation
between applications’ permission request pattern and
their belonging categories. Furthermore, they devise low-
reputation apps often deviate from the pattern identi-
fied from high-reputation apps. Using machine learning
technique to make the final decision is promising, but it
requires a huge amount of preparation to fetch a training
set with necessarily large number of applications. On the
contrary, using the fuzzy logic algorithm is simpler and
straightforward. Also the cost is fair; each computation
takes only around four seconds. Although parameters
need to be tuned to improve accuracy, the results can
still give acceptable indication of analysed sample’s risk
level.

6. Conclusions

In this paper we presented a combined static and
dynamic analysis tool for Android application risk
evaluation. Its purpose is to effectively evaluate the risk
level of an application (whether it is malware or not), to
inform the user decision to use it or not.

The analysis system is based on the software modules
Behaviour and FileScan for the static analysis of
the code and archive files, and on our improved

13
EAI Endorsed Transactions on

Ubiquitous Environments
01 -05 2015 | Volume 1| Issue 4 | e5

T. Su et al.

version of DroidBox for the dynamic analysis as a
confirmation mechanism. In our opinion, our tool has
good extensibility as it can be easily used to integrate
with other analysis tools, for example, the one to
detect repackaged apps. In face, according to the figures
from [38], 5% to 13% of apps in the third-party markets
are repackaged, and it is highly likely that a lot of them
are of poor quality; and, of course repackaged apps are
the favourite disguise for malware.

Our system can execute static and dynamic analysis
separately or in cascade. This allows flexibility in a
number of scenarios. If time is limited, the dynamic
analysis can be performed only on the apks labelled as
potentially harmful by static analysis. If a more accurate
check is required, both can be conducted to provide a
complete report on the application.

Finally, we performed a detailed analysis on a
statistically significant dataset, containing more than
forty thousand applications, to test the efficiency of
the system. The tests highlighted the capability of
our analyser to evaluate the risk level of Android
applications. Furthermore, since malware and goodware
have been categorised according to a set of risk
parameters (derived from the Androguard taxonomy),
our system gives a statistically sound insight into present
app risk characteristics. On the one hand, this can help
short term strategies to contrast malware diffusion. On
the other, it highlights excessive amounts of required
permissions from app developers, and is a flag to demand
more security-aware application development guidelines.

Future developments should include improvements
to risk indication reliability and understandability,
experimenting our methodology with different risk
evaluation algorithms, and presenting a customisable set
of risk indicators on the basis of the specific end-user
characteristics.

However, the first step is to improve the accuracy
of the analyser. There are two possible solutions:
the first one is to provide a finer-grained risk
category set, generating risk categories with more
evident malicious behaviours. For example, in the
dynamic analysis module, a new risk category called
“SMS TO PREMIUM NUMBER” could be introduced,
indicating that the analysed app will send a short
message to one of the known premium numbers.
The same approach can work with other analysis
modules. The second solution is to integrate with more
analysis modules. For example, MalloDroid [39], which
is capable of identifying broken SSL certificates in an
app’s code [40], is in the to-be-integrated-with list.
In the mean time, malware like hoser [41] with the
capability of obfuscating its behaviour by means of
obfuscation/packaging tools seems likely to be a popular
trend. To deal with this problem, we plan to introduce
an unpacker tool (e.g. [42]) to improve the accuracy of
our analyser.

Meanwhile, another relevant improvement could be to
integrate the application risk level evaluator with a third-
party store. In order to indicate the risk level of the
application and to help users’ awareness, the store can
show the app’s risk score along with its recommendation
value. A even better approach would be a customised
application of the third-party store that can be installed
in users’ devices, to show all this information. This work
will require additional effort and it is in our future plans.

References

[1] Smartphone OS Market Share, Q3 2014, http://www.

idc.com/prodserv/smartphone-os-market-share.

jsp. Last access Jan. 2015.
[2] Worldwide tablet shipments miss targets as first

quarter experiences single-digit growth, according
to idc, http://www.idc.com/getdoc.jsp?containerId=
prUS24833314. Last access Jan. 2015.

