
Integration Of Heterogeneous Networking Testbeds

R. Mahindra†‡ G. Bhanage† G. Hadjichristofi†§ S. Ganu†¶
P. Kamat†‖ I. Seskar† D. Raychaudhuri†

†WINLAB, Rutgers University, NJ Technology Center, North Brunswick, NJ, USA
‡NEC Laboratories America, NJ, USA

§Cyprus University,Cyprus
¶Aruba Networks, CA, USA ‖ASK.com, NJ, USA

ABSTRACT
As networking research expands into new frontiers, the re-
search community has felt a need for a heterogeneous net-
working research infrastructure to experiment with the in-
teraction and integration of different types of networks, and
to test the performance of various networking protocols in re-
alistic environments. This requirement has led to the Global
Environment for Network Innovations (GENI) initiative to
create a global infrastructure for conducting networking ex-
periments across diverse substrates such as wired (local and
wide-area), wireless, sensor and cellular networks. In this
paper, we discuss and present two models for building such
an experimental infrastructure. The first model enables a
wired testbed to link with wireless edge nodes during an
experiment, whereas the second model enables a wireless
testbed to link to wired testbeds. Proof-of-concept exper-
iments are also presented reinforcing the usefulness of the
models in terms of facilitating experiments over the inte-
grated heterogeneous infrastructure.

1. INTRODUCTION
The GENI Project [1] aims to provide a flexible and pro-
grammable shared experimental infrastructure for the in-
vestigation of future internet protocols and software. As
explained in the project development plan [2], GENI will
consist of a global-scale wired network along with several
wireless access network deployments intended to support
experimentation with mobile computing devices, embedded
sensors, radio routers, etc. This research finds solutions for
an important technical issue related to the integration of
wireless networks into GENI, namely the integration of con-
trol and management across wired and wireless networks,
through the provision of a single programming interface and
experimental methodology.

The importance of the integration of control and manage-
ment across wired and wireless experimental networks, is
highlighted in [3]. While PlanetLab [4] serves as the baseline
model for programming and virtualization in wired GENI,

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
Tridentcom 2008, March 18, 2008, Innsbruck, Austria.
Copyright 2008 ACM ISBN # 978-1-60558-009-8

the model needs to be significantly extended to accommo-
date the full range of envisioned usage. Specific extensions to
be considered include: a broader range of experiment types
(e.g., short-term network performance experiments running
on selected network nodes vs. long-term slices used in Plan-
etLab), and alternative end-user support requirements Our
research, aimed at integrating PlanetLab with ORBIT [8],
a large-scale wireless testbed, may yield to important de-
sign insights on the issues of necessary extensions to control
and management protocols for effective support of wireless
networks as an integral part of the experimental system.

A related aspect of this integration is the ability to carry
multiple concurrent experiments within the integrated plat-
form. This capability can be achieved through network
virtualization. Unlike the wired network, virtualization of
wireless network elements is fundamentally a difficult prob-
lem because of the broadcast nature of the wireless medium.
This paper covers the integration framework that has been
developed and also demonstrates proof-of-type integrated
experiments that use Frequency Division Multiplexing (FDMA)
and Virtual MAC (VMAC) as forms of virtualization on the
ORBIT side. Contributions of this paper are to:
1. Consider representative wired-wireless testbed and out-
line an integrated framework with two approaches (Planet-
Lab driven and ORBIT driven) supporting different flavors
of end-user requirements and
2. Address the problem of supporting multiple concurrent
experiments over these substrates and provide proof of con-
cept experiments conducted using the framework.

The rest of the paper is structured as follows. Section 2 de-
scribes the aspects to be considered while integrating hetero-
geneous wired and wireless testbeds. Section 3 talks about
the representative wired and wireless testbeds considered for
integration. Detailed discussion of the integration models is
in Section 4. Results from proof of concept experiments are
shown in Section 5 followed by our conclusions.

