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Abstract

Thanks to the diffusion of wearable devices there are several indoor tracking systems. Among them, RF-based have 
been deeply studied for their flexibility and limited costs. These systems can be employed as assistive tools only being 
dependable, identifying faults. We propose two methods to provide multiuser tracking with concurrent localization 
of natural hardware and human-made faults. The first method relies on independent measurement systems and on a 
model-based fault localization apparatus, checking for discrepancies in the subsystems behavior. The second provides an 
estimation of the fault probability for each device, based on the data collected at runtime. These methods aim to provide 
dependable tracking for fragile people (such as elderly or people with small impairments). We present examples of Indoor 
Human Tracking simulations in a large environment, and an implemented case-study. The collected data confirm the 
validity of both the approaches and highlight their diversity.

Keywords: Indoor Human Localization; Home Automation; Assistive Technology; Smart Home; Dependability; Fault Detection; 
Human-Made Fault Detection.

Received on 14 February 2014; accepted on 10 April 2015; published on 26 May 2015
Copyright © 2015 F. Veronese et al., licensed to ICST. This is an open access article distributed under the terms of the 
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, 
distribution and reproduction in any medium so long as the original work is properly cited.
doi:10.4108/ue.1.4.e3

1. Introduction

Tracking of humans in indoor environments it’s a growing
technology, boosted on one hand by the development of
efficient hardware – small, low cost and low consumption
devices – and on the other by commercial application such as
context-aware services, advertising and navigation. They are
an important field in Smart Environments and Smart Cities
research, connecting the real world to its virtual representation.
Nonetheless Indoor Tracking Systems are successfully used
also as tools in health environments, where they are usually
designed to support (or restore) patients independence. When
patients, elderly or disabled people are the users, one of the
most important needs is the need for security. Such need is
highly important, standing at the second level of Maslow’s
hierarchy [1]. This is particularly suited to the conditions of
fragile people (such as elderly, people suffering from small
impairments), who need their family to be watching over them,
and to their families, who want to be sure that their loved ones
are in safe conditions. Assistive systems, able to share the
position of a fragile person to his/her relatives, represents a
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tool to satisfy these needs. Moreover it is not uncommon for
fragile people living alone, to experience serious consequences
due to domestic falls or accidents.
This work refers to Indoor Human Tracking (IHT) systems
for fragile people, where dependability features are needed
and often other assistive systems are already deployed. The
main idea is to exploit already-in-place sensors, as a source of
redundant information about the person’s position. Crossing
this information with the one from the IHT system enables to
identify faults in both systems. In particular with this work we
propose two different approaches: a sharp model based and
a probabilistic fault localization method. While most of the
design effort for dependability is usually devoted to manage
faults generated by components of the system (e.g., hardware
or software, technically named natural faults), in this work
we will focus also on those generated by the users, also called
human-made faults. Moreover, the system is provided with a
fault localization method. This, based on the system status in
case of inconsistency – and thus of fault – is able to point out
the device not operating in a correct manner, and the building
area where the fault is having place. In this paper we present
the method, the design and a reliable implementation of such
IHT system, where natural and human-made faults can be
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detected. Moreover another approach is proposed, leveraging
an estimation of the fault probability for each component,
based only on runtime data. These two approaches are finally
compared, highlighting their peculiarities.

2. Related work
In order to improve the reliability of localization systems,
different approaches have been implemented. In this work
we will refer to tracking In this section the reader finds
an introduction to indoor human localization techniques
retrievable in the literature, then the approaches developed
to improve reliability.

2.1. Indoor Humans Localization/Tracking

Even if in literature the commonly used term is localization,
in this work the term tracking was preferred, since fault
localization has been used to define the identification of
the fault, only to avoid confusion for the reader. Nowadays
several technologies for IHT, based on various physical
principles, are available. Torres-Solis et al. [2] classify IHT
systems based on the measured quantity: photonic energy,
sonic waves, mechanical energy, magnetic fields, atmospheric
pressure and radio frequency (RF) waves. This last physical
quantity is widely used, in cost-effective and flexible systems,
by leveraging different methods. Focusing on RF-based
methodologies, the main sampled quantities, observed to
perform localization, are: Angle of Arrival, Time of Flight,
Differences in Time of Arrival, Received Signal Strength
(RSS) [2–4]. Depending on the observed quantity it is
possible to adopt a method based on Lateration/Angulation
(computing a precise position in space from three or more
measurements of distance/angle from known locations [3]) or
on Fingerprinting (defining specific areas in the environment
and identifying the target presence in one of them [3]). Looking
at different technologies inside the RF category, system can
leverage Radio Frequency Identification (RFID), Wireless
Local Area Network (WLAN), Bluetooth, Wireless Sensor
Netwok (WSN), Ultra Wide Band (UWB), TV broadcasts
(UHF) or mobile phone communications (UMTS, GPRS, etc.)
[3].

Sensor Fusion. Wireless RF technologies, presented in
the previous section, rely on an uncontrolled and highly
shared medium: many possible happenings (e.g., interference,
shadowing, multipath) inevitably lead to inaccuracies and
errors. The most diffused approach to increase the accuracy of
localization, is to leverage two or more physical quantities and
combine them to obtain improvements both in precision and
reliability [3]. Nonetheless, even if leveraged in less systems,
Sensor Fusion can also provide a certain level of resilience to
faults affecting one of the measure systems.

Dead reckoning systems, usually based on the integration
of acceleration measurements coming from an IMU
(Inertial Measurement Unit), are subject to estimation error
accumulation: in most of the proposed approaches the system

controls drift, either by considering other physical quantities
such as RF [5], atmospheric pressure [6]) or relying on a priori
knowledge [7] and landmark identification [8].

In other systems, RF and UltraSounds (US) are used
together to improve the final precision, or to overcome
environmental issues. The Cricket localization system [9]
leverages the difference in time propagation between RF and
US signals to estimate the distance to a known emitter. This
enables the designers to implement a signal transmission
protocol and a processing algorithm capable to ignore the data
affected by noise (e.g., multipath, reflections), thus obtaining
a better estimate than using RF or US independently.

A very similar approach is presented by YunFei et al. [10]:
their system leverages the time difference between US and
RF propagations to estimate the distance from a device with a
known position. Furthermore, they include a signal integrity
monitoring, leveraging measurement redundancy. This allows
them to identify situations with inaccurate estimations and, in
case, to send the user a feedback.

The positioning system reported by Do et al. [11] is based
on three different technologies, crossing information coming
from WLAN, GPS and cell towers. The system is deployed on
a mobile terminal, where the data are collected, processed and
the result is available to the user. The aim is to locate the user
seamlessly, in indoor or outdoor environments, trying to rely
on the most accurate measurements available. The system also
comprises a communication policy between the terminal and
the remote localization server, trying to minimize the requests
when a good localization can be provided by the terminal itself.

Dependability in human tracking. A dense literature
has been developed about methods to exclude wrong
measurements thanks to redundancy, when dealing with
localization and lateration. Sturza developed a method in
1988 [12], and since then several techniques improved
or leveraged those principles, but mainly in GPS (Global
Positioning System) applications and outdoor environments.
Three conventional versions of receiver autonomous integrity
monitoring (RAIM) methods are the chi-square test, the
horizontal protection level test (HPL) and the multi-hypothesis
solution separation test (MHSS) [11].