[3] infosecurity-magazine (2014), 92% of Top 500
Android Apps Carry Security or Privacy Risk,
http://www.infosecurity-magazine.com/news/

92-of-top-500-android-apps-carry-security-or/.
[4] Grace, M., Zhou, Y., Zhang, Q., Zou, S. and

Jiang, X. (2012) Riskranker: Scalable and accurate
zero-day android malware detection. In Proceedings of
the 10th International Conference on Mobile Systems,
Applications, and Services, MobiSys ’12 (New York, NY,
USA: ACM): 281–294. doi:10.1145/2307636.2307663,
URL http://doi.acm.org/10.1145/2307636.2307663.

[5] Felt, A.P., Chin, E., Hanna, S., Song, D. and Wag-
ner, D. (2011) Android Permissions Demystified. In
Proceedings of the 18th ACM Conference on Computer
and Communications Security, CCS ’11 (New York, NY,
USA: ACM): 627–638. doi:10.1145/2046707.2046779,
URL http://doi.acm.org/10.1145/2046707.2046779.

[6] Arzt, S., Rasthofer, S., Fritz, C., Bodden, E.,
Bartel, A., Klein, J., Le Traon, Y. et al. (2014)
Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In
Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation,
PLDI ’14 (New York, NY, USA: ACM): 259–269.
doi:10.1145/2594291.2594299, URL http://doi.acm.

org/10.1145/2594291.2594299.
[7] Lu, L., Li, Z., Wu, Z., Lee, W. and Jiang, G. (2012)

Chex: Statically vetting android apps for component
hijacking vulnerabilities. In Proceedings of the 2012
ACM Conference on Computer and Communications
Security, CCS ’12 (New York, NY, USA: ACM): 229–
240. doi:10.1145/2382196.2382223, URL http://doi.

acm.org/10.1145/2382196.2382223.
[8] Gibler, C., Crussell, J., Erickson, J. and Chen, H.

(2012) Androidleaks: Automatically detecting potential
privacy leaks in android applications on a large scale.
In Proceedings of the 5th International Conference on
Trust and Trustworthy Computing, TRUST’12 (Berlin,
Heidelberg: Springer-Verlag): 291–307. doi:10.1007/978-
3-642-30921-2 17, URL http://dx.doi.org/10.1007/

978-3-642-30921-2_17.

14
EAI Endorsed Transactions on

Ubiquitous Environments
01 -05 2015 | Volume 1| Issue 4 | e5

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/getdoc.jsp?containerId=prUS24833314
http://www.idc.com/getdoc.jsp?containerId=prUS24833314
http://www.infosecurity-magazine.com/news/92-of-top-500-android-apps-carry-security-or/
http://www.infosecurity-magazine.com/news/92-of-top-500-android-apps-carry-security-or/
http://dx.doi.org/10.1145/2307636.2307663
http://doi.acm.org/10.1145/2307636.2307663
http://dx.doi.org/10.1145/2046707.2046779
http://doi.acm.org/10.1145/2046707.2046779
http://dx.doi.org/10.1145/2594291.2594299
http://doi.acm.org/10.1145/2594291.2594299
http://doi.acm.org/10.1145/2594291.2594299
http://dx.doi.org/10.1145/2382196.2382223
http://doi.acm.org/10.1145/2382196.2382223
http://doi.acm.org/10.1145/2382196.2382223
http://dx.doi.org/10.1007/978-3-642-30921-2_17
http://dx.doi.org/10.1007/978-3-642-30921-2_17
http://dx.doi.org/10.1007/978-3-642-30921-2_17
http://dx.doi.org/10.1007/978-3-642-30921-2_17

Android Apps Risk Evaluation: a methodology

[9] Yang, Z. and Yang, M. (2012) Leakminer: Detect
information leakage on android with static taint
analysis. In Proceedings of the 2012 Third World
Congress on Software Engineering, WCSE ’12 (Wash-
ington, DC, USA: IEEE Computer Society): 101–104.
doi:10.1109/WCSE.2012.26, URL http://dx.doi.org/

10.1109/WCSE.2012.26.
[10] Chin, E., Felt, A.P., Greenwood, K. and Wagner,

D. (2011) Analyzing inter-application communication
in android. In Proceedings of the 9th International
Conference on Mobile Systems, Applications, and
Services, MobiSys ’11 (New York, NY, USA: ACM): 239–
252. doi:10.1145/1999995.2000018, URL http://doi.

acm.org/10.1145/1999995.2000018.
[11] Enck, W., Gilbert, P., Chun, B.G., Cox, L.P.,

Jung, J., McDaniel, P. and Sheth, A.N. (2010)
TaintDroid: An Information-flow Tracking System
for Realtime Privacy Monitoring on Smartphones.
In Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation, OSDI’10
(Berkeley, CA, USA: USENIX Association): 1–6.
URL http://dl.acm.org/citation.cfm?id=1924943.