2. INTEGRATION OF WIRED AND WIRE-
LESS EXPERIMENTATION NETWORKS

To support realistic and large-scale experimentation with
new network architectures and distributed systems an inte-
grated testbed framework would have to be based on a very
flexible design that will enable a variety of network architec-
tures, services, and applications to be evaluated. To accom-
plish these goals, we may need to move far beyond existing
testbeds and experimental facilities, yet the best way to do

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Tridentcom 2008 March 18–20, 2008, Innsbruck, Austria
Copyright 2008 ACM 978-1-60558-009-8 ...$5.00.

peri
Callout

peri
Callout

peri
Typewriter
TRIDENTCOM 2008, 17th–20th Mar 2008, Innsbruck, Austria.
Copyright © 2011–2012 ICST ISBN 978-963-9799-24-0
DOI 10.4108/icst.tridentcom.2008.3083

peri
Typewriter

peri
Typewriter

Figure 1: Software architecture overview with the
ORBIT radio grid.

this would be to leverage (and synthesize) a wide range of
ideas and techniques that have been developed in isolation
on individual testbeds. Specifically, GENI will adopt Plan-
etLab’s model of virtualizing the available resources, thereby
allowing multiple experiments to run in isolated slices. In
addition, GENI will need to support the following:
1. An inclusive model to enable researchers to use the facility
to run their experiments e.g., controlled short-term repro-
ducible experiments and long−running deployment studies
2. Wireless network virtualization to support multiple con-
current experiments on the integrated testbed.

In each of these dimensions, there is a lot to learn from other
experimental testbeds, including Emulab [5], ORBIT [8],
and DETER [7]. In particular, we propose to integrate
PlanetLab with ORBIT. Both ORBIT and Planetlab were
designed to meet very different experimental research re-
quirements. The next section will walk through some of the
fundamental differences in the design of these testbeds that
should be considered while building the integration models.

3. OVERVIEW OF THE ORBIT AND PLAN-
ETLAB TESTBEDS

The major differences between ORBIT and PlanetLab testbeds
considered in this paper are as follows:

Experiment life cycle -While Planetlab is based on a
long-running service oriented experimentation model based
on the concept of distributed virtualization of resources, the
ORBIT Radio Grid is a multi-user wireless experimental
research testbed that allows ”sequential” short-term access
to the radio grid resources for repeatable experimentation.
Scheduling is done so that users have exclusive access to
the grid during their assigned time slot. We propose virtu-
alization solutions for the ORBIT testbed to facilitate the
integrated framework to support multiple concurrent exper-
iments.

Experiment models - The duration of experiments on
the ORBIT testbed is short-lived, as opposed to Planetlab’s
services-oriented model, which supports experiment dura-
tions on the order of months. To resolve this issue, we
propose the usage of a long-running ORBIT slice on the
PlanetLab nodes.

Experimental Control and Management Framework
- The overall architecture of the ORBIT testbed is to pro-
vide a multi-user wireless experimental facility and it is de-
signed to accommodate as many users as possible. In most

of the experiments, setting up the experiment and collect-
ing results of the experiments and collating them usually
is a significant contributor to the overall experiment time.
Hence, the design goal is to reduce this setup time and to
simplify data collection as much as possible. In the ORBIT
framework, the experiment controller is called the nodeHan-
dler and the corresponding client side software residing on
the nodes that responds to commands from the nodeHan-
dler is the nodeAgent. The experiment is specified in the
form of a Ruby script and is disseminated over multicast to
the nodes involved in the experiment (see Figure 1). The
nodeHandler also interacts with other support services to
initialize the environment prior to the actual experiment.
These tasks may include powering up the relevant nodes,
installing custom images on the nodes, if needed, and set-
ting up the databases for measurement collection.
Even though PlanetLab provides a globally distributed sub-
strate for conducting geographically diverse experiments, it
does not provide an official experimental software framework
to facilitate the deployment. The testbed does not offer any
built-in support for choreographing an experiment and con-
trolling all the nodes using automated scripts.

Considering the above factors, the following two models are
presented in the next section that have been developed to
integrate these testbeds and conduct joint experiments.

