
Netkit: Easy Emulation of Complex Networks
on Inexpensive Hardware

Maurizio Pizzonia
pizzonia@dia.uniroma3.it

Massimo Rimondini
rimondin@dia.uniroma3.it

Dept. of Computer Science and Automation
Roma Tre University

ABSTRACT
Network emulators are software environments that closely
reproduce the functionalities and the behavior of real world
networks.

In this paper we describe Netkit, a freely available
lightweight network emulator based on User-Mode Linux.
Netkit allows users to experiment with a large number of
network technologies and provides tools for a straightfor-
ward setup of complex network scenarios that can be easily
distributed via email or published on the Web. Netkit also
comes with a set of ready to use experiences, accompanied
by lecture slides, that enable users to immediately exper-
iment with specific case studies. Our system has proved
itself to be helpful in testing the configuration of ISP-scale
real world networks and is profitably used within University
level networking courses.

We provide a detailed comparison against other competing
solutions and experimental measures about the scalability of
the system.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols; C.2.6 [Computer-Communication Networks]:
Internetworking; K.3.0 [Computers and Education]: Gen-
eral

General Terms
Design, Experimentation

Keywords
Network emulation, Routing, Virtual laboratories, User-Mode
Linux

1. INTRODUCTION
The emulation of networks is rapidly gaining the interest

of network administrators, teachers and researchers in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TridentCom 2008 March 18–20, 2008, Innsbruck, Austria.
Copyright 2008 ACM 978-1-60558-009-8 ...$5.00.

networking area due to ease of setup, adherence to the be-
havior of real networks, and low cost. With a network emula-
tion environment, administrators can quickly set up testbeds
to check that particular configurations work as expected be-
fore deploying them on production networks, teachers can
let students configure their own network for practice or ex-
amination by using their PC, and researchers can validate
theoretical models with practical experimentation in envi-
ronments that behave very much as the real ones.

Differently from a simulator, that allows the user to “com-
pute”the evolution of a network, an emulator aims at closely
reproducing the features and behavior of real world devices.
It often consists of a software/hardware platform on which
it is possible to run the same pieces of software that would
be used on real devices. In an emulator, the network be-
ing tested undergoes the very same packet exchanges and
state changes that would occur when using real devices. The
drawback of this approach is that performance is limited by
the efficiency of the software and of the underlying real hard-
ware.

In this paper we describe Netkit [13, 25], a freely avail-
able network emulation environment based on User-Mode
Linux [10,36]. Netkit supports experimentation with a wide
range of networking technologies, out of the box, and can
be tweaked to support other technologies required for spe-
cific experiments. Netkit provides a collection of integrated,
easy to use, and widely tested tools to simplify the setup of
a virtual network. With respect to directly using a bare
User-Mode Linux, Netkit tools make it very simple and
straightforward to prepare laboratories (shortly labs) that
implement complex network scenarios consisting of several
emulated devices. A complete description of a lab consists
of a set of plain ASCII files (usually no more than a few
hundreds of kilobytes, highly compressible) that can be eas-
ily published over the Web or transferred by email. Netkit
comes with a set of ready to use labs and teaching mate-
rial that permit users to immediately experiment with spe-
cific case studies. Since Netkit strongly takes advantage of
GNU/Linux, it supports most of the networking technolo-
gies available in this environment.

Netkit is also lightweight: for example, it is possible to
launch a network experience consisting of 100 virtual ma-
chines in about 7 minutes on a typical workstation (Pen-
tium 4 3.2GHz 2MB cache, 2GB RAM).

This paper is organized as follows. Section 2 illustrates
the architecture of Netkit. Section 3 describes the user level
tools and the procedure to set up labs. Section 4 shows a
representative usage scenario of Netkit. Section 6 assesses

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Tridentcom 2008 March 18–20, 2008, Innsbruck, Austria
Copyright 2008 ACM 978-1-60558-009-8 ...$5.00.

peri
Callout

peri
Typewriter
TRIDENTCOM 2008, 17th–20th Mar 2008, Innsbruck, Austria.
Copyright © 2011–2012 ICST ISBN 978-963-9799-24-0
DOI 10.4108/icst.tridentcom.2008.3155

peri
Typewriter

peri
Typewriter

the scalability of Netkit by presenting a performance evalu-
ation. Section 7 compares Netkit with other state of the art
emulators. Conclusions are drawn in Section 8.

2. ARCHITECTURE AND SUPPORTED
NETWORKING TECHNOLOGIES

Netkit is a lightweight network emulator based on open
source software. It consists of several components: a kernel,
a filesystem image, virtual hub software, and a set of user
space commands. Netkit works out of the box: it includes
everything that is needed to run an emulated network on
a standard workstation and provides a set of ready to use
virtual labs that can be used to experiment with interesting
case studies. Netkit is conceived for easy installation and us-
age and does not require administrative privileges for either
one of these operations.

Netkit emulated devices are based on the User-Mode Linux
(UML) kernel [10, 36], a port of the standard Linux kernel
designed to run as a user space process on the real machine
(host). An instance of UML provides a virtual machine,
namely an environment having its own processes that per-
form I/O by interacting with the UML kernel instead of
the host kernel. Regardless of the hardware configuration of
the host, a virtual machine can be equipped with arbitrar-
ily chosen devices, including disks and network interfaces.
A virtual machine can then play the role of a specific de-
vice (e.g., a router) by running appropriate software (e.g.,
Quagga [35], XORP [8]).

Starting the UML kernel involves dealing with long and
complex command lines. For this reason, Netkit provides a
set of tools that allow users to easily configure and set up
complex network labs consisting of several virtual devices.
Section 3 describes these tools in detail.