1924971.
[12] Yan, L.K. and Yin, H. (2012) Droidscope: Seamlessly

reconstructing the os and dalvik semantic views for
dynamic android malware analysis. In Proceedings of
the 21st USENIX Conference on Security Symposium,
Security’12 (Berkeley, CA, USA: USENIX Association):
29–29. URL http://dl.acm.org/citation.cfm?id=

2362793.2362822.
[13] Zhang, Y., Yang, M., Xu, B., Yang, Z., Gu,

G., Ning, P., Wang, X.S. et al. (2013) Vetting
undesirable behaviors in android apps with permission
use analysis. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications
Security, CCS ’13 (New York, NY, USA: ACM): 611–
622. doi:10.1145/2508859.2516689, URL http://doi.

acm.org/10.1145/2508859.2516689.
[14] Zhou, Y., Wang, Z., Zhou, W. and Jiang, X. (2012)

Hey, you, get off of my market: Detecting malicious apps
in official and alternative android markets. Proceedings
of the 19th Annual Network and Distributed System
Security Symposium : 5–8.

[15] Chakradeo, S., Reaves, B., Traynor, P. and
Enck, W. (2013) Mast: Triage for market-scale mobile
malware analysis. In Proceedings of the Sixth ACM
Conference on Security and Privacy in Wireless and
Mobile Networks, WiSec ’13 (New York, NY, USA:
ACM): 13–24. doi:10.1145/2462096.2462100, URL http:

//doi.acm.org/10.1145/2462096.2462100.
[16] Frank, M., Dong, B., Felt, A. and Song, D.

(2012) Mining permission request patterns from android
and facebook applications. In Data Mining (ICDM),
2012 IEEE 12th International Conference on: 870–875.
doi:10.1109/ICDM.2012.86.

[17] Ham, H.S. and Choi, M.J. (2013) Analysis of
android malware detection performance using
machine learning classifiers. In ICT Convergence
(ICTC), 2013 International Conference on: 490–495.
doi:10.1109/ICTC.2013.6675404.

[18] Rieck, K., Trinius, P., Willems, C. and Holz, T.
(2011) Automatic analysis of malware behavior using
machine learning. J. Comput. Secur. 19(4): 639–668.
URL http://dl.acm.org/citation.cfm?id=2011216.

2011217.
[19] AXMLPrinter, class in Java code, http://code.google.

com/p/xml-apk-parser/source/browse/trunk/src/

test/AXMLPrinter.java. Last access Oct. 2014.
[20] Xu, Z., Bai, K. and Zhu, S. (2012) TapLogger. In

Proceedings of the fifth ACM conference on Security
and Privacy in Wireless and Mobile Networks -
WISEC ’12 (New York, New York, USA: ACM
Press): 113. doi:10.1145/2185448.2185465, URL
http://dx.doi.org/10.1145/2185448.2185465http:

//dl.acm.org/citation.cfm?doid=2185448.2185465.
[21] Mark Manning, Manitree: AndroidManifest.xml

Auditor, https://github.com/antitree/manitree.
Last access in Feb. 2014.

[22] Ben Gruver, Smali/baksmali, an assem-
bler/disassembler for the dex format, http:

//code.google.com/p/smali/. Last access in Aug.
2014.

[23] Anthony, Desnos, Androguard, a python tool for
reverse engineering, malware and goodware analysis
of Android applications, http://code.google.com/p/

androguard/. Last access in Aug. 2014.
[24] Google, Android permissions, http://developer.

android.com/reference/android/Manifest.

permission.html. Last access in Aug. 2014.
[25] Fahmida, Jailbreak exploit gingerly

hits android with malware, http://

www.techweekeurope.co.uk/workspace/

jailbreak-exploit-hits-android-gingerbread-\

with-malware-37712. Last access in Feb. 2015.
[26] Lantz, P. (2011) An Android Application Sandbox

for Dynamic Analysis. Master thesis, Lund University.
https://code.google.com/p/droidbox.