4. INTEGRATION MODELS
The first model (PDIE) is intended to serve PlanetLab users
who want to extend their experiments to include wireless
networks at the edge without changing the PlanetLab inter-
face, while the second model (ODIE) is intended to serve
ORBIT wireless network experimenters who want to aug-
ment their experiments by adding wired network features
without major changes to their code.

4.1 PlanetLab Driven Integrated Experimen-
tation (PDIE) Model

The PDIE model shown in Figure 2 provides a PlanetLab-
ORBIT gateway as a node that PlanetLab users can access
when they want to include emulated wireless edge networks
in their experiments. The PlanetLab-ORBIT gateway pro-
vides abstractions for the setup, control and measurement
on a specified topology using a modified version of the node-
Handler as the interface software. This approach did not
involve major changes to either the PlanetLab or ORBIT
testbeds, but requires the development of a PlanetLab proxy
module.

Figure 3 describes the current design with the PDIE inte-
gration model. The PlanetLab-ORBIT gateway machine,
which acts as a proxy, is running as a part of the ORBIT
framework. This gateway communicates with PlanetLab
nodes via GRE tunnels[6]. One GRE tunnel is setup for
every selected PlanetLab node. Packets received from dif-
ferent experiments or slices on PlanetLab nodes are redi-
rected to the corresponding ORBIT nodes. This functional-
ity is achieved by having GRE tunnels from the gateway to
the ORBIT nodes. On the PlanetLab side, experiments 1,
2, and 3 are running in different slivers on each PlanetLab
node. On the ORBIT side one or more ORBIT nodes are
linked to the PlanetLab slivers of each experiment.

Console

Measurements
Support
services

Sliver

Sliver

Sliver
Planetlab – ORBIT

Proxy

Nodeagent running on
radio nodes in the ORBIT

grid

Internet

1

2

Sliver
on the PlanetLab

node

Run PlanetLab experiment using
integrated services to access both
ORBIT and Planetlab nodes

1
Request ORBITgrid resources during
PlanetLab slice creation

2

START

ORBIT grid (or part of it)
= PlanetLab sliver

Add
testbed to
slice using

PLC

Console

Measurements
Support
services

Sliver

Sliver

SliverSliver
Planetlab – ORBIT

Proxy

Nodeagent running on
radio nodes in the ORBIT

grid

Internet

1

2

Sliver
on the PlanetLab

node

Run PlanetLab experiment using
integrated services to access both
ORBIT and Planetlab nodes

1
Request ORBITgrid resources during
PlanetLab slice creation

2 Run PlanetLab experiment using
integrated services to access both
ORBIT and Planetlab nodes

1
Request ORBITgrid resources during
PlanetLab slice creation

2

START

ORBIT grid (or part of it)
= PlanetLab sliver

Add
testbed to
slice using

PLC

Figure 2: Outline of the PlanetLab driven inte-
grated experimentation(PDIE) model where Plan-
etLAB users get scheduled access to chosen nodes
on the ORBIT grid using the concept of an ORBIT
sliver.

PlanetLab

Nodes
Orbit

NodesSliver
sliver

sliver

GRE

PL-Orbit Proxy

sliver
sliver

sliver

Exp.2

Exp.3

Exp.1

Exp.2

Exp.3

Exp.1
Exp.2

Exp.3

Exp.1

Figure 3: A sample approach based on the PDIE
model. The figure shows the use of a PlanetLab
- ORBIT proxy for mapping PLanetLab slivers to
ORBIT nodes.

4.2 ORBIT Driven Integrated Experimenta-
tion (ODIE) Model

The ODIE approach allows users to include a long-running
“ORBIT slice” in Planetlab nodes in their experiments with
a single experimental script. This model is similar to that
proposed in [9], where the authors described the integration
of the Emulab [5] and PlanetLab testbeds to provide Emu-
lab users with an access to PlanetLab resources. Figure 4
presents a conceptual view of the ODIE model.