Each virtual machine has its own filesystem which con-
tains a full-fledged GNU/Linux installation, based on the
Debian [29] distribution and suitably tuned to operate in-
side UML and to interface with Netkit’s commands. The
filesystem is stored inside a backing file on the host, whose
size is approximately 600MB. However, in Netkit it is pos-
sible to run a complex network scenario without having to
use one backing file for each virtual machine. In Netkit, each
virtual machine reads from the same backing file but writes
its changes to its own COW file following a Copy On Write
approach. The UML kernel takes care to show a consistent
view of the filesystem inside each virtual machine. The size
of a COW file is typically around 10MB. Therefore, a Netkit
installation takes about 600MB of disk space for the backing
file plus about 10MB for each started virtual machine. The
requirements in terms of main memory are also small: each
running virtual machine needs about 15MB of memory in
the default configuration.

Even if Netkit only supports experimentation with
GNU/Linux virtual machines, this environment offers a very
wide spectrum of networking technologies.

Virtual machines can be interconnected by using virtual
hubs [14,37], namely software running on the host that em-
ulates ethernet collision domains. Optionally, a virtual hub
can be configured to access an external network, e.g., to con-
nect virtual machines to the Internet. Fig. 1 shows an exam-
ple in which virtual machines vm1 and vm2 are connected to
virtual hub A. Virtual machine vm2 has two virtual network
interfaces and is also connected to virtual hub B along with

Host kernel

UML kernel (VM1) UML kernel (VM2) UML kernel (VM3)

TAP interface

Virtual hub A Virtual hub B

Network
interface

Network
interface

Network
interface

Forwarding process

Network
interface

Network
interface

Figure 1: How Netkit virtual machines are net-
worked, possibly with a connection to an external
network.

Host console
vstart vm1 --eth0=tap,10.0.0.1,10.0.0.2
vstart vm2 --eth0=tap,10.0.0.1,10.0.0.3 --eth1=B
vstart vm3 --eth0=B

Figure 2: Netkit commands to implement the topol-
ogy in Fig. 1. The special name “tap” for collision
domain A indicates that the corresponding virtual
hub should be connected to the TAP interface.

vm3. By running appropriate software, vm2 can permit vm1

to communicate with vm3. In Netkit vm2 can be configured
to operate as a switch, as a router, as a firewall, as a Web
proxy, etc. In this setting, vm1 and vm2 can also reach an ex-
ternal network by means of virtual hub A that is connected
to the special TAP interface on the host. A network tap is a
device that provides a way to access the data flowing over a
network link. In Netkit, TAP is a device driver that makes it
possible to attach a virtual network interface to a userspace
process (in this case, the virtual hub). The host should take
care of routing packets between the TAP interface and the
real network interface. The Netkit commands in Fig. 2 auto-
matically set up the configuration of Fig. 1, including NAT
translation rules so as to allow any IP address to be used in
the emulated network. The addresses used by vm1 and vm2

to access the Internet are also automatically configured.
Although the physical layer in Netkit is limited to ethernet

emulation, a large number of other networking technologies
are supported as in a regular Linux machine. Among the
technologies supported by the UML kernel currently shipped
with Netkit there are 802.1d bridging and spanning tree,
802.1Q VLAN tagging, IPv4, IPv6, and MPLS based for-
warding, ARP, ICMP, UDP, TCP, IP filtering and mangling
(e.g., NAT), IPsec (transport and tunnel mode, ESP and
AH), GRE tunnels, load balancing by equal cost multipath,
and multicast with PIM-SM. These technologies can be con-
figured and managed using the traditional utilities available
under GNU/Linux. Kernel level support for other technolo-
gies can be obtained by expert users by building a custom
UML kernel. Netkit supports this activity by providing ev-
erything that is needed to re-build the shipped kernel from
scratch. Selection of the kernel for each virtual machine is
supported when multiple kernels are available.

A wide range of technologies are implemented by soft-
ware installed in the filesystem shipped with Netkit. Among
them there are DHCP, PPP, DNS server (bind), HTTP
and HTTPS (apache), Web proxy (squid), email (exim),
FTP, NFS, Samba, Telnet, SSH. Among the supported rout-
ing protocols there are RIP, OSPF, IS-IS, BGP (Quagga,
XORP), providing MIBs accessible via SNMP. Among the

supported security related technologies there are RADIUS,
PAM, IKE (openswan and racoon), and the Snort network
intrusion detection system. Also, traffic can be forged, cap-
tured, and analyzed by means of tcpdump, tethereal, ssldump,
tcpreplay, tcpreen, sendip, hping, dsniff, and ettercap. Within
each virtual machine scripting languages are also available
including bash, expect, awk, and perl. For a complete list of
installed packages, see [33]. If specific experiments require
software that is not available in the shipped filesystem, it is
possible to quickly grab and install new packages from the
Internet by using the Debian package management system
apt [3].

Netkit is distributed in the form of three packages. The
core of Netkit is a collection of shell scripts that manage
instances of the UML kernel and of the virtual hub software
transparently with respect to the end user. The choice of
using shell scripts results in easier maintenance for the de-
velopers and the possibility for advanced users to quickly
apply changes to suit the needs of a specific experiment.
Care has been taken in ensuring compatibility with a wide
range of Linux distributions: Netkit scripts only rely on tools
that are available in most basic Linux installations, and are
tweaked to be compatible with POSIX compliant system
shells (e.g., dash). Several error checks are spread in the
scripts to provide end users with meaningful error messages
in case something goes wrong. The core package also con-
tains man pages for the scripts and a statically compiled
release of the virtual hub software.

The other packages provided with Netkit are the filesys-
tem and the kernel. The filesystem package contains a disk
image with a single ext2 partition containing an extensively
tested Debian installation. Empty areas of the filesystem
have been wiped before building the package to support bet-
ter compression. The kernel package consists of a vanilla ker-
nel [32] compiled to run in user mode and some patches that
have been applied to better integrate the kernel with Netkit.
Kernel modules are also provided, and are intentionally kept
out of the filesystem image in order to allow developers to
update the kernel and the filesystem separately. The ker-
nel has been carefully configured so that users can enable
specific features by simply loading modules, and comes with
default settings that support most basic experiments. With
these settings, virtual machines generate timer interrupts at
a rate that makes emulated time match as closely as pos-
sible the wall clock. Therefore, to a certain extent, packet
timings reflect real world timings. However, depending on
the policy adopted by the scheduler on the host machine,
misalignments may still occur. The configuration file used
during the kernel compilation is also provided in the kernel
package to support the creation of customized kernels to be
used in specific experiments.