Do et al. [11] used these techniques within an hybrid
TV-GPS-WLAN localization system, facing multi-faults
conditions. The proposed solutions are the variants of the
three algorithm listed before, modified in order to include an
iterative fault detection and exclusion.

In indoor settings, anyway, there are few examples of
works explicitly devoted to dependability. YunFei et al. [10]
use the same principle (of redundancy) to identify faulty
measurements. They keep trace of the estimation precision,
looking for biases in a specific precision parity matrix. This is
used not to exclude the measure from the estimation procedure,
but to warn the user that the measurements are not reliable.
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3. System Definition and Modeling

Before going into methodology and implementation details it
is necessary to introduce some definitions.

3.1. Definitions

The model of the system and the concepts of Fault, Error,
Failure refer to the terminology proposed in Avižienis et
al. [13]. Our work considers an indoor system, comprising
hardware, software and humans, interacting with the
environment. The system is composed of different components
(e.g., sensors placed inside the indoor environment),
characterized by a specific behavior (e.g., they are activated
when the person turns a switch on or when the person enters
a particular area); the system can be represented as a set of
states corresponding to the components’ behavior. Perceived
by the users (e.g., humans, other systems, etc.), the behavior
represents the service the system is providing.

Fault, Error, Failure. When we observe a deviation from
at least one state in the system behavior with respect to the
correct sequence of states, that deviation is an error. It is worth
noting that potentially many errors may not be observable
and may not cause a service failure: this could be due, for
example, to temporary masking (the environment has not
stimulated the system) or to the application of a fault tolerance
strategy. Any error has a cause, which is called fault. A
fault first causes an error in an internal service state (i.e. a
component of the system), but the observable state may not
be immediately affected. The error affects other system states,
till the observable state is reached and the system service fails.
A system service failure occurs when the delivered service
deviates from the correct service, violating the functional
specifications. In this work we exclude the possibility of
service failures due to inadequate or incomplete specifications,
thus failures are caused by faults only.
Moreover, we assume that the development phase is fault-less,
thus we will focus on operational faults (i.e. those occurring
during the system’s use phase). Furthermore, we distinguish
between natural faults, caused by natural phenomena, and
human-made faults, caused by human actions.

3.2. System Structure

The system is composed by the following components.
IHT subsystem: this system estimates the target people’s
positions in the indoor environment.
Anonymous Interaction Detection (AID) subsystem: a
system able to provide localization events detected by
ubiquitous (general purpose) sensors placed inside the house.
Presence Detection (PD) subsystem: a system able to
provide localization events detected by presence sensors.
Fault Detection subsystem: Information gathered from the
IHT, AID, and PD subsystems are collected by the fault
detection subsystem, which is able to process them to detect
when a fault condition is verified.

3.3. System Specification

The mission of the presented system architecture is to provide
dependable indoor tracking systems, able to correctly detect
the position of one or more persons inside a building.

Functional Specifications. The system provides the
target people’s positions within a predefined indoor space,
which may be either the whole building or a part of it.

Non-functional Specifications. The system imple-
ments a method for concurrent fault detection, i.e., it evaluates
its operational health during normal functionality, to detect
a fault when it occurs. It is worth noting that the system is
only able to detect faults, not to tolerate them. Thus, we can
state that the system is self-checking (and not fault-tolerant).
Furthermore the fault is detected, but its source is not generally
identified.

Other Requirements and Hypotheses. The following
conditions and hypotheses apply:
- The development phase is flawless and does not introduce
any fault.
- The IHT subsystem should cover the whole predefined indoor
space where the persons are tracked.
- Users do not temper the system components, nor act
purposefully when their action causes a fault.

3.4. Components Modeling

When designing a self-checking system, a possible approach
is to identify and describe all the possible faults and errors.
This process, though, provides only a little flexibility and
it is improbable for it to detect a fault not identified. An
alternative approach consists in designing a model-based self-
checking system. Indeed, as stated by Isermann [14], it is
possible to detect a fault by using the dependencies between
different measurable signals; to this aim it is necessary to
build a model of the dependency itself. Given the measured
real-world quantities and a model, reproducing the expected
system behavior, it is possible to generate features (e.g., states,
parameters or residuals coming from the system model). If
their values do not comply with the nominal characteristics
of the system, a fault is detected [14]. This approach enables
to build a description of the error, which is not only more
flexible (being able to detect faults in a more general way), but
also, under certain conditions, more synthetic. To exploit such
advantages we adopted a model based approach.

The functionalities of the components of the system are
therefore formally described in the next subsections. The
indoor environment is represented by the home space H , as
follows:

H ,
{
x ∈ R2 : x ∈ H̃, x < W

}
(1)

where H̃ is the whole space inside the house perimeter and
W ⊂ H̃ is the set of unreachable positions, like, for examples,
the walls.
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IHT model. Given the environment, the IHT subsystem
functionality can be described. The human tracking system
is supposed to provide the person position in the home space
H . The position x̂L detected by the IHT system in the home
environment is defined as:

x̂L = xp + ξ xp, x̂L ∈ H ⊂ R2 (2)

where xp is the actual position of the person and the measured
values are affected by an additive error ξ. Given the fact that
there is an error, in the model we can replace the x̂L estimated
by IHT system by the set of points L ⊂ H , surrounding the
result position x̂L within a maximum distance δth, granting a
certain precision (e.g., th=90%). Since within the home space
the person has some restrictions in the movements due to the
presence of walls, we can exclude from the set of points L
both the points belonging explicitly to walls and those that are
behind a wall (corresponding to another room or being outside
the building), with respect to the estimated position x̂L:

L ,
{
y ∈ H : ||y − x̂L|| ≤ δth, yx̂L ∩W = ∅

}
(3)

This not only excludes points belonging explicitly to walls,
but also those which are behind a wall, with respect to the
estimated position x̂L (being px̂L the segment representing
that path). Given the set of points L, we can model IHT system
fault through the condition:

∀xp < L⇒ FL (4)

which states that if the actual position of the person is not
inside the result set L, a fault FL is occurring.

Nonetheless, we have only an estimation of the person’s
position, the real world value xp is unknown in such a setting.
If the aim is to provide dependability, it is necessary to gather
independent measurements of xp, for example, by deploying
a second redundant IHT system. This, however, means also
doubling the costs. Instead of deploying a redundant IHT
system, we might leverage on other systems, possibly designed
to provide different services, but still able to provide the
needed information about the person’s position. The next two
subsections describe the models of two possible systems that
can be exploited to provide dependability of the IHT system.

Anonymous Interaction Detection (AID) model.
Potentially, any element of a smart home environment with
which inhabitants interact could be sensorized, so that a
specific event can be recognized. This information (e.g., the
usage of an hair drier, or the weight on a chair sit, the water
tap opening/closing, the activity at a pc workstation, etc.) is
not necessarily related to the functionality of the sensorized
system, but still represents a localized event in time and space
generated by a person. These events are in other words related
to the real world person’s position xp, which is necessary to
identify IHT systems faults.