The ODIE model has been implemented by extending the
ORBIT nodeAgent functionality to work in the PlanetLab
node “ORBIT Slivers”. A modified version of the ORBIT
nodeHandler was developed to support experiment defini-
tion, code download, and execution. This nodeHandler com-
municates with modified nodeAgents running on the Plan-
etLab slivers. The topology selection for the experiment is
done by manual addition, where experimenters choose the
PlanetLab nodes individually.

In order to communicate with nodes on the local subnet
(ORBIT nodes) as well as remote PlanetLab nodes, we ex-
tend the naming/addressing scheme and communication pro-
tocol for the nodeHandler -nodeAgent Framework to allow
access to geographically diverse nodes.

Extended addressing scheme: We address the Planet-

Console

Measurements
Support
services

NodeAgent

Using integrated services, access both ORBIT and
Planetlab nodes in the experiment

NodeAgent

NodeAgent

Planetlab – ORBIT
Gateway

Nodeagent running on radio
nodes in the ORBIT grid

Internet

1

3

Experiment
Script

2

Sliver running
nodeagent

on the PlanetLab
node

Describe experiment dynamics using
script

1
Reserve ORBIT and PlanetLab nodes for the
experiment (assumes slice on Planetlab nodes
with nodeagent exists)

2

3

Integrated
resource manager

START

Console

Measurements
Support
services

NodeAgent

Using integrated services, access both ORBIT and
Planetlab nodes in the experiment

NodeAgent

NodeAgent

Planetlab – ORBIT
Gateway

Nodeagent running on radio
nodes in the ORBIT grid

Internet

1

3

Experiment
Script

Experiment
Script

2

Sliver running
nodeagent

on the PlanetLab
node

Describe experiment dynamics using
script

1
Reserve ORBIT and PlanetLab nodes for the
experiment (assumes slice on Planetlab nodes
with nodeagent exists)

2

3

Integrated
resource manager

START

Figure 4: Outline of the ORBIT Driven Integrated
Experimentation (ODIE) model where ORBIT users
can add PlanetLab nodes to their experiments using
the concept of an ORBIT slice.

Lab nodes as though they were part of the ORBIT network
and have the local DNS map requests for Planetlab nodes to
their respective public domain names. In ORBIT, all nodes
are addressed as x,y where x is the row number (1..20) and
y is the column number (1..20). Presently we have 20 Plan-
etLab nodes in the ORBIT Slice addressed as [21,1..20].(for
e.g. node21-3.orbit-lab.org will map to planetlab-01.cs.wash-
ington.edu).

Extended communication layer: Currently in an OR-
BIT experiment, commands sent to the ORBIT nodes from
the nodeHandler use reliable multicast. For Planetlab nodes
on the Internet, these commands needed to be tunneled us-
ing reliable unicast since multicast support on the routers
in a path cannot be assumed. The nodeHandler has been
modified to communicate with the nodeAgents on the Plan-
etLab nodes over unicast-TCP. The nodeHandler commu-
nicates with the PlanetLab nodes in each experiment that
requires wired networking resources.

The sequence of communications during an experiment is as
follows: When an experiment is started, the nodeHandler
starts the nodeAgentson the specified PlanetLab nodes and
waits for them to report back. After a timeout it records all
the PlanetLab nodes that have successfully reported back.
The nodes that fail to report during the timeout period are
replaced by other PlanetLab nodes in the ORBIT Slice. This
procedure is repeated till the desired number of PlanetLab
nodes have reported back. (A failure could result from node
failure, node maintenance, slice clean-up, link failure etc.).
The next step for the nodeHandler is to send commands to
the nodeAgents to start the necessary applications on the
PlanetLab nodes. The nodeAgents then report success or
error messages back to the nodeHandler indicating the sta-
tus of the nodes. After setting up the PlanetLab nodes,
the nodeHandler configures and sets up the ORBIT nodes.
The user simply provides a unified experiment script includ-
ing both PlanetLab and ORBIT nodes and the application
definition which the nodeHandler parses to execute the ex-
periment automatically.