[27] Petsas, T., Voyatzis, G., Athanasopoulos, E.,
Polychronakis, M. and Ioannidis, S. (2014)
Rage Against the Virtual Machine: Hindering
Dynamic Analysis of Android Malware. Proceedings
of the Seventh European Workshop on System
Security doi:10.1145/2592791.2592796, URL
http://doi.acm.org.acces.bibl.ulaval.ca/10.

1145/2592791.2592796.
[28] Zadeh, L.A. (2008) Is there a need for fuzzy logic? In

Fuzzy Information Processing Society, 2008. NAFIPS
2008. Annual Meeting of the North American: 1–3.
doi:10.1109/NAFIPS.2008.4531354.

[29] Open source users’ community (2012), An open-
source api for the android market, http://code.

google.com/p/android-market-api/. Last access in
Aug. 2014.

[30] Zhou, Y. and Jiang, X. (2012) Dissecting Android
Malware: Characterization and Evolution. In
2012 IEEE Symposium on Security and Privacy
(IEEE): 95–109. doi:10.1109/SP.2012.16, URL
http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=6234407.
[31] Contagio, Contagio malware dump, http:

//contagiodump.blogspot.it/. Last access in Aug.

15
EAI Endorsed Transactions on

Ubiquitous Environments
01 -05 2015 | Volume 1| Issue 4 | e5

http://dx.doi.org/10.1109/WCSE.2012.26
http://dx.doi.org/10.1109/WCSE.2012.26
http://dx.doi.org/10.1109/WCSE.2012.26
http://dx.doi.org/10.1145/1999995.2000018
http://doi.acm.org/10.1145/1999995.2000018
http://doi.acm.org/10.1145/1999995.2000018
http://dl.acm.org/citation.cfm?id=1924943.1924971
http://dl.acm.org/citation.cfm?id=1924943.1924971
http://dl.acm.org/citation.cfm?id=2362793.2362822
http://dl.acm.org/citation.cfm?id=2362793.2362822
http://dx.doi.org/10.1145/2508859.2516689
http://doi.acm.org/10.1145/2508859.2516689
http://doi.acm.org/10.1145/2508859.2516689
http://dx.doi.org/10.1145/2462096.2462100
http://doi.acm.org/10.1145/2462096.2462100
http://doi.acm.org/10.1145/2462096.2462100
http://dx.doi.org/10.1109/ICDM.2012.86
http://dx.doi.org/10.1109/ICTC.2013.6675404
http://dl.acm.org/citation.cfm?id=2011216.2011217
http://dl.acm.org/citation.cfm?id=2011216.2011217
http://code.google.com/p/xml-apk-parser/source/browse/trunk/src/test/AXMLPrinter.java
http://code.google.com/p/xml-apk-parser/source/browse/trunk/src/test/AXMLPrinter.java
http://code.google.com/p/xml-apk-parser/source/browse/trunk/src/test/AXMLPrinter.java
http://dx.doi.org/10.1145/2185448.2185465
http://dx.doi.org/10.1145/2185448.2185465 http://dl.acm.org/citation.cfm?doid=2185448.2185465
http://dx.doi.org/10.1145/2185448.2185465 http://dl.acm.org/citation.cfm?doid=2185448.2185465
https://github.com/antitree/manitree
http://code.google.com/p/smali/
http://code.google.com/p/smali/
http://code.google.com/p/androguard/
http://code.google.com/p/androguard/
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://www.techweekeurope.co.uk/workspace/jailbreak-exploit-hits-android-gingerbread-\with-malware-37712
http://www.techweekeurope.co.uk/workspace/jailbreak-exploit-hits-android-gingerbread-\with-malware-37712
http://www.techweekeurope.co.uk/workspace/jailbreak-exploit-hits-android-gingerbread-\with-malware-37712
http://www.techweekeurope.co.uk/workspace/jailbreak-exploit-hits-android-gingerbread-\with-malware-37712
https://code.google.com/p/droidbox
http://dx.doi.org/10.1145/2592791.2592796
http://doi.acm.org.acces.bibl.ulaval.ca/10.1145/2592791.2592796
http://doi.acm.org.acces.bibl.ulaval.ca/10.1145/2592791.2592796
http://dx.doi.org/10.1109/NAFIPS.2008.4531354
http://code.google.com/p/android-market-api/
http://code.google.com/p/android-market-api/
http://dx.doi.org/10.1109/SP.2012.16
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6234407
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6234407
http://contagiodump.blogspot.it/
http://contagiodump.blogspot.it/

T. Su et al.

2014.
[32] Liccardi, I., Pato, J., Weitzner, D.J., Abelson, H.

and De Roure, D. (2014) No technical understanding
required: Helping users make informed choices about
access to their personal data. In Proceedings of
the 11th International Conference on Mobile and
Ubiquitous Systems: Computing, Networking and
Services, MOBIQUITOUS ’14 (ICST, Brussels, Belgium,
Belgium: ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering)):
140–150. doi:10.4108/icst.mobiquitous.2014.258066,
URL http://dx.doi.org/10.4108/icst.mobiquitous.