Generalizing and abstracting from the specific sensing
technology, it is possible to identify a common model for these
kinds of events. To keep the generalization valid, we must then

accept the fact that the detected interaction might not be related
to a specific person, thus let us define the detected presence as
anonymous. First of all let us consider that each sensor s ∈ S
(S set of all sensors) has a known position in space xs ∈ H .
Other inherent characteristics of the sensor are the interaction
range rs (i.e., the maximum distance ||xp − xs || at which the
activation event can take place), and a value vs, referred to
the sensor (e.g., the power consumption of the hair drier, the
measured weight on the chair, the boolean status of the tap,
the activity performed at the pc workstation). We can finally
formalize this model by describing the sensor s activation area
As as:

As ,
{
∀y ∈ H, ||y − xs || ≤ rs, yxs ∩W = ∅

}
(5)

which includes also the condition against walls-crossing, as
defined for IHT.
Furthermore, called Vs, the set of all the possible values
(eventually an enumeration of discrete statuses or a range)
of the sensor s and V s the set of those that are correlated
to a presence (dually V s is the set of values read when no
interaction has taken place), we have that:

∀s ∈ S, vs ∈ V s ⇒ xp ∈ As (6)

Extending the single sensor case and considering a whole
house, sensorized with a set of sensors S , we can define the
active area A ⊆ H for the whole AID system:

A ,
{
As : s ∈ S , vs ∈ V s

}
(7)

Indeed it is necessary to consider also the possibility that a
fault affects the AID system. Focusing only on the information
related to xr , we can define the fault of the AID system FA as:

∀xp ∈ H,∃s ∈ S :
{
As ∈ A, xp < As

}
⇒ FA (8)

which represents the condition in which the person is not in
the activation area of a triggered sensor.

Model Based Fault Detection. With such modeling, it
is possible to recognize that an AID system can provide an
information similar to the one we could obtain by duplicating
the IHT system. Thus, when an IHT and an AID systems are
placed in the same environmentH , the person must stand in an
area identified concordantly by both the IHT and AID systems.
The following relation can be therefore defined:

∃s ∈ S : {As ∈ A ∧ (L ∩ As) = ∅} ⇒ (FL ∨ FA) (9)

It can be proven by contraddiction: assume that no fault FL or
FA has happened, but that there is a sensor, whose active area
does not intersect the localized area. From (4) and (8) we can
write that:

xp ∈ L ∧ xp ∈ As → xp ∈ (L ∩ As) (10)

But from (10) we reach immediately the impossible condition:

xp ∈ ∅ (11)
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which proves the validity of (9).
(9) provides an observable state for fault detection, which

implies that the system behavior has deviated from the
expected one. We can define it as an error E:

E , {∃s ∈ S : As ∈ A ∧ (L ∩ As) = ∅} (12)

The previous definitions are given for single person in
the indoor environment. By replicating the behavior of the
components for a set of persons, the error equation can
be extended to the case with more people p ∈ P to track
simultaneously inside the house: it is only necessary to
consider all the corresponding Lp areas and to extend 12 as
follows:

E ,
{
∃s ∈ S :

{
As ∈ A ∧ ∀p ∈ P ,

(
Lp ∩ As

)
= ∅

}}
(13)

Sensors Limitations. The models and the fault detection
method introduced in the previous paragraphs have been
designed to be as general as possible. Indeed, most of the
localization and home ubiquitous systems can fit in those
model, although, this brings also some drawbacks. Their
outcome with respect to dependability is that it is not possible
to grant the fault-secureness property [13] i.e., it is not possible
to guarantee in any situation that if a fault occurs, it is always
identified. In the sequel we present the limitations that sensors
introduce, and, where possible, provide a possible approach to
mitigate their effects.

Natural interaction with home devices, appliances and
interfaces, as we presented in the AID modeling, is related to
the person’s action in the environment. Obviously a person is
not always interacting with the environment: This forces us
to accept the condition that a person can be (and be localized)
inside an area where no interaction takes place. This fact
has a consequence on the system properties, since it makes
impossible to guarantee the fault-secureness. For example if
a fault of the IHT system occurs for the i-th target person, as
long as he/she does not interact with the AID system, no fault
is identified.

Another possibility is that the “faulty” i-th target actually
moves (its real world position xi , not x̂i), close to the j-th
target, who actually “shadows” the i-th target presence, by
making the system consider any activation as made by j, even
if actually made by i. Even if this might seem to limit the
significance of the concurrent fault detection we want to put
in place, it is important to remark that time period between
two AID system events depends on the persons’ activity and
on the sensors type and dissemination. The higher the sensors
density and the finer the granularity, the more precise is the
spatial resolution of the events; the more active the person is,
the more frequent the interaction events are.

Presence Detection (PD) model. When needed, it is
anyway possible to employ presence sensors. It is somehow
similar to an IHT duplication, but a Presence Detection (PD)
system might have a lower cost and/or other services/purposes.
In that case the sensors are activated without any interaction,
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Figure 1. Sensor delay τd and persistance τp
representation.

but just passively because of the persons presence. For
presence sensors, is therefore extended to:

∀s ∈ S,∀xp ∈ H xp ∈ As ⇔ vs ∈ V s (14)

In these conditions it is possible to consider not only (9), but
also the dual condition:

∃p ∈ P :
{
∀s ∈ S : As ∈ A ∨

(
Lp ∩ As

)
= ∅

}
⇒

⇒ (FL ∨ FA)
(15)

defining that any active area Lp should have an intersection
with at least an active sensor’s area As, otherwise FL or FA
occurs. The corresponding error formulation is:

E′ ,
{
∃p ∈ P :

{
∀s ∈ S : As ∈ A ∨

(
Lp ∩ As

)
= ∅

}}
(16)

Temporal Formulation. The formulation of the previous
paragraphs has an instantaneous connotation. In real world
though, there are also issues related to sensors temporal
dynamics, which can affect significantly the behavior of the
activation. This imposes the modeling to introduce a temporal
connotation to evaluate properly their activation.

First of all not all the quantities are time-dependent. We
have to introduce the time t and:

Lp(t) ,
{
Lp |x̂p=x̂p(t)

}
A(t) ,

{
As : s ∈ S, vs(t) ∈ V s

} (17)

where x̂p(t) is the position of the p-th person estimated by the
IHT system at time t, and vs(t) is the value of the s-th sensor
at time t.
Let us define the delay and the persistence of a sensor. The
delay τd is the time, since the stimulus beginning the sensor
needs to activate, the persistence τp is the time lapse during
which the sensor remains active even without stimulus (Figure
(1)).

An emblematic example of the temporal issues is
represented by PIR sensors (Passive InfraRed sensors), but
the principle can be applied to any presence sensor with
non-instantaneous timing. They are sensors s ∈ SP triggering
immediately for changes in position ẋp(t) ∈ As, but they
deactivate after τp seconds since a person has stopped (in
their area of activation) or has left. Thus they have no delay,
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but persistence τp:
ẋp(t) , 0 t > t0 (a)
xp(t) ∈ As t0 ≤ t < t1 (b)
xp(t) < As t ≥ t1 (c)

⇒

⇒

As ∈ A(τ) (t0 + τd) ≤ τ ≤ (t1 + τp)
As < A(t1 + τ) τ > τp

(18)

which models a) the behavior of a person in movement; b)
his/her behavior inside the area of the s-th sensor from t0 to
t1; c) the behavior after exiting the sensor’s area.