The reason why Netkit consists of three separate pack-
ages is that, in this way, users do not need to download a
large filesystem image every time an update is released: in-
stead, they can selectively get only the component that has
undergone changes.

Further details about the architecture of Netkit are pro-
vided in [13].

3. TOOLS FOR SETTING UP EMULATED
NETWORKS

The user interface of Netkit consists of a set of commands.

AS100 AS200

AS20

p
rim

a
ry

b
a
c
k
u
p

11.0.0.0/30
11.0.0.32/30

200.2.0.0/16

20.1.1.0/24

11.0.0.4/30

A

as100r1

eth2

1

J eth1

5

eth0

1

as200r1

eth0

33

eth1

1

B

as20r2 as20r1

C

eth1

2

eth2

1

eth0

34

eth0

2

eth1

6

FE

100.1.0.0/16

Figure 3: A sample network that can be imple-
mented as a Netkit lab. Each collision domain is
labeled with a capital letter and its subnet. Each
router interface is labeled with the interface name
and the last byte of its IP address.

Some of them, whose name starts with a v (vtools in the
following), can be used to configure single virtual machines,
while others, whose name starts with an l (ltools), support
easy setup of virtual labs implementing complex scenarios.
All the commands are fully documented by man pages that
are installed with Netkit.

Command vstart allows users to configure and start a
virtual machine identified by an arbitrary name. Customiz-
able parameters include the amount of available memory,
the kernel and filesystem to be used, the number of network
interfaces and the collision domains they are attached to.
Netkit’s default settings usually fit most of the needs, so
that starting a virtual network device often simply consists
in specifying the network interfaces it should be equipped
with. vstart takes care of starting UML kernel instances as
well as the required virtual hubs. If requested, vstart can
also apply the configuration needed to make a virtual ma-
chine access an external network. Once a virtual machine
has started up, it can be configured for networking by using
regular Linux commands (e.g., ifconfig for IP addresses,
ip or route for static routes, brctl for bridging, etc.).

Other Netkit commands allow users to get information
about currently running virtual machines (vlist) and to
stop them (vcrash and vhalt).

The vtools can be profitably used for configuring, starting,
and managing few virtual machines, but the setup of a com-
plex experience usually involves many more configurations
than just virtual machine settings. The ltools provide a user
interface to easily set up, manage, and shut down a virtual
lab consisting of several virtual machines in a straightfor-
ward way. A Netkit lab is a set of fully preconfigured vir-
tual machines that can be started (lstart command) and
stopped (lcrash and lhalt commands) as a whole.

A lab is described by a collection of files and directories
on the host. The presence of a top-level directory in a lab
instructs Netkit to start a virtual machine named as the
directory itself. For example, the network in Fig. 3, consist-
ing of machines as100r1, as200r1, as20r1, and as20r2, is
implemented by the directory structure shown in Fig. 4.

Files and directories under each top-level directory are

Lab directory structure

|-- as100r1

| \-- etc

| \-- quagga

| |-- bgpd.conf

| \-- daemons

|-- as100r1.startup

|-- as200r1

| \-- etc

| \-- quagga

| |-- bgpd.conf

| \-- daemons

|-- as200r1.startup

|-- as20r1

| \-- etc

| \-- quagga

| |-- bgpd.conf

| \-- daemons

|-- as20r1.startup

|-- as20r2

| \-- etc

| \-- quagga

| |-- bgpd.conf

| \-- daemons

|-- as20r2.startup

\-- lab.conf

lab.conf content

as20r1[0]="A"

as20r1[1]="F"

as20r1[2]="C"

as20r2[0]="E"

as20r2[1]="C"

as200r1[0]="A"

as200r1[1]="B"

as100r1[0]="E"

as100r1[1]="F"

as100r1[2]="J"

Figure 4: Directory structure for the lab shown in
Fig. 3 and content of the file lab.conf describing the
physical topology.

automatically copied to the root (/) of the filesystem of the
corresponding virtual machine upon its startup. In this way,
configuration files needed for specific services can be simply
placed on the host and they are automatically made avail-
able inside the virtual machines. For example, in the lab in
Fig. 4 the directory /etc/quagga inside each virtual machine
will be automatically populated with the Quagga configura-
tion files specified in the lab.

A file lab.conf describes the link level topology as well
as other configuration parameters for the virtual machines.
Fig. 4 shows a sample lab.conf for the topology in Fig. 3.
A line as20r1[0]=A indicates that virtual machine as20r1

will be equipped with a network interface eth0 attached to
collision domain A.

Virtual machine vm automatically executes files vm.startup
and vm.shutdown on its startup and shutdown phase, respec-
tively. These two files can be used to automatically apply
settings (e.g., configure IP addresses) or start services. Also,
dependencies on the startup order of virtual machines can
be described in a file lab.dep.

To support the development of new releases of the labs,
and of Netkit itself, the labs can be equipped with user de-
fined self testing procedures to dump significant information
about the status of virtual machines. The ltest command
can be used to easily save the dump as a signature of a
correctly running emulated network. ltest, along with the
standard diff utility, can be used to easily perform regres-
sion tests.

Netkit comes with a set of ready to use labs [25] imple-
menting representative network scenarios. The labs cover
basic topics such as the ARP and RIP protocols, advanced
topics such as bridging and spanning tree computation, ap-
plication level services including DNS and email, and several
scenarios of interdomain routing with BGP. Each lab is sup-
ported by a set of lecture slides that introduce the topic and
suggest insightful experiments that can be performed on the
lab itself.