2014.258066.
[33] Peng, H., Gates, C., Sarma, B., Li, N., Qi, Y.,

Potharaju, R., Nita-Rotaru, C. et al. (2012)
Using probabilistic generative models for ranking risks
of Android apps. In Proceedings of the 2012 ACM
conference on Computer and communications security
- CCS ’12, CCS ’12 (New York, New York, USA:
ACM Press): 241. doi:10.1145/2382196.2382224, URL
http://doi.acm.org/10.1145/2382196.2382224http:

//dl.acm.org/citation.cfm?doid=2382196.2382224.
[34] Sarma, B.P., Li, N., Gates, C., Potharaju,

R., Nita-Rotaru, C. and Molloy, I. (2012)
Android permissions: A perspective combining risks
and benefits. In Proceedings of the 17th ACM
Symposium on Access Control Models and Technologies,
SACMAT ’12 (New York, NY, USA: ACM): 13–22.
doi:10.1145/2295136.2295141, URL http://doi.acm.

org/10.1145/2295136.2295141.
[35] Octeau, D., McDaniel, P., Jha, S., Bartel, A.,

Bodden, E., Klein, J. and Le Traon, Y. (2013)
Effective inter-component communication mapping in
android with epicc: An essential step towards holistic
security analysis. In Proceedings of the 22Nd USENIX
Conference on Security, SEC’13 (Berkeley, CA, USA:
USENIX Association): 543–558. URL http://dl.acm.

org/citation.cfm?id=2534766.2534813.
[36] Davi, L., Dmitrienko, A., Sadeghi, A.R. and

Winandy, M. (2011) Privilege escalation attacks on
android. In Proceedings of the 13th International
Conference on Information Security, ISC’10 (Berlin,
Heidelberg: Springer-Verlag): 346–360. URL http://dl.

acm.org/citation.cfm?id=1949317.1949356.
[37] Grace, M.C., Zhou, W., Jiang, X. and Sadeghi,

A.R. (2012) Unsafe exposure analysis of mobile in-
app advertisements. In Proceedings of the Fifth ACM
Conference on Security and Privacy in Wireless and
Mobile Networks, WISEC ’12 (New York, NY, USA:
ACM): 101–112. doi:10.1145/2185448.2185464, URL
http://doi.acm.org/10.1145/2185448.2185464.

[38] Zhou, W., Zhou, Y., Jiang, X. and Ning, P. (2012)
Detecting repackaged smartphone applications in third-
party android marketplaces. In Proceedings of the Second
ACM Conference on Data and Application Security and
Privacy, CODASPY ’12 (New York, NY, USA: ACM):
317–326. doi:10.1145/2133601.2133640, URL http://

doi.acm.org/10.1145/2133601.2133640.
[39] Fahl, S., Harbach, M., Muders, T., Baumgärtner,

L., Freisleben, B. and Smith, M. (2012) Why eve
and mallory love android: An analysis of android

ssl (in)security. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security,
CCS ’12 (New York, NY, USA: ACM): 50–61.
doi:10.1145/2382196.2382205, URL http://doi.acm.

org/10.1145/2382196.2382205.
[40] Mallodroid will help identify vulnerable android-

apps, http://malwarelist.net/2012/10/23/

vulnerable-android-apps/. Last access in Feb.
2015.

[41] Roman Unuchek - Lookout, The
most sophisticated android trojan, http:

//securelist.com/blog/research/35929/

the-most-sophisticated-android-trojan/. Last
access in Feb. 2015.

[42] Tim Strazzere, Android-unpacker, https://github.

com/strazzere/android-unpacker. Last access in Feb.
2015.