Furthermore, to model a person stopping at time t2 (19.b-c),
inside the area As (19.a); we can add the following:

xp(t) ∈ As ∀t (a)
ẋp(t) , 0 t < t2 (b)
ẋp(t) = 0 t ≥ t2 (c)

⇒

⇒

As ∈ A(t2 + τ) 0 ≤ τ ≤ τp
As < A(t2 + τ) τ > τp

(19)

Given (18-19) it is possible to state that, in an environment
fully covered by PIR sensors, a person is surely located inside
the area of the last active PIR sensor which contained him/her.
Indeed if a person moves from an area As to another, ẋp(t) is
not null, activating the sensors. So, we can identify the time
lapse passed since the sensor’s last active instant αs and the
time interval since the last sensor activation ωs as:

αs(t) , (t − ta), ta = max{t′ : As ∈ A(t′)}
ωs(t) , (t − te), te = sup{t′ < ta : As < A(t′)} (20)

Further, the person’s p last PIR visited area Asp (with s ∈ SP )
is:

Asp(t) ,
⋂
s∈SP

{
As : s = argmin

s
αs(t) ∧

∧ s = argmin
s

ωs(t) ∧ As ∩ Lp(t) , ∅
} (21)

Finally, we can state that, if the person p’s last active PIR area
Asp(t) and the current location area Lp(t) have no intersection,
a fault has occurred:

∃p ∈ P :
{
Asp(t) ∩ Lp(t) = ∅

}
⇒ (FL ∨ FA) (22)

Similarly to previously defined errors/faults, we can identify
the error E′PIR:

E′PIR ,
{
∃p ∈ P : Asp(t) ∩ Lp(t) = ∅

}
(23)

While, on the other hand, Equation (13) must be modified in
order to consider the sensor’s persistency:

EPIR , {∃s ∈ SP : As ∈ A(t)∧
∧ As ∩ Lp(t − τ) = ∅, 0 ≤ τ ≤ τp

} (24)

Formulations similar to this can be described for other
sensors. Finally, the overall fault condition can be subsumed
as: (

EPIR ∨ E′PIR
)
⇒ (FL ∨ FA) (25)

3.5. Model-Based Fault Localization

The proposed method for consistency check and fault detection
is providing a general indication whether the system results
are reliable or not. However, in most of the cases, the natural
intervention that the system owner wants to put in place is to
recover the fault. To this aim it is certainly crucial to recognize
which is the faulty device or which user is misusing the system.
The following section will detail the method employed to
convey the sensors information available and achieve Fault
Localization (FL).

As detailed in section 3.4 it is possible to formulate
consistency conditions, referring to the position estimated by
the IHT system and the activation status of AID/PD devices.
Considering equations (23) and (24), it is not only possible to
infer if the overall system is faulty, but also to describe the set
of sensors or positions not respecting such conditions.

From this simple consideration it is possible to design a
method to infer the fault location. The initial condition for
fault localization requires the identification of two sets: Fs
and Fp, defined as all the sensors that have not satisfied
consistency conditions expressed in equation (9) and all
the persons positions that have not satisfied equation (22)
respectively. These two sets cumulate over time all the
inconsistencies, considering only the errors lasting a given
amount of time to avoid premature conclusions, as we will
see in the experimental Section. It is reasonable to assume
that only one fault happens at a time, and that two faults
have place in two time instants apart enough to identify
them separately. Under such conditions, each error happening
should be explainable by only one faulty device, leading to the
following statements:

P (FL) =
|Fs |

|Fp | + |Fs |
; P (FA) =

|Fp |
|Fp | + |Fs |

. (26)

Indeed, a fault in localization FL is identified by several
AID/PD sensors, reporting not consistent activations;
conversely, a fault in home automation FA is identified
(possibly) by several IHT devices. It is worth noting that in case
of one device per set the condition in (26) is not sufficient for
the identification of the fault. In such situations, it is necessary
to take into account also the motion of the localized person, in
the last available instants: a forgotten sensor it is likely to show
a certain position, not changing over time. This information,
moreover, enables the system to identify which localization
device has the highest probability to be fault-affected.

Given that the faulty device has been identified, its position
can be retrieved in two ways, depending if it belongs to
AID/PD or IHT system. Concerning the first case, a faulty
AID/PD sensor is still in the position where it was installed,
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so its localization is naive. Considering IHT fault, it is again
possible to leverage the redundancy of the infrastructure and
identify the location of the person not wearing the device,
whose position is still identified by IHT.

3.6. Fault Observability
As introduced in the definition section, faults have two main
phases of existence: in the first they have already happened,
but their effects are not observable yet. Only when a specific
situation occurs, the fault becomes observable as an error. In
technical terms, a fault remains masked, and it is not detectable,
until the output of the system remains compliant with the
specifications: no error can be observed. In many situations,
the system can be object of a self-test to verify if an error can
be detected, but this is not applicable to IHT. Indeed, it is not
very reasonable to require the user to move in a specific place
periodically, to perform a kind of self-test. This remark implies
that, in the scenario of this work, it is necessary to wait for the
opportune situation for an error to be observable, and thus for
a fault to be detected.

4. Case Study
As presented in the introduction, the aim of this work is to
provide a dependable localization system inside the home
environment of people with special needs, in order to help
them, to feel more secure and confident, and their family, to
feel reassured about their beloved. This introduces a set of
strict needs to be respected while designing the system.

4.1. User’s Need Centered Design
When designing and implementing such systems, costs are
considered extremely important, as well as installation effort
and maintenance. A very precise and extensive system, with
a price too high to be affordable by the user is useless. The
more services is possible to provide with the same hardware,
the better. Furthermore the system must be accepted by
the host person, especially in terms of not feeling invaded
by unpleasant devices. This can be respected by preferring
wireless technology, non visual sensors, small and/or not
visible devices. This philosophy drove our decisions, keeping
our aim to build best effort useful system, rather than a high-
performance one.
In this paper, we considered a possible implementation of the
whole system. Its components are an RF localization system
for health-care indoor environment named LAURA, an off-
the-shelf modular wireless Home Automation (HA) system, Z-
wave, and a Fault Detection apparatus based on Esper. In these
sections we describe the characteristics of all the subsystems,
we present the technology chosen and the reasons which drove
the decision.

4.2. The Indoor RF Localization Subsystem
LAURA [15, 16] is a localization system designed for people
tracking in indoor environments. It is based on a 2.4GHz WSN,

with a specifically designed addressing protocol. Originally
developed by Lim et al. [17], the localization method relies on
the RSSI between a mobile node of the WSN and the other
location-known fixed nodes (anchors). It takes advantage of
a dynamic and adaptive calibration by considering the RSS
measurements also among fixed anchors. The raw estimation
is then processed through a particle filter, which uses the given
distances to solve the lateration problem, to smooth the output
and to avoid non consistent movements and non permitted
paths (wall crossing).