Experiment Scripting: The ODIE based experiment

#-------------ORBIT nodes-----------#

defNodes(’AccessPoint’,[11,20]){|node|

node.prototype("test:proto:mvlcrelay",

{’duration’ => prop.duration})

node.net.w0.mode = "master"

node.net.w0.essid = "link1"

node.net.w0.ip="192.168.7.1"

}

defNodes(’Client’, [19,2]) {|node|

node.prototype("test:proto:mvlcdest",

{’duration’ => prop.duration})

node.net.w0.essid = "link1"

node.net.w0.ip="192.168.7.7"

}#----------PlanetLab nodes---------#

defPNodes(’[21,3],[21,5]’)

Figure 5: Node configuration section of a sample
script (ODIE model).

#--Start applications on ORBIT nodes-#

whenAllInstalled() {|node|

nodes(’AccessPoint’).startApplications

nodes(’Client’).startApplications

wait 195 # Experiment Duration

allNodes.stopApplications

Experiment.done

}

#--Start applications on PlanetLAB nodes--#

WhenPLReady(){

defPApplication([21,3],[21,5],’VIDEO’){}

wait 195

defPApplication([21,3],[21,5],’STOP’){}

PLexpdone() }

Figure 6: Experiment execution section of a sample
script (ODIE model).

script is parsed and executed by the nodeHandler to choreo-
graph the experiments. A single script for the ODIE models
may be described in two sections: (A) Node configuration
section (B) Experiment timing and execution section.

The node configuration section is responsible for setting up
all the nodes being used as a part of the integrated exper-
iment while the timing and execution section of the ODIE
script describes the execution sequence of the experiment.
Figure 5 shows the section of the script that configures the
nodes for the experiment. The first part of the code con-
figures the wireless interfaces of two ORBIT nodes; one as
an access point and the other as a client. The configuration
part also defines the PlanetLab nodes in Washington and
Georgia to include in the experiment. Figure 6 describes
the timing and execution section of a typical ODIE script.
The module WhenPlReady() waits for the nodeAgents on
the PlanetLab nodes to report. Once the desired number
of PlanetLab nodes have reported, the applications defined
in defPApplication() are initiated. The Plexpdone() module
ensures the slice is cleaned up at the end of the experiment.

Since the nodeHandler/nodeAgent framework is based on
Ruby (a highly portable, scripting language) and since both
PlanetLab and ORBIT run different flavors of the same OS
(Linux), the porting of nodeAgent on Planetlab slivers was

relatively easy. PlanetLab does not provide an interface for
efficient resource teardown mechanism upon experiment ter-
mination for each new experiment (every 1-2 hrs). This
mechanism has been leveraged by the nodeAgents running
on the PlanetLab nodes in the ORBIT slice.

4.3 Distinction between the PDIE and ODIE
Models

The major motivation behind the two models is to give the
users a similar interface to the integrated testbed as the
individual testbeds. The PlanetLab users would find the
PDIE model easier to conduct their integrated experiments
while the ODIE model would suit the current ORBIT users.
Besides this difference, there are two major features that set
these models apart:

4.3.1 PlanetLab to ORBIT connectivity
The ORBIT nodes do not have public IPs. Hence, in the
ODIE model, any sort of connectivity between ORBIT and
PlanetLab has to be initiated in ORBIT. Probable solutions
to this problem include setting up tunneling, VPN etc. How-
ever, in the PDIE model, the PlanetLab-ORBIT gateway
provides the proxy for connectivity between the testbeds.
Note that this gateway would also benefit from virtualiza-
tion solutions that are developed for ORBIT, bridging the
gap between the PlanetLab slice model and ORBIT’s cur-
rent single-user model.

4.3.2 Control and Management Framework
The ODIE model is an extension of the current ORBIT
framework to the PlanetLab nodes. The PDIE model is
based on the current PlanetLab working model and lacks an
integrated framework. Therefore, the ODIE model will be
preferred by protocol analysts who prefer tools for conve-
nient and easy experimentation.