Fig. 5 shows a working session with the “Small Internet”
lab available at [25], consisting of 14 virtual machines. This
lab takes about 2 minutes to start and less than 20 seconds
to stop on a standard workstation (Pentium 4 3.2GHz 2MB
cache, 2GB RAM). The window with black background in
the upper right corner in Fig. 5 is a terminal window on the

Figure 5: A typical working session with Netkit.

host. It contains a list of currently running virtual machines
generated by vlist. Each virtual machine has its own ter-
minal window which title is the name of the virtual machine
itself. Switching to a virtual machine is as simple as clicking
on its window. The window in the lower right shows the
routing software Quagga [35] running on virtual machine
as20r2: the show ip bgp command is used to display the
routing table of the BGP protocol on that router.

4. CASE STUDY: BGP MULTIHOMING
Several networking scenarios implemented using Netkit

are available on the Netkit website [25] in the form of teach-
ing material. In this section we analyze a representative
Netkit scenario that can be used to study routing protocols.
The lab described here shows how to configure a multihomed
customer with a primary link and a backup link to an up-
stream provider. The multihoming is implemented using the
BGP protocol [11,40], which is the de facto standard for in-
terdomain routing. The lab also points out issues in the
interaction between intradomain and interdomain routing
that are difficult to reproduce without real routing software.
In particular, BGP only selects a route as best if a recursive
lookup on the next-hop succeeds, i.e., the path to reach the
next hop is known by static routes or some IGP protocol,
as stated in [39]. We show how to use Netkit in order to
examine the impact of failed recursive lookups.

The topology of the lab is shown in Fig. 3. AS100 is a
customer AS having two links to its provider AS20. One of
the links is used as a backup: traffic flows through it only
if the other link fails. The routers in AS20 exchange routes
via an iBGP peering. AS100 is configured in order to avoid
providing transit across its links to the provider. Instead,
AS20 provides transit between AS100 and its single homed
customer AS200.

Experimenting with such a configuration is easy inside an
emulator that runs on a regular PC, while 4 routers with
BGP support are usually not available for experimentation,
at least in many didactic and working environments. A sim-
ulator would not fit well the objectives of this lab, as the
tricky interplay between intradomain and interdomain rout-
ing protocols is usually not fully modeled in such systems.

as100r1’s bgpd.conf

1. router bgp 100

2. network 100.1.0.0/16

3. neighbor 11.0.0.2 remote-as 20

4. neighbor 11.0.0.2 description Router as20r2 (primary)

5. neighbor 11.0.0.2 prefix-list defaultIn in

6. neighbor 11.0.0.2 prefix-list mineOutOnly out

7. neighbor 11.0.0.6 remote-as 20

8. neighbor 11.0.0.6 description Router as20r1 (backup)

9. neighbor 11.0.0.6 prefix-list defaultIn in

10. neighbor 11.0.0.6 prefix-list mineOutOnly out

11. neighbor 11.0.0.6 route-map localPrefIn in

12. neighbor 11.0.0.6 route-map metricOut out

13. !

14. access-list myAggregate permit 100.1.0.0/16

15. !

16. ip prefix-list defaultIn seq 5 permit 0.0.0.0/0

17. ip prefix-list mineOutOnly seq 5 permit 100.1.0.0/16

18. !

19. route-map metricOut permit 10

20. match ip address myAggregate

21. set metric 10

22. !

23. route-map localPrefIn permit 10

24. set local-preference 90

Figure 6: A fragment of the configuration of BGP
on as100r1.

Figure 7: Interaction with the terminal window of
as100r1. The figure shows the BGP routing table
known by Quagga.

Fig. 4 shows the files and directories that make up the lab.
It can be easily seen from the names of the configuration
files that routers in this lab run the BGP routing protocol.
The physical topology of Fig. 3 is implemented in the file
lab.conf as shown in Fig. 4.
Fig. 6 shows a portion of the bgpd.conf file of router

as100r1. The backup policy is enforced by as100r1 by us-
ing local-preference (lines 11, 23, and 24) and Multi-Exit-
Discriminator (lines 12, 14, and 19–21). Lines 5-6, 9-10,
and 16-17 prevent traffic of the provider from traversing the
customer AS100.
After starting the lab with lstart, a virtual machine can

be selected by simply clicking on its window. Fig. 7 shows
how the user would interact with as100r1. The telnet com-
mand is used to contact the Quagga BGP daemon. After en-
tering the password, Quagga offers a prompt which accepts
commands that are similar to those of real world routers.
For example, in Fig. 7 the show ip bgp command is used
to display the BGP routing table of as100r1. It is easy to
notice that as100r1 is offered two instances of the default
route and chooses the one through the primary link E and
next-hop 11.0.0.2 to actually forward traffic (indicated by
‘>’ in Fig. 7).
The BGP process on as20r2 is unable to select any route

to 200.2.0.0/16. This is shown in Fig. 8 (lower window) by
the fact that the only route to 200.2.0.0/16 is not marked

Figure 8: Forwarding table and BGP routing table
on as20r2.

as20r1.startup

/sbin/ifconfig eth0 11.0.0.34 netmask 255.255.255.252 broadcast 11.0.0.35 up

/sbin/ifconfig eth1 11.0.0.6 netmask 255.255.255.252 broadcast 11.0.0.7 up

/sbin/ifconfig eth2 20.1.1.1 netmask 255.255.255.0 broadcast 20.1.1.255 up

route add -net 11.0.0.0/30 gw 20.1.1.2 dev eth2

/etc/init.d/quagga start

as20r2.startup

/sbin/ifconfig eth0 11.0.0.2 netmask 255.255.255.252 broadcast 11.0.0.3 up

/sbin/ifconfig eth1 20.1.1.2 netmask 255.255.255.0 broadcast 20.1.1.255 up

route add -net 11.0.0.32/30 gw 20.1.1.1 dev eth1

route add -net 11.0.0.4/30 gw 20.1.1.1 dev eth1

/etc/init.d/quagga start

Figure 9: Commands to instruct as20r1 and as20r2

to configure static routes upon startup.