Subsystem Characteristics. As briefly introduced, the
LAURA system has several features making it an ideal
candidate for our settings: it is a critical mission assistive
system, easily deployable, wireless, battery powered and no
configuration is needed, making it particularly suitable for
home environment. However, in the setting presented by
Redondi et al. [15, 16], it still lacks any method to provide
dependability.

4.3. The Home Automation Subsystem

Ambient Assisted Living (AAL) and Home Automation (HA)
technologies are nowadays spreading in our cities, changing
our houses into smart homes. This not only brings the comfort
and the services of a pervasive home control, but also provides
a great opportunity to monitor and assist fragile people in their
homes. The market of such products is highly competitive,
and several standards, technologies, companies and solutions
are nowadays available. Choosing the right solution is far
from trivial as several factors are involved in the choice: ease
of deployment, invasiveness, interoperability, costs, data rate,
network topology, network size and communication medium.
Nonetheless the investment is clearly a long-term one, so also
the chances of survival of the system in the market, as pointed
by Saidinejad et al. [18], should be taken into account.

HA Systems Analysis. The main WHANs (Wireless
Home Automation Networks) available nowadays on the
market are: Z-wave [19], ZigBee, 6LowPAN, Insteon, Wavenis,
EnOcean [20] and MiWi [21, 22]. Most important Home
Automation Networks (HAN) based on fieldbus technology
are KNX [23] (successor of EIB), BACnet, LonWorks, X10,
Profibus, Modbus, CANOpen, Universal Powerline Bus,
CEBus, C-Bus and 1-Wire [18]. Their networks are mainly
relying on twisted pair or power line medium. Some of
them, like KNX and X10, have been specifically designed
for residential environment, while others have general usage,
both in industry and HA [18].
Saidinejad et al. [18] present an iterative method for the
choice of suitable HA technology, given a set of constraints,
considering also financial aspects. They report a case study,
applying their approach while deciding which technology to
adopt for the implementation of a smart home for elderly
people. The application of their approach to a more general
setting of a reliable system, providing not-invasive AAL and
home monitoring, identified Z-wave and 6LowPAN as good
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candidates for our case study. Between them we adopted Z-
wave, for the lower costs and its orientation toward home
environments.

Sensor Choice. Z-wave [19] has a very large set of
different functional devices (both sensors and actuators)
available for customers, providing different choices of
manufacturers even for the same device type. To provide an
implementation of two sensor types we selected Door/Window
contact sensors and PIR (Passive InfraRed) sensors. The
Door/Window contact sensor (or simply DWS), has a very
common design: it is based on a magnet, triggering a
corresponding reed switch inside the active component of
the device. The presence of a person can be inferred when
the sensor status toggles. The PIR sensor detects the motion
of a human, without the need for a specific interaction. The
detection range is up to 5m, with a view angle of 360◦, when
ceiling mounted, or up to 10m and an angle of 110◦, when
wall mounted. These different mountings are possible thanks
to a replaceable lens, with two different shapes specifically
provided for each setting. Given those characteristics, its
limited cost, and low power consumption, the SP814 Motion
Detector was the selected PIR sensor. This sensor’s working
principle is inherently not ideal, since its response depend
mostly on the user position, speed and direction. The returned
PIR variable (activity) becomes true as a person’s movement
is detected, with a persistence of 10s.

4.4. Fault Detection Apparatus

The information collected from the two subsystems is
numerical and has a strong temporal connotation. Time is
important both in absolute (instantaneously) and in term
of sequence (of events). This kind of data stream is not
extraordinary complex, nor has the gigantic size that usually
characterizes Streams of Complex Event [24], still the
processing engine needs a certain flexibility to implement
the introduced model. Furthermore, we want our approach to
be potentially applied or extended to more complex settings
(e.g., higher sampling frequencies, devices and/or subsystems
number, problem complexity). To comply with all these
requirements, among the available Complex Event Processing
(CEP) Systems we identified Esper [25] as a candidate for our
study.

Esper. Esper is an open source event series analysis and
event correlation engine [25], able to recognize rich situations
in event series and to trigger custom actions. Esper is designed
for high volume event processing, where millions of events
coming in would be impossible to record using classical
database architectures. Esper provides a rich Event Processing
Language (EPL) to express filtering, aggregation, and joins,
possibly over sliding windows of multiple event series. It
also includes pattern semantics to express complex temporal
causality among events (followed-by relationship). One of the
most interesting features is the possibility to use Plain Old Java
Objects (POJOs) almost anywhere during the processing [25].

In our setting, we have adopted POJO to represent the system
model and EPL queries to implement the Fault Detection
apparatus.

4.5. Case Study Specific Requirements

In order to be modeled through the proposed method the case
study system must comply with the following requirements:

Known Sensorized Inhabitant(s): Any person inside the
environment is known since he/she wears an active
localization device. The device is meant to be worn.
Anyway, it is possible to remove it to avoid damages
(e.g., under the shower), keeping it in a range of 2m.

Device Coverage: IHT and PIR sensors must cover the
whole accessible area. Overlapping sensor areas are
permitted.

Model Application: DWS are suitable for instantaneous
error definition (13), while to PIR sensors can be applied
(23,24). The final error is the logic and of all of them.

4.6. Faults Scenarios (FS)

We can define separately Human-made Faults Scenarios (HFS)
and Natural Fault Scenarios (NFS). The most important HFS
are: (a) the inhabitant is not wearing the localization device;
(b) the inhabitant damages the device.
NFS are related to devices and components wearing, etc., we
can report few examples such as: (c) A device (HA or IHT)
is not reachable (e.g., out of the WSN range); (d) A sensor
(HA or IHT) is defective or malicious; (e) The localization
mobile device cannot reach enough anchors to perform a valid
localization; (f) A device (HA or IHT) runs out of power.

Furthermore both the IHT and the HA subsystems are able
to provide specific information used to detect simpler fault
conditions:

EL1 An anchor device is not reachable anymore. Several
faults can lead to this condition (e.g., device out of
power, hardware failure, significant RF absorption
increment), but still all of them can affect the estimation.

EL2 Not enough anchors are detected. Lateration with
less than 3 measures in a 2-D environment is an
underdetermined problem, though the PF is still able to
return an unambiguous result. In that case the estimation
is not reliable and the situation is reported.

EL3 The user device is not reachable. This implies the not
availability of the information needed to perform the
localization service, and thus no localization at all,
jeopardizing the system mission.

EZ1 Device has run out of power. It makes the device
completely inactive, resulting in no activation. The
potential creation of a critical blind zone is reported.
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Figure 2. Testing environment and deployed sensors. In
the map are visible the test areas and rooms (colored
ones), LAURA fixed devices (blue numbered dots) and
Z-wave devices (labeled with capital letters). PIRs (A-D)
have corresponding colored activation areas.

EZ2 Device is not reachable. No possibility to further
investigate the cause of the fault, but a warning similar
to the previous one is activated.

These more common (and simpler) errors are managed by the
systems in a different and more traditional way, and, being not
related to the model based methodology introduced with this
work, they will not be further tested.