16
EAI Endorsed Transactions on

Ubiquitous Environments
01 -05 2015 | Volume 1| Issue 4 | e5

http://dx.doi.org/10.4108/icst.mobiquitous.2014.258066
http://dx.doi.org/10.4108/icst.mobiquitous.2014.258066
http://dx.doi.org/10.4108/icst.mobiquitous.2014.258066
http://dx.doi.org/10.1145/2382196.2382224
http://doi.acm.org/10.1145/2382196.2382224 http://dl.acm.org/citation.cfm?doid=2382196.2382224
http://doi.acm.org/10.1145/2382196.2382224 http://dl.acm.org/citation.cfm?doid=2382196.2382224
http://dx.doi.org/10.1145/2295136.2295141
http://doi.acm.org/10.1145/2295136.2295141
http://doi.acm.org/10.1145/2295136.2295141
http://dl.acm.org/citation.cfm?id=2534766.2534813
http://dl.acm.org/citation.cfm?id=2534766.2534813
http://dl.acm.org/citation.cfm?id=1949317.1949356
http://dl.acm.org/citation.cfm?id=1949317.1949356
http://dx.doi.org/10.1145/2185448.2185464
http://doi.acm.org/10.1145/2185448.2185464
http://dx.doi.org/10.1145/2133601.2133640
http://doi.acm.org/10.1145/2133601.2133640
http://doi.acm.org/10.1145/2133601.2133640
http://dx.doi.org/10.1145/2382196.2382205
http://doi.acm.org/10.1145/2382196.2382205
http://doi.acm.org/10.1145/2382196.2382205
http://malwarelist.net/2012/10/23/vulnerable-android-apps/
http://malwarelist.net/2012/10/23/vulnerable-android-apps/
http://securelist.com/blog/research/35929/the-most-sophisticated-android-trojan/
http://securelist.com/blog/research/35929/the-most-sophisticated-android-trojan/
http://securelist.com/blog/research/35929/the-most-sophisticated-android-trojan/
https://github.com/strazzere/android-unpacker
https://github.com/strazzere/android-unpacker

Android Apps Risk Evaluation: a methodology

Appendix

Table F.1. The mapping between behaviour patterns and their risk categories in Behaviour module.

Activity Name Risk categories
APP DATA N/A
PERMISSIONS DANGEROUS RISK, MONEY RISK, PRIVACY RISK, SMS RISK,

ROOT PRIV RISK, EXPLOIT RISK, INTERNET RISK, PHONE RISK
ADVM PERMISSIONS DANGEROUS RISK, DYNAMIC RISK, MONEY RISK,

PRIVACY RISK, SMS RISK, ROOT PRIV RISK,
EXPLOIT RISK, INTERNET RISK, PHONE RISK

UNUSED PERMISSIONS N/A
SIGNATURE PERMISSIONS SIGNATURE SYSTEM RISK or SIGNATURE RISK
DYN RCV DANGEROUS RISK, DYNAMIC RISK
DYN CLASS LOAD DANGEROUS RISK, DYNAMIC RISK, BINARY RISK
RUNTIME EXEC DANGEROUS RISK, EXPLOIT RISK, ROOT PRIV RISK
IMPLICIT HTTP N/A
ENCRYPTION DANGEROUS RISK, ENCRYPTED CODE RISK
REFLECTION DANGEROUS RISK, BINARY RISK, EXPLOIT RISK
NATIVE DANGEROUS RISK, BINARY RISK, EXPLOIT RISK
PKG INSTALL DANGEROUS RISK, BINARY RISK
PKG MONITOR DANGEROUS RISK
CALL PHONE DANGEROUS RISK, MONEY RISK
PROCESS OUTGOING CALLS DANGEROUS RISK, MONEY RISK, PRIVACY RISK
SEND TXT SMS DANGEROUS RISK, MONEY RISK, MONEY RISK
SEND DATA SMS DANGEROUS RISK, MONEY RISK, MONEY RISK
TEL MANAGER DANGEROUS RISK, MONEY RISK, MONEY RISK
INCOMING CALLS DANGEROUS RISK, PRIVACY RISK
ACCESS CALL LOG DANGEROUS RISK, PRIVACY RISK
RCV DATA SMS DANGEROUS RISK, PRIVACY RISK
RCV TXT SMS DANGEROUS RISK, PRIVACY RISK
READ INBOX DANGEROUS RISK, PRIVACY RISK
READ SENT DANGEROUS RISK, PRIVACY RISK
READ OUTBOX DANGEROUS RISK, PRIVACY RISK
READ OTHERS DANGEROUS RISK, PRIVACY RISK
HTTP POST DANGEROUS RISK, PRIVACY RISK, INTERNET RISK, MONEY RISK
HTTP GET DANGEROUS RISK, PRIVACY RISK, INTERNET RISK, MONEY RISK
HTTP DANGEROUS RISK, PRIVACY RISK, INTERNET RISK, MONEY RISK
SOCKET DANGEROUS RISK, PRIVACY RISK, INTERNET RISK, MONEY RISK
SRV SOCKET DANGEROUS RISK, PRIVACY RISK, INTERNET RISK, MONEY RISK
NET MONITOR DANGEROUS RISK, PRIVACY RISK, INTERNET RISK
START SRV DANGEROUS RISK, INTERNET RISK
READ CONTACTS DANGEROUS RISK, PRIVACY RISK
ACCESS FINE LOCATION PRIVACY RISK
ACCESS COARSE LOCATION PRIVACY RISK
KILL PHONE RISK
RESTART PHONE RISK
CHANGED SETTINGS PHONE RISK
READ SETTINGS PHONE RISK
DEVICE POLICY MANAGER DANGEROUS RISK, PHONE RISK, PRIVACY RISK
WRITE BOOKMARKS DANGEROUS RISK, PHONE RISK
READ BOOKMARKS PRIVACY RISK
WRITE EXTERNAL STORAGE N/A
READ SMS DANGEROUS RISK, PRIVACY RISK, SMS RISK