by a ‘>’, even if this route has actually been learned by an
iBGP session. The reason of this behavior is that the next-
hop 11.0.0.33 is only reachable via BGP, as shown in the
upper window by the ‘B’ flag. Therefore, as20r2 is unable to
reach as200r1. A similar problem occurs on as20r1, which
is unable to reach 11.0.0.1 via any IGP. Also consider that,
in case of failure of link E, as20r2 fails to recursively look
up 11.0.0.5 and loses connectivity to 100.1.0.0/16.
Several configurations on the routers of AS20 can solve

this problem: (i) adding static routes, (ii) enabling an IGP
(e.g., RIP, OSPF), and (iii) using the BGP next-hop-self

directive. Netkit supports all these approaches. In any case,
the new configurations can be applied on the fly by directly
interacting with the terminals of the virtual machines or
can be implemented in the lab, in which case they take effect
when the lab is next restarted. If required, Netkit also allows
users to selectively halt and restart only the virtual machines
that are affected by the changes.
We choose to modify the lab adding static routes. The

lab files as20r1.startup and as20r2.startup are changed
in order to configure the routes on startup. In Fig. 9 the lines
added to the files have been highlighted. Once the changes
have been made, as20r1 and as20r2 can be restarted by us-
ing the commands lcrash as20r1 as20r2 and lstart as20r1

as20r2.
Fig. 10 shows that the route to 200.2.0.0/16 is now se-

lected by BGP on as20r2. This is indicated by ‘>’ in the
BGP routing table (lower window). Since the reachability
of 11.0.0.32/30 has been set up by the route commands

Figure 10: Forwarding table and BGP routing ta-
ble on as20r2 after adding static routes to permit
recursive lookup.

Figure 11: How to administratively shut down a
BGP peering in Netkit.

Figure 12: The BGP routing table of as20r2 after
the failure of the primary link E.

highlighted in Fig. 9, the selected entry for 11.0.0.32/30
in the forwarding table is now correctly recognized as stat-
ically configured, and is therefore marked with the flag ‘K’
(Fig. 10, upper window).
Observe that, in turn, as20r1 is now able to perform a suc-

cessful lookup on the next-hop 11.0.0.1. Therefore, as20r1
can now correctly choose to reach 100.1.0.0/16 through
link E and propagates only this choice to its iBGP neighbor
as20r2.
To experiment with the backup configuration, we force

traffic away from link E. This can be achieved in Netkit by
shutting down one of the network interfaces at its endpoints
using ifconfig or by administratively shutting down the
BGP peering on that link. Fig. 11 shows the BGP com-
mands that implement the latter solution by bringing down
the peering on link E.
After waiting for a few seconds, as20r2 updates its BGP

routing table and starts using link F as shown in Fig. 12.
Bringing link E up again restores the original path.

5. APPLICATIONS AND USAGE
SCENARIOS

In Section 4 we have described just one use-case scenario
of Netkit. Many other scenarios can be imagined, both in
the research context and in the instructional one. For ex-
ample, the BGP protocol is well known to be subject to

routing oscillations [21]. This is usually caused by unfore-
seen interactions among routing policies deployed at differ-
ent Autonomous Systems. Moreover, bad interactions be-
tween BGP and an interior gateway protocol can lead to
forwarding loops [22]. A researcher or an operator could
take advantage of Netkit to study interdomain routing pro-
tocol issues, including routing oscillations and forwarding
loops. While theoretical models would provide a static de-
scription of the conditions that trigger oscillations, Netkit
could be used as a support tool to validate and extend the
theoretical models based on the observation of routing dy-
namics.
Researchers interested in developing routing protocols can

use Netkit as a platform to implement and debug their pro-
totypes without jamming a real network. The same objec-
tive would be much more difficult to achieve on a real de-
vice, at the very least because the source code of proprietary
firmware is usually not available.
Other possible usage scenarios for Netkit, probably more

targeted at operators, include the definition of an address
plan or the deployment of security countermeasures. For ex-
ample, the setup of multiple levels of firewall or NAT would
be simplified by having the possibility to observe in a Netkit
lab the combined effect of specific configurations.
As an example of real world scale emulation, Netkit has

been successfully used to emulate the Italian Academic &
Research Network (Consortium GARR [31]).
One of the most interesting contexts of application of Net-

kit is definitely didactics. Netkit offers students the other-
wise unfeasible opportunity to exercise networking concepts
on a live network on their own, with the possibility of freely
accessing a range of technologies but without the need to
fiddle with real devices. The effectiveness of using Netkit
for instruction has been proved over the years. In fact, at
present Netkit is being profitably used in several editions
of networking courses at the Calabria University and at the
Pisa University, within training courses for teachers orga-
nized by the Ministero dell’Istruzione, dell’Università e della
Ricerca (MIUR), and within Linux@School, a project sup-
ported by the MIUR and the Polytechnic of Milan to spread
the usage of free software in the schools. Netkit is being
pervasively used within networking courses at the Roma Tre
University, where students can learn basic and advanced net-
working concepts with the help of well documented virtual
labs. Moreover, at Roma Tre Netkit is also used as a plat-
form to give exams: in this way students can prove that they
actually learned how to setup a network.

6. PERFORMANCE AND SCALABILITY
In this section we present an evaluation of the performance

of Netkit. In particular, we consider emulated network sce-
narios consisting of an increasing number of nodes and mea-
sure the startup time of the emulation. We also estimate
resource consumption during an experiment of file transfer
over a virtual network.
We performed the tests using Netkit version 2.5, kernel

version K2.3 (2.6.23.1), and filesystem version F2.2. For
each test we generated a new lab with a fixed number of
virtual machines. Each virtual machine was equipped with
a single network interface and ran the Quagga and RIP
routing daemons with a default configuration. All the net-
work interfaces were connected to the same collision domain.
Each virtual machine was configured to have 20MB of avail-

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70 80 90 100

S
ta

rt
up

 ti
m

e
(s

ec
on

ds
)

of virtual machines in the lab

VNUML
Netkit

Figure 13: Startup time of an emulated network of
varying size.