4.7. Limitations
Considering the application scenario, a home, it is worth to
remark that the users population is considered sparse enough to
avoid excessive fault masking. Indeed exploiting PIR sensors,
it is possible to respect the privacy of the user. Nonetheless
they are characterized by a wide activation area and the
impossibility to identify even the number of detected humans:
in densely populated environment this would result in almost
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0.8

1

x = Localization Error [m]

P
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)

Estimated CDF for LAURA Localization Error

 

Err. = 3m
P(x) < 0.84

Figure 3. Estimated Cumulative Density Function
(ECDF) for LAURA localization error. Tests performed to
investigate the accuracy of the LAURA system resulted
in the curve here depicted. The reported valued of 3m
bounds the 84% of the estimations.

Figure 4. Path followed by the testers during
experimental acquisitions. The white areas represent
the sensorized space.

continuous sensors activity, making impossible to extract
any information. Anyway crowded and densely populated
environment do not belong to our case study, involving home
environment.

5. Experiments
To test the presented approach we implemented the whole
system and set a specific indoor area. After the data collection
the performances of the system were evaluated.

5.1. Environment
The tests were held in some rooms of a Politecnico di Milano
building in Como. As illustrated in Figure 2, nineteen fixed
LAURA anchors and 7 Z-wave devices were distributed along
the walls of a portion of one floor. One device was worn by a
tester simulating the inhabitant, to track his movements.

LAURA Configuration. In order to setup LAURA, we
used the IEEE 802.15.4 2.4GHz frequency band on channel 25,
which is Wi-Fi free, preventing unwanted radio interference
between Wi-Fi devices and WSN nodes. Each device was
configured to transmit at a relative power of -7dBm. This
power demonstrated to achieve acceptable results in terms
of accuracy and precision, preventing unstable connections
among nearby anchors.

Z-wave Configuration. We used two different categories
of Z-wave devices in our environment. In order to detect
human presence, four PIRs were mounted in three rooms and
one corridor. Three DWSs were mounted on top of doors to
monitor their states. Data gathered through these sensors were
transmitted to the HA system.

The activation, which were stored on the Z-wave controller,
were fetched via an ad hoc developed module, named "LEO",
through standard HTTP calls over the Ethernet network.
Aiming to be synchronized with LAURA, sensors’ states were
retrieved with a frequency of 1Hz.
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Model Parameters. The model described in the previous
sections can be adapted to the subsystem by tuning a specific
set of parameters. In our settings the localization error of
LAURA was studied, determining the value of δth=3m, which
is respected in the 84% of the estimations, as reported in Figure
3.

Concerning HA sensors, the values of maximum range
provided by the producers of each device were reduced to the
80%: wall mounted PIRs had a maximum detection distance
of 10m, thus ri∈P =8m, similarly ceiling mounted ones had
a reported range of 5m, which were reduced to ri∈P =4m.
Considering doors, activation areas were assumed to be defined
by a radius ri∈D=1.5m.

5.2. Test Protocol
In order to obtain coherent and accurate data, both LAURA and
the Z-wave system had to be synchronized during acquisition
period. Since the sampling frequency is low, we used the
Network Time Protocol (NTP) to synchronize clocks over
Internet, assuring a precision in the order of 100ms [26].

As illustrated in Figure 4, the trajectory for the path
was polygonal, connecting predefined points by rectilinear
segments. The inhabitant walked along the predefined path
(designed to trigger the available sensors), with a constant
speed. The tester stopped at each corner, before changing
the direction: arrival and departure times at each point were
recorded, in order to reconstruct the instantaneous position
of the person xp. Concerning other environment elements,
no constraint was defined, but changes were annotated. Since
PIRs have time limitations, as mentioned previously in (Sensor
Types), two lingering zones were added, where the tester
remained still for a while in order to be undetected by the
PIRs, highlighted in Figure 4 by greater dots (identified by
numbers 1-13 and 6). Time and duration of each single activity
performed by the inhabitant and of any significant environment
change, were annotated. The average test duration was about
3min, the overall duration of the tests was approximately
18min.

In order to model faults in the environment, two different
policies were applied: Forgotten Device: A fault case was
simulated by forgetting the worn device in a predefined
location, while the tester continued its trajectory around the
environment, triggering PIRs and DWSs. Blinded PIR: A PIR
sensor was blinded in order not to detect the user, although it
was active, charged and present on the network.

5.3. Fault Detection Experimental Results
The first run of experiments were in fault-free conditions.
The collected data revealed no significant fault detection. As
reported in Figure 6a, an initial error condition is risen and
few short-duration error are visible (see first line in the figure).
The initial fault is detected due to the HA system initialization:
no sensor has been activated yet.

While the short duration fault detections (e.g., around
t=120s) are due to tracking inaccuracies: comparing the
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(a) Fault-free conditions. The brief and instantaneous fault
activations are due to IHT system inaccuracies, which is
concordant to the 84% precision threshold imposed.
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(b) Forgotten device. The device is left (X marker) in position 6
(Figure 4) along the trajectory.
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(c) Blind PIR sensor C. As the tester enters the room (leftmost
X, point 5-7 in Figure 4) the Error is risen, then dismissed, as
he exits (rightmost X). Sensor’s C green activation, present in
Fig.(6a-6b), here is missing.

Figure 6. Real world experiments, user moving along
the trajectory in Figure 4: Fault-free, Forgotten Device,
Blind PIR. Lines represent PIR sensors activity, circles
interactions with DWS, y axes letters refer to sensors as
in Figure 2.

estimated position and the actual position. Since it was
accepted p=84% defining δth, the estimated position may exit
the defined region. Anyway, in those cases, the fault is punctual
(up to 5s) and can be identified or neglected. Emulating the
forgotten device condition, the system result was the expected
fault detection. In Figure 6b as the user moves away from the
device in position 6 (Figure 4) and activates other sensors, the
fault detection response is sharp and stable. Second, if a sensor
is blinded, the system result is again an evident fault condition.
As visible in Figure 6c we blinded PIR A (Figure 2): as the
inhabitant enters the room (path from 5 to 7 in Figure 4), the
fault is detected. In this conditions the fault detection is less
sharp due to the same inaccuracies in localization, as already
explained for fault-free conditions.

5.4. Fault Detection Multiuser Simulation
Due to the lack of available sensors and devices, we took
advantage of simulation to provide multiuser highly sensorized
environment tests. The environment is the reproduction of
the one chosen for the experiments, considering the whole
floor (ca. 450m2) and adding users, as visible in Figure 5.
The reference persons’ positions have been generated thanks
to a simple walk model, generating a continuous smooth
acceleration and deceleration profile (maximum speed 0.7m/s),
with a smooth random steering policy. Collisions with walls
are avoided by re-computing steering when needed, while
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Figure 5. Simulation Environment: This map reproduces the whole floor where the experiments took place. The
virtual sensorization is extended: red circles (labeled in black) represent localization anchors, squares are door
sensors, stars ceiling-mounted PIR sensors, arrows wall mounted PIR sensors. Three virtual users trajectory are
depicted: crosses (+) represent the real position, tracks the position estimated by the IHT system.

periodically the agent lingers in a location (simulating the
human behavior).
The IHT subsystem service was replicated by generating RF
signal with the following model (being d the distance and #w
the number of walls crossed by the signal from the emitter to
the receiver):

S = S0 − (α log10 (d/d0) + γ(#w) + ε) (27)

and providing them to the LAURA system. The other
parameters were α=3, since we are in an indoor
environment[15], and γ=3dBm, d0=0.04m, S0=-30dBm, ε =
±2dBm, as inferred from experimental measurements. To
make it applicable to simulations, we also re-estimated the
parameter δth=2m.
Finally, the HA system behavior was reproduced, having the
reference position of the persons, by implementing the sensors
response, as presented by the manufacturers (introduced in the
Z-wave subsystem section). In the simulated environment we
exploited PIR sensors and DWSs. Concerning the interaction
with DWSs, the agent entering the activation area of one of
such devices had a uniform probability (of the 20%) to interact
with it, with a limit of two events (e.g., door opening and
close).