17

EAI Endorsed Transactions on
Ubiquitous Environments

01 -05 2015 | Volume 1| Issue 4 | e5

T. Su et al.

WRITE SMS DANGEROUS RISK, PRIVACY RISK, SMS RISK
ADD APN DANGEROUS RISK, PRIVACY RISK, SMS RISK, MONEY RISK
READ APN N/A
PROTECTED INTENTS DANGEROUS RISK, PHONE RISK
MANIFEST N/A
FILES N/A
IP N/A
URLS N/A
CAMERA PRIVACY RISK
FACTORY TEST DANGEROUS RISK, PHONE RISK
NFC PRIVACY RISK
READ INCOMING SMS PRIVACY RISK, SMS RISK
WRITE CONTACTS N/A
SMS DEFAULT APP PHONE RISK, SMS RISK, PRIVACY RISK
VPN SERVICE N/A
WIFIP2P N/A
NFC BEAM SENDER N/A
NFC BEAM RECEIVER N/A

Table F.2. The mapping between detected activities and their risk categories in dynamic analysis module.

Activity Name Risk categories
FILE READ PRIVACY RISK, EXPLOIT RISK, PHONE RISK;
FILE WRITE EXPLOIT RISK, PHONE RISK;
CRYPTO API ENCRYPTED CODE RISK;
OPEN CONN INTERNET RISK;
OUTGOING TRAF INTERNET RISK, MONEY RISK;
INCOMING TRAF INTERNET RISK, MONEY RISK;
DEX CLASS LOADER DYNAMIC RISK, BINARY RISK;
BROADCAST RECEIVER DYNAMIC RISK;
START SERVICE DYNAMIC RISK, PHONE RISK;
ENFORCED PERMISSION DYNAMIC RISK;
BYPASSED PERMISSION DYNAMIC RISK, PHONE RISK;

SENT SMS NORMAL SMS RISK, MONEY RISK;
PHONE CALLS MONEY RISK;
FILE LEAKAGE PRIVACY RISK, PHONE RISK;
INTERNET LEAKAGE PRIVACY RISK, INTERNET RISK, MONEY RISK;
SENT SMS LEAKAGE PRIVACY RISK, SMS RISK, MONEY RISK;
INFO LEAKAGE SMS SMS RISK, PRIVACY RISK;
INFO LEAKAGE OTHERS PHONE RISK, PRIVACY RISK.

18

EAI Endorsed Transactions on
Ubiquitous Environments

01 -05 2015 | Volume 1| Issue 4 | e5

	1 Introduction
	2 Android Security Model
	3 Android Application Evaluator
	3.1 Static Analysis
	Behaviour module
	FileScan module

	3.2 Dynamic Analysis
	3.3 Applications Risk Evaluation
	Fuzzy interpretation of risk states
	Computing fuzzy risk level

	4 Experimental results
	5 Related work
	6 Conclusions