Client #1

Client #3

Client #2

Client #4

Client #5

Router Server

Hub

Hub

Hub

Hub

Hub

Hub

Figure 14: Topology of the virtual network used to
test CPU load.

able memory, causing UML to consume up to 24MB on the
host (actual usage depends on the processes running in the
virtual machine). The lab was then started using the Net-
kit scripts and its startup time evaluated. The disk cache
was completely cleared before starting each test. To pre-
vent the overhead of graphical interfaces from influencing
the timings, Netkit virtual machines were started without a
terminal window. The tests have been performed on a Pen-
tium 4 3.2GHz workstation with 2MB of cache for the CPU,
2GB of RAM, and no swap space configured.

Fig. 13 shows the results of the tests. It can be easily
seen that the time required by each lab to start up grows
linearly with the number of virtual machines. This means
that every virtual machine takes the same amount of time
to boot, regardless of the number of already running virtual
machines. Therefore, idle virtual machines do not consume
CPU resources on the host and the startup time only changes
because the number of virtual machines that have to be
booted increases for each lab.

We performed the same kind of test on the same machine
using the latest stable release of VNUML (1.8.1), with root
filesystem version 0.5.1. This release runs a 2.6.18.1 UML
kernel. One may argue that the tests should have been per-
formed using the same kernel and filesystem for both Netkit
and VNUML. However, our goal was to compare the two
products as they are, using the configuration and support
tools that come with their own packages.

For each test with VNUML, we generated an XML spec-
ification of a network with exactly the same topology and
configuration as for the case of Netkit. Virtual machines
were configured with the default amount of memory: about

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120
 0

 20

 40

 60

 80

 100

Lo
ad

 a
ve

ra
ge

 (
1

m
in

)

%
C

P
U

Time (seconds)

Physical, %CPU
Physical, load avg
Netkit 1 client, %CPU

Netkit 1 client, load avg
VNUML 1 client, %CPU
VNUML 1 client, load avg

Figure 15: CPU load during a file transfer from a
server to a single client.

27MB available inside the virtual machine, corresponding to
a maximum of 32MB consumed on the host. The emulation
was then started using the VNUML parser and the overall
startup time measured. We chose to limit the size of the labs
used in the test to 60 virtual machines, as this was enough
to compare VNUML with Netkit.

By looking at Fig. 13, it is clear that the startup time of
a VNUML emulation is higher than that of Netkit. This
is mostly due to the number of services that are started in
the virtual machines at boot time. This difference can be
further appreciated by noticing that a single Netkit virtual
machine runs by default about 20 processes on the host,
while a VNUML virtual machine runs about 30 processes.

However, in order to better assess the resource consump-
tion during an emulation, we also measured the CPU load on
the host during a large file transfer via HTTP. We first set up
two phisically different hosts connected by a 100Mbps link,
one running an Apache server and one running a text mode
browser. We then downloaded a 1GB file and measured the
CPU usage on the client during the file transfer. To increase
the accuracy of the measurement, the server was forced to
fully cache the file before starting the transfer, and the data
downloaded by the client was not saved to any file but sim-
ply discarded (we used /dev/null as target). The same file
transfer was then repeated on a virtual network consisting
of a server node, an intermediate router, and a set of client
nodes, as depicted in Fig. 14. The virtual setting was im-
plemented first with a single client, and then with all the 5
clients downloading the same file simultaneously. We imple-
mented the scenario both in Netkit and in VNUML. All the
experiments were run on a single CPU Pentium 4 3.2GHz
workstation with 2MB of CPU cache and 2GB of RAM.

Figures 15 and 16 show the results we obtained. We sam-
pled, at a 1 second rate, the percentage of CPU usage (in-
cluding system time) and the average load (number of pro-
cesses in running or ready state) over a 1 minute interval.
Fig. 15 shows that the time required by the file transfer to
complete in the case of the physical network and of virtual
networks with a single client is more or less the same: in fact,
the curves disappear after about 2 minutes. The percentage
of CPU used by Netkit and used by VNUML is comparable
and always around 100%. In the case with 5 clients, all Net-

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 100 200 300 400 500 600 700
 0

 20

 40

 60

 80

 100
Lo

ad
 a

ve
ra

ge
 (

1
m

in
)

%
C

P
U

Time (seconds)

Netkit 5 clients, %CPU
Netkit 5 clients, load avg

VNUML 5 clients, %CPU
VNUML 5 clients, load avg

Figure 16: CPU load during simultaneous file trans-
fers from a server to 5 clients.

kit virtual machines complete the transfer in less than 10
minutes, while in VNUML this takes more than 11 minutes.
While the CPU usage is again comparable, VNUML exhibits
lower load averages. Therefore, VNUML processes are likely
to spend more time waiting for input/output operations.

According to our results, we can conclude that Netkit pro-
vides better scalability than VNUML, and enables to run
emulated scenarios consisting of even hundreds of nodes with
a yet reasonable load on the host.

Further performance evaluations presented in [28] confirm
that a Netkit emulation has a limited resource usage com-
pared with other products.

7. RELATED WORK
There are many network emulation solutions available,

which are based on different emulation technologies. This
section provides only a brief overview of these systems. A
much larger survey and bibliography are provided in [13].

Netkit emulates network devices by means of User-Mode
Linux instances. The same approach is adopted by VNUML
and UMLMON, but they have been conceived with different
design goals in mind and therefore rely on a different user
interface and architecture.

VNUML [5,6,20] was initially developed to test IPv6 net-
works in their preliminary deployment stages, while Netkit
has been conceived since the beginning as a tool to allow peo-
ple, even with limited technical skills, to experiment with a
large range of networking technologies.

VNUML virtual machines are configured to start a set of
standard services by default during the boot phase, includ-
ing an ssh server and a name server. These services are
needed to support some of the features of VNUML. How-
ever, this increases the startup time of single virtual ma-
chine as well as its memory requirements. Netkit reduces
default startup time services in the virtual machines to the
very essential, leaving to the users the choice to launch ad-
ditional services upon demand. As a consequence, a Netkit
virtual machine consumes up to 15MB of memory on the
host whereas a VNUML virtual machine uses up to 32MB.