5. PROOF-OF-CONCEPT INTEGRATION
WITH WIRELESS VIRTUALIZATION

In this section, we evaluate some experimental scenarios
with integrated tests of the PlanetLab and ORBIT testbed.
We also investigate the following virtualization approaches
in our experiments.
1. Integrated experiments with frequency division multi-
plexing of ORBIT nodes.
2. Integrated experiments with MAC layer virtualization of
ORBIT nodes.

Using the virtualized ORBIT testbed, a Planetlab slice could
be extended to include individual ORBIT nodes. Addition-
ally, virtualization improves the utilization of the resources
and provides a scalable integrated framework to support
multiple users and experiments concurrently on the limited
resources. The experiments in this section do not aim at
showing important research results, but rather the dexterity
of the framework to perform integrated experiments.

5.1 Frequency based ORBIT slicing coupled
with PlanetLab

Aim: In this proof-of-concept experiment we show the
use of our architecture in testing the performance of video
delivery algorithms.

Topology: Figure 7 shows the topology for this exper-
iment. We consider a typical scenario for streaming video
delivery across a network path that includes an edge wireless
link. The experimentation includes two flows from Planet-
Lab nodes to two Access Points configured within ORBIT.
The Access Points relay traffic to their respective clients
over orthogonal channels. Isolating experiments on differ-
ent and possibly orthogonal frequencies is one of the easiest
approaches to wireless virtualization (FDMA). The video
streamed from PlanetLab goes over the internet giving ex-
perimenters the characteristics of a realistic network. Physi-
cal and MAC layer parameters of the wireless link can also be
varied. The video is streamed and played using the Video
LAN (vlc) [14] player. The ORBIT Measurement Library
(OML) framework of ORBIT provides means for recording
the bit rate and jitter in the video received at the ORBIT
clients. We record measurements for different PlanetLab
nodes in terms of their geographical distance from ORBIT.

Wired
PlanetLab

Wireless
Orbit

Channel X

Washington

Georgia Access Points Clients

Channel Y

Figure 7: Experiment layout where nodes are
added from PlanetLab while frequency seperation
(FDMA) is used with the ORBIT nodes.

Jitter measurement: Figure 8 shows the results for the
jitter values from the FDMA experiments for PlanetLab
nodes in Princeton (NJ), Washington and Japan. Results
show relatively comparable jitter values for the Princeton
and Washington nodes. Japan on the other hand sees a
higher jitter for video delivery possibly due to higher traffic
and geographical distance. We also show the results of a
heavily loaded server by adding traffic to the Washington
node. We recorded the jitter values across certain baseline
scenarios such as a single hop wired and wireless link for a
comparison study.

Bit rate measurement: Figure 9 shows a plot of the video
bit rate observed at the client as a function of time. The ob-
served bit rate for the videos is lower for the PlanetLab node
in Japan as compared to those in Princeton or Washington.
Surprisingly the increased load on the Washington node only
showed increased jitter in the video delivered with a compa-
rable mean bit rate. However, the PlanetLab node in Japan

Experiment Max Mean
Setting Jitter (ms) Jitter (ms)

Wireless One hop 1.68 0.98
Pl − Princeton 1.69 0.98
Pl −Washington 1.88 1.05
Pl −Washington (Loaded) 35.76 3.62
Pl − Japan 52.18 7.38

Figure 8: Jitter results observed with different Plan-
etLab nodes serving the same video over the internet
to wireless clients in the ORBIT grid.

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5

4

Experiment duration (Secs)

V
id

eo
 B

it
R

at
e

(M
b/

se
c)

Source Bit−rate
PlanetLab Princeton
PlanetLab Washington
PL Washington (loaded)
PlanetLab Japan

Figure 9: Observed bit rate with the same test video
being delivered from different PlanetLab nodes.

has a deteriorated bit rate at the client due to the greater
geographical distance.

These results could help evaluate proposed video delivery
algorithms providing a deeper understanding of their oper-
ation. In addition, research on spectrum allocation, band-
width management and inter- Access Point communication
protocols would require the presence of a similar framework.