Similarly to to real world experiments experiments, we ran
simulations in fault-free, in Blinded PIR and in Forgotten
Device conditions. Three examples of simulation results
are shown in Figures 7a, 7b and 7c, displaying the system
behavior. The overall testing included 4500s of three simulated

users wandering simultaneously and pseudo-randomly in the
environment. The dataset was composed by 15 runs, lasting
5 minutes each, concerning fault-free conditions, Blinded
PIR and Forgotten Device in equal parts. Concerning the
Blinded PIR runs, faults were injected by making a PIR
sensor always off during the run. The sensor was chosen
in order to generate a fault, thus among those activated
during the run. For each Forgotten Device run, instead, the
position of a random localized device was fixed after 100s, still
letting the agent trigger HA devices. The system performance
was evaluated sample-by-sample (at 1Hz), considering each
available environment state containing an observable fault,
a positive trial. Considering only situations actually leading
to errors, the experiments included 1969 faulty samples. The
produced results are reported in Table 1: the system showed
overall sensitivity of 91.4% and specificity of 90.5%.

5.5. Fault Localization Experiments
Concerning Fault Localization (FL), the approach described
in section 3.5 has been applied to the data coming from
simulations. Following the same policy used in the other
experiment, three types of virtual experiments were performed:
fault-free, forgotten device and blinded sensor. Moreover, since
the FL method is provided with a refractiveness period of 5s,
to avoid premature decisions, its results are even less prone
to false positive with respect to Fault Detection (FD). The
simulation outcomes as reported in Table 2, showed that the
presented fault localization method is performing adequately,
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(a) Fault-free conditions: few punctual faults are detected, due
to localization inaccuracies.
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(b) Forgotten device: the leftmost user in Figure 5 leaves the
localization device at 100s. As he triggers the device 25 (X
marker) the fault (top black line) is detected.
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(c) Blinded PIR sensor 25. When the rightmost user in Figure
5 enters the room (X marker), the fault is detected (top line).

Figure 7. Simulation results examples: fault-free,
forgotten device and blinded PIR conditions. Three
subjects are moving in the space, as showed in Figure 5.
Lines represent PIR sensors activity, circles interactions
with DWS, y axis numbers refer to sensors as in Figure
5.

being able to identify correctly the faulty device in both
IHT and HA subsystems. The method presented an overall
sensitivity of 85.4% and a specificity of almost 100%.

6. Probabilistic Fault Detection and
Localization

In section 3.5 a method for concurrent Model Based Fault
Localization was detailed. The experimental results proved
the validity of the approach, anyway in many occasions a
continuous perception of the fault probability might be more
suited to describe the system status.

Table 1. Simulation results. Test types: FF - fault free,
FD - forgotten device, BS - blinded sensor; Results: (TP)
true positives, (FP) false positives, (TN) true negatives,
(FN) false negatives (Se) sensitivity, (Sp) specificity. The
presence of faults during FF runs is due to localization
results showing an error larger the imposed precision
threshold δth=2m.

TP FP TN FN Se Sp
FF 0 12 280 8 - 95.9
FF 2 11 287 0 100 96.3
FF 0 7 293 0 - 90.5
FF 0 12 287 1 - 90.5
FF 0 13 280 7 - 90.5
BS 141 9 147 3 97.9 94.2
BS 269 0 0 31 89.7 -
BS 292 0 0 8 97.3 -
BS 246 0 0 54 82.0 -
BS 298 0 0 2 99.3 -
FD 111 47 136 6 94.9 74.3
FD 114 29 139 18 86.4 82.7
FD 86 36 162 16 84.3 81.8
FD 126 33 139 2 98.4 80.8
FD 113 31 141 15 88.3 82.0

TOT 1798 240 2291 171 91.4 90.5

Table 2. Fault Localization results. Test types: FF -
fault free, FD - forgotten device, BS - blinded sensor;
Results: (TP) true positives, (FP) false positives, (TN)
true negatives, (FN) false negatives (Se) sensitivity, (Sp)
specificity.

TP FP TN FN Se Sp
FF 0 0 16800 0 - 100
FF 0 0 16800 0 - 100
FF 0 0 16800 0 - 100
FF 0 0 16800 0 - 100
FF 0 0 16800 0 - 100
BS 136 0 16657 7 95.1 100
BS 206 47 16453 94 68.7 99.7
BS 287 0 16500 13 95.7 100
BS 241 0 16500 59 80.0 100
BS 293 0 16500 7 97.7 100
FD 106 34 16649 11 90.6 99.8
FD 104 26 16642 28 78.8 99.8
FD 74 32 16666 28 72.6 99.8
FD 116 27 16645 12 90.6 99.8
FD 103 25 16647 25 80.5 99.9

TOT 1666 191 249859 284 85.4 99.9

Through the following section another method for fault
detection and localization is described, based on the estimation
of the fault probability of the system components. This method
was inspired by the work of Amati et al.[27, 28], in which
they make use of Bayesian Belief Network to model the
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fault probability for each component and each test. This way,
given the outcome of a test involving more components and
crossing different tests outcomes it is possible to infer the fault
probability of each of them. Nonetheless, in the present work
settings, it is not possible to design any test, since the system
is working as it performs fault detection and localization. The
proposed solution is to consider the person’s position as a test,
stimulating the system, and based on the system behavior
over a period of time estimate the fault probability of its
components.

6.1. Method
The method developed for PFDL is based on fault probability
estimation. As already leveraged in the previous FL method,
the data collected through IHT and AID/PD systems carry
information about errors and faults. In particular, we can
define two separate conditions, modeling the faults of PD
and IHT devices respectively. Though AID devices can be
considered while estimating the probability of IHT faults, due
to the fact the person’s presence does not imply interaction
with such devices, their fault cannot be identified through IHT
information. Both the estimators are based on the PD sensors
activity and the persons’ position as localized by the IHT, over
a sliding time window.

PD devices faults can be identified only if a person is
localized in their area without their activation. Anyway, instead
of such hypothesis, it is more reasonable to take into account
also the IHT uncertainty: to such aimw(t) is a weighting factor
representing the increasing probability for the sensor not to
activate as the person is localized further form its activation
area. Moreover let us define the stimulus for PD sensors such
presence of a person, and in particular the expected stimulus
σ s, i.e. when the sensor activation area As overlaps any Lp
area. In place of considering the instantaneous condition of
the system as previously, the following formulation considers
the events happened in a time window, with a length #samp.
We can thus estimate the probability of a sensor fault Fs in the
time window as follows:

P (Fs∈S , t) =
∑
τ w(τ) (#

{
vs(τ) ∈ V s ∧ σ s(t)

}
)

#samp
. (28)

Such formulation considers the number of occurrences in
which the sensor did not activate (vs(τ) ∈ V s) even if it was
expected to do (σ s(t)).