VNUML requires that the network to be emulated is de-
scribed in an XML based language. In our opinion this
choice has several drawbacks: users need to learn yet an-

other configuration language, network descriptions may be
hard to read and may need specific tools to ease editing, and
adding a new technology into the networking emulation sys-
tem may require extending the language and the parser. On
the other hand, the description of a Netkit lab consists of
configuration files with standard syntax which may already
be familiar to users and require no independent processing,
and commands used to control services and apply runtime
settings are placed in distinct files and use regular Unix syn-
tax. This approach keeps the Netkit scripts decoupled from
the set of supported technologies and makes it possible to
easily enrich them, even for the user.

Concerning the ease of installation, VNUML assumes that
the user has administrative privileges on the target host.
Only recent releases of VNUML tolerate disabling some fea-
tures to enable running in an unprivileged environment.
Conversely, the installation of Netkit is supposed to be per-
formed by a user with standard privileges and augmenta-
tion of privileges only takes place when the user explicitly
requests to connect a virtual machine to an external net-
work. Moreover, Netkit only relies on standard system tools
that are available in most Linux environments, and can be
installed by following a very simple procedure that is inde-
pendent of the target Linux distribution. Instead, VNUML
provides facilities that simplify the installation on Debian
based distributions, while the standard installation proce-
dure requires users to manually get some additional compo-
nents (e.g., the virtual hub software) which may not be easy
to find and install.

UMLMON [7] is a supervisor that provides tools to con-
figure and manage a pool of virtual machines running on
a single host as a solution to perform virtual server hosting
and building virtual security zones. Experimentation of net-
works in a virtual environment is supported as a side effect
of this approach. The architecture of UMLMON is based on
a Remote Procedure Call interface but also provides utilities
to manage virtual machines via a command line or a web in-
terface. A UMLMON agent daemon takes care of actually
starting or stopping virtual machines as well as applying
the required configurations. UMLMON also provides tools
to manipulate disk images for the virtual machines and en-
forces security by running virtual machines in a chroot jail.

The approach adopted by UMLMON is limited and pri-
marily targeted to system administrators rather than net-
work operators or users willing to learn networking. In fact,
a UMLMON user is supposed to build a User-Mode kernel
and a filesystem image on his own, as none are provided
with the UMLMON packages. Moreover, virtual machine
settings as well as the topology of the emulated network are
described in a system-wide configuration file that requires
the specification of several technical details. Therefore, even
the setup of a single virtual machine is not immediate and
requires root privileges. Installing UMLMON is not simple
either and again requires administrator privileges.

Other approaches known in literature are based on tech-
nologies that are uncomfortable to install and manage. This
is the case for Einar [30], based on the Xen [15, 24] virtual
machines hypervisor, and IMUNES [27], based on an ex-
tended FreeBSD kernel running many independent network
stacks in user space. Both the projects provide a live CD,
while IMUNES also offers the option to be installed on a
FreeBSD host. As a consequence, both products require a
dedicated machine to run.

Other simulation environments like PlanetLab [12, 34],
Emulab [9, 26], and Modelnet [18, 23] are targeted to large
scale experimentations and make use of clusters of servers.
Some of the PlanetLab nodes are used to run the VINI [1,38]
virtual network infrastructure, which exploits User-Mode
Linux. However, usage of resources in these environments is
subject to approval and often requires the user to be affili-
ated with an accredited organization, e.g., a research insti-
tute. Moreover, it takes some steps before actually earning
the right to run an experiment [4,16,17], and emulation soft-
ware is usually tuned to run on a cluster of machines [23].

A related project is VDE [2, 19], which is a set of tools
to create and manage a virtual network that spans a set of
arbitrarily distributed physical computers.

To our current knowledge, Netkit is the only environment
which combines several features that effectively facilitate ex-
perimenting with virtual networks on ordinary hardware,
namely: ease of installation, a flexible system for storing
and managing labs, no specific language to learn, no need
for administrative privileges, and minimum resource con-
sumption, allowing users to efficiently run several tens of
nodes on a standard workstation.

8. CONCLUSIONS AND FUTURE WORK
Netkit is a flexible and easy to use environment that pro-

vides users with a familiar environment and well known net-
working software to perform experiments on a wide range
of networking technologies. The community of Netkit users
is constantly growing: at the time of writing Netkit has
about 70 monthly downloads and a mailing list with 133
subscribers.

Netkit scales reasonably well and has been used to emu-
late real world networks. However, one of the most natural
contexts of application of Netkit is probably didactics, also
supported by the many ready to use labs available on the
Web site along with high quality teaching material. Net-
kit is effectively exploited within University level network-
ing courses, where it gives the students the opportunity to
experiment with the protocols and services they are learn-
ing. However, we believe that Netkit may prove itself useful
for both operators and researchers in several other contexts,
ranging from testing of configurations before deployment to
debugging and development of new services and protocols,
from studying abnormal routing behaviors to validating the-
oretical models by experimentation.

The plan for further development of Netkit includes: (i)
improvements to the user interface and to the procedure for
self testing the labs, to further facilitate the setup of vir-
tual networks, (ii) preparation of further labs that emulate
more realistic ISP-like networks, e.g., using MPLS routing or
SNMP managed routers, and (iii) integration with VDE [2],
in order to support the creation of emulated networks that
are distributed across many physical hosts, thus achieving
even better scalability. The Netkit community is also sup-
ported by the availability of a public repository that collects
labs and teaching material proposed by the users. Contri-
butions undergo a revision process that ensures a reasonable
quality of the published material. We believe that the op-
portunity to share emulated experiences will help in growing
the Netkit community and in setting up an agile revision
process.

Acknowledgments
We acknowledge Giuseppe Di Battista and Maurizio Patrig-
nani for their invaluable contributions in devising and devel-
oping Netkit. We would also like to thank Stefano Pettini
for his contributions to the ltools, Fabio Ricci for introduc-
ing the self test procedure, and Sandro Doro for maintaining
the live CD version of Netkit.