5.2 Virtual Access Point Based ORBIT slicing
coupled with PlanetLAB

This proof-of-concept experiment uses virtualization at the
MAC layer with the introduction of a VAP (Virtual Access
Point). The VAP provides logical partitioning among the ex-
periments based on ESSIDs [12]. In [10], the authors discuss
in detail the feasibility of VAPs for wireless virtualization.

Aim : The goal of this experiment is to demonstrate a
VAP-based approach used for virtualization. We also show
degradation in performance with the use of VAP and possi-
ble solutions to mitigate them.

Topology and setup: Figure 10 shows our experimental
setup. It consists of two UDP-CBR traffic flows belonging to
two independent experiments which are being sent by servers
running on PlanetLab nodes to their respective clients run-
ning on the ORBIT grid. The third flow is a video streaming
from one of the Planetlab nodes to the clients running on
the ORBIT grid. To setup this configuration of nodes an
experiment script similar to the one shown in Figure 5 was
used.

Figure 11(a) shows a plot of the two UDP traffic flows as seen
at the receiver on the wireless client node. The offered load
for each of these experiments is increased as a function of
time for each of these experiments. As long as the aggregate
offered load is below saturation, both flows have a fair share
of the throughput. The video quality of the third experiment
was found to be good as it produced a clear picture. As the
offered load for each of the experiments is increased with
time, the aggregate traffic on the wireless network reaches
saturation. Figure 11(a) shows that in saturation the net
throughput seen for both flows are comparable. However,
the video flow suffers considerably when the wireless chan-
nel is in saturation. To prevent such situations where the

0 30 60 90 120 150
0

2

4

6

8

10

12

Time (secs)

C
lie

n
t

T
h

ro
u

g
h

p
u

t
(M

b
p

s)
Throughput from Flow of experiment 1

Throughput from Flow of experiment 2

Offered Load on Each experiment

Experiments reach
saturation with increased
offered load

(a) No traffic shaping or policy manage-
ment for bandwidth control.

0 30 60 90 120 150
0

2

4

6

8

10

12

C
lie

n
t

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Time (secs)

Throughput from Flow of experiment 1
Offered load on each experiment
Throughput from Flow of experiment 2

Experiment
flows are
manually
rate limited

(b) Manual intervention rate limits
flows to stop channel saturation.

0 30 60 90 120 150
0

2

4

6

8

10

Time (secs)

C
lie

n
t

T
h

ro
u

g
h

p
u

t
(M

b
/s

ec
)

Throughput from Flow of experiment 1
Throughput from Flow of experiment 2
Offered load on each experiment

Experiment flows are
rate limited even before

the channel saturates

(c) Individual flow rates are pre-
decided by the policy manager.

Figure 11: Throughput (Mbps) seen at the wireless client.

Exp. 1

Exp. 3

Exp. 2

Exp. 1

Exp. 2

Exp. 3

Servers Mobile

Clients

Channel x

3 VAPs

Figure 10: Experiment layout where nodes are
added from PlanetLab while the VAP support from
the 802.11 linux drivers is exploited for running mul-
tiple networks from a physical AP.

performance of one experiment affects the other we incorpo-
rate the use of traffic control with the experiments. Possible
approaches to bandwidth control are: (1) Manual Interven-
tion (2) Policy Manager based interference control.

Figure 11(b) shows a typical scenario with manual inter-
vention in an experiment. Initially as the aggregate offered
load is increased, the experiments are pushed into satura-
tion. However, with manual intervention it is possible to
rate limit the traffic flows. We make use of the Click Mod-
ular Router [13] as a tool to implement bandwidth shaping.
It is also possible to have a policy manager to decide the
maximum share of throughputs of these experiments before
they are started. The policy manager could be integrated
with the experiment scheduling and resource tracking mech-
anisms to ensure that each of the experiments get a fair share
of the resources. Figure 11(c) shows the results with a pol-
icy manager