Concerning IHT devices, their fault probability estimation
relies on the detection of unexpected activation of AID/PD
devices, i.e. when the expected stimulus is negative (σ s(t))
but the sensor is still activating (vs(τ) ∈ V s). Moreover, it is
important to exclude the possibility for the AID/PD sensor
to be faulty, considering also its expected behavior (vs(τ) ∈
V s ∧ σ s(t)). Anyway, this is not enough to identify which
tracked position is erroneous, since the person can be identified
only through the IHT device he/she wears and not by AID/PD
sensors. This means it is necessary to consider other quantities,
such as the tracked path of the person, to infer which device

is faulty. Let us first identify the overall probability of a IHT
fault as follows:

P (FIHT, t) = 1 − exp

−∏
s∈S ′

#
{
vs(τ) ∈ V s ∧ σ s(t)

}
#
{
vs(τ) ∈ V s ∧ σ s(t)

}  . (29)

It is worth noting that this formulation considers only a subset
S ′ of AID/PD sensors, since it focuses on the unexpectedly
active sensors only. Finally, the most probable faulty sensor
can be identified by analyzing the variability of the tracked
position with respect to the other. In case of a forgotten device,
e.g., it is possible to identify the faulty sensor with:

P (Fp, t) = P (FIHT, t) ·
(
1 −

#movp
maxP (#mov)

)
; (30)

where #mov represents the samples in which the tracked
device position has changed.

7. PFDL Experiments
The presented method was tested on the same dataset used
for the previous evaluations. Anyway, instead of having
sharp fault/non-fault results, PFDL has a smoother continuous
response. As mentioned in the previous section the method is
meant to consider also the uncertainty of the fault detection
and localization. Given this difference, it is not immediate to
identify the appropriate the minimum probability associated
with a faulty sensor, since it is closely related to the required
level of dependability. This is the main motivation why the
results of the tests are reported in terms of average fault
probability of faulty and not-faulty sensors. As visible in
Table 3 the overall average estimated fault probability of faulty
devices is 53%, significantly higher than the corresponding
value for not faulty devices that is 1.47%.

7.1. Comparison of Fault Detection and
Localization Methods
When comparing the results of the two proposed methods it
appears clear that the Model-Based method, having a very
high specificity, identifies the faulty device with an high
accuracy as visible in Figure 8. Nonetheless in case the wrong
device it is identified as faulty, it is not possible to identify
an alternative answer. Moreover as already detailed, in many
situations it cannot detect the fault situation due to ambiguous
configurations (section 3.4). In the eventuality that more than
one faulty device configuration lead to the same perceived

Table 3. Probabilistic Fault Detection and Localization
results. The reported values represent the average
estimated fault probability of faulty and not faulty devices.

Status FF BS FD TOT
Faulty 0% 56.17% 46.09% 53.06%

Not Faulty 1.56% 1.46% 1.37% 1.47%
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(a) (b) (c)

Figure 8. Fault Detection and Localization Methods Comparison. Columns represent the same simulation under
different tests: (a) Fault-free, (b) Blinded sensor, (c) Forgotten Device. From top to bottom: HA sensors activations,
Model-based, and Probabilistic methods. Along horizontal axis time, vertical different sensors; darker tracks represents
activations (in the first row) or higher probability of fault (second and third rows).

system status the probabilistic approach is more suitable,
providing several fault candidates. Therefore, when the system
configuration appears uncertain, the PFDL method provides
scores resembling a faulty condition. This behavior is not
detectable in the Model-Based method, and its presence might
be leveraged to mitigate the fault masking issues.

These characteristics anyway do not represent absolute
factors to prefer one method over the other. It is more
likely to evaluate both the approaches depending on the
specific application, deciding based on requirements and
results whether to prefer one of the two, or employ them both
and implement a consensus policy.

8. Conclusions

In this work we presented the method, design and
implementation of a dependable IHT system, capable of
concurrent fault detection and localization. The system relies
on two independent subsystems, whose result data are jointly
checked by a fault detection apparatus. The first proposed
method is based on the definition of a model representing
each of the two subsystems, and defining joint consistency
conditions. A second alternative method is proposed, providing
a continuous estimation of the fault probability for each of the
devices. The validity of the approaches is tested applying them
to a case study. The chosen case study subsystems are: LAURA
localization system and a Z-wave based HA.

The obtained experimental results showed the validity of
both our approaches, correctly reporting errors in fault-free
and fault injected conditions. In particular, we generated
multiuser data, creating them based on the knowledge of the
environment and the systems. Results of multiuser simulations
show the binary approach correctly detecting faults, also in
case of several targets. Both specificity and sensitivity above
90% represent a satisfying performance. Nonetheless, if the
application requires it, system model parameters can be tuned
to benefit selectively sensitivity or specificity. Moreover the
fault localization was tested, obtaining results proving its high
specificity and acceptable sensitivity.

PFDL method is indeed able to provide a smoother response,
providing an estimated fault probability. Results show that such
approach performances are less immediate and more prone
to false positives. Anyway such behavior must be considered
positively, since it provides further details and information
about uncertain or misleading configuration, especially when
fault masking happens. Therefore this technique seems to be
more promising when situations leading to uncertainty have
place.

It is worth noting that both the proposed methods results
can be tuned to achieve particular requirements in terms of
sensitivity or specificity. This can be crucial when thinking
of a real world implementation of such methods, since some
applications might require high sensibility (e.g., monitoring of
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critical conditions) while, conversely, other must avoid false
positives (e.g, when the intervention has a high cost).

Concluding, our approaches, even under some limitations
in terms of fault observability, enable the dependable position
tracking of a set of persons inside an instrumented house,
localizing both natural and human-made faults.

9. Future Work

Further tests must be carried out in controlled real-world
environments, with a higher number of sensors and in
multiuser conditions. Moreover, a larger experimental setup
will enable more detailed evaluations of fault stimulation and
masking dynamics. It will be interesting to investigate the
system behavior also in an actual home environment, where a
senior dweller lives.

As introduced in Sensor Types section, the model can be
extended to other sensors. A further development of the work
presented hereby can consider complex patterns of both HA
sensors activations and in trajectories of IHT system. This will
enrich the information, potentially extending faults even to
specific detectable behaviors of the inhabitant.

Another possibility deserving consideration is the chance
to deploy (even partially) the presented fault-detection and
localization methods directly on smarter sensors platform.
Even if the the proposed methodology implementation relies
on of-the-shelf devices, it is possible to design a distributed
system, where sensor devices have enough computation
power to manage information flow on a mesh network and
compute their own fault probability, given the results of the
neighborhood. This might result quite far from the scope of
this work, focused on methodology, anyway such development
might be truly interesting.

Finally, the possibility to combine the two approaches
should be evaluated. In such way it could be possible to bring
together the benefits of both methods, improving the reliability
of the overall system.
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