9. REFERENCES
[1] Andy Bavier, Nick Feamster, Mark Huang, Larry

Peterson, and Jennifer Rexford. In VINI Veritas:
Realistic and Controlled Network Experimentation.
ACM SIGCOMM Computer Communication Review,
36(4):3–14, Sep 2006.

[2] Renzo Davoli. VDE: Virtual Distributed Ethernet. In
Proc. 1st International Conference on Testbeds and
Research Infrastructures for the Development of
Networks and Communities (TRIDENTCOM 2005),
pages 213–220. IEEE Computer Society, 2005.

[3] Debian. APT Howto.
http://www.debian.org/doc/manuals/apt-howto/.

[4] Emulab Community. Emulab Documentation: How to
get started. http://www.emulab.net/docwrapper.
php3?docname=auth.html.

[5] Fermı́n Galán and David Fernández. VNUML: Una
Herramienta de Virtualización de Redes Basada en
Software Libre. In Proc. Open Source International
Conference 2004, pages 35–41, Feb 2004. In Spanish.

[6] Fermı́n Galán, David Fernández, Javier Ruiz, Omar
Walid, and Tomás de Miguel. Use of Virtualization
Tools in Computer Network Laboratories. In Proc. 5th
International Conference on Information Technology
Based Higher Education and Training (ITHET 2004),
pages 209–214, Jun 2004.

[7] Gerd Stolpmann. UMLMON. http:
//www.gerd-stolpmann.de/buero/umlmon.html.en.

[8] International Computer Science Institute, Berkeley,
California. XORP Open Source IP Router.
http://www.xorp.org/.

[9] Jay Lepreau. Emulab: Recent Work, Ongoing Work.
Talk at DETER Lab Community Meeting, Jan 2006.

[10] Jeff Dike. User Mode Linux. Prentice Hall, Apr 2006.

[11] John W. Stewart. BGP4: Inter-Domain Routing in
the Internet. Addison-Wesley, Reading, MA, 1999.

[12] Larry Peterson and Timothy Roscoe. The Design
Principles of PlanetLab. ACM SIGOPS Operating
Systems Review, 40(1):11–16, 2006.

[13] Massimo Rimondini. Emulation of Computer
Networks with Netkit. Technical Report
RT-DIA-113-2007, Roma Tre University, Jan 2007.

[14] Paolo Giarrusso. UML Utilities.
http://www.user-mode-linux.org/~blaisorblade/

uml-utilities/.

[15] Paul Barham, Boris Dragovic, Keir Fraser, Steven
Hand, Tim Harris, Alex Ho, Rolf Neugebauery, Ian
Pratt, and Andrew Warfield. Xen and the Art of
Virtualization. In Proc. 19th ACM Symposium on
Operating System Principles (SOSP 2003), Oct 2003.

[16] PL-VINI. VINI: Getting Started.
http://www.vini-veritas.net/documentation/

pl-vini/user/start.

[17] PlanetLab Consortium. PlanetLab FAQ: Procedure to
get a slice. http://www.planet-lab.org/FAQ.

[18] Priya Mahadevan, Adolfo Rodriguez, David Becker,
and Amin Vahdat. MobiNet: A Scalable Emulation
Infrastructure for Ad hoc and Wireless Networks. In
Proc. 2005 Workshop on Wireless Traffic
Measurements and Modeling (WiTMeMo 2005), pages
7–12. USENIX Association, 2005.

[19] Renzo Davoli. VDE: Virtual Distributed Ethernet.
http://sourceforge.net/projects/vde/.

[20] Technical University of Madrid (UPM), Telematics
Engineering Department. VNUML.
http://jungla.dit.upm.es/~vnuml/.

[21] Timothy G. Griffin, F. Bruce Shepherd, and Gordon
Wilfong. The Stable Paths Problem and Interdomain
Routing. IEEE/ACM Transactions on Networking,
10(2):232–243, 2002.

[22] Timothy G. Griffin and Gordon Wilfong. On the
Correctness of IBGP Configuration. Proc. SIGCOMM
2002, 32(4):17–29, 2002.

[23] University of California San Diego, Department of
Computer Science. ModelNet.
http://modelnet.ucsd.edu/.

[24] University of Cambridge, Networks and Operating
Systems Group. XEN. http:
//www.cl.cam.ac.uk/research/srg/netos/xen/.

[25] University of Roma Tre, Computer Networks Research
Group. Netkit. http://www.netkit.org/.

[26] University of Utah. Emulab Network Emulation
Testbed. http://www.emulab.net/.

[27] University of Zagreb, Department of
Telecommunications. IMUNES – An Integrated
Multiprotocol Network Emulator/Simulator.
http://www.tel.fer.hr/imunes/.

[28] Walter M. Fuertes and Jorge E. López de Vergara. A
Quantitative Comparison of Virtual Network
Environments Based on Performance Measurements.
Poster at the 14th Workshop of the HP Software
University Association, Jul 2007.

[29] Debian GNU/Linux. http://www.debian.org/.

[30] EINAR (Einar Is Not a Router) Router Simulator.
http://www.isk.kth.se/proj/einar/.

[31] GARR - The Italian Academic and Research Network.
http://www.garr.it/.

[32] The Linux Kernel Archives. http://www.kernel.org/.

[33] Packages installed in Netkit filesystem version F3.0a.
http://www.netkit.org/download/

netkit-filesystem/installed-packages-F3.0a.

[34] PlanetLab Consortium. http://www.planet-lab.org.

[35] Quagga Routing Suite. http://www.quagga.net/.

[36] User-mode Linux Kernel.
http://user-mode-linux.sourceforge.net/.

[37] UML Utilities. http:
//user-mode-linux.sourceforge.net/dl-sf.html.

[38] VINI – A Virtual Network Infrastructure.
http://vini-veritas.net/.

[39] Y. Rekhter and P. Gross. Application of the Border
Gateway Protocol in the Internet. RFC 1772, Mar
1995.

[40] Y. Rekhter, T. Li, and S. Hares. A Border Gateway
Protocol 4 (BGP-4). RFC 4271, Jan 2006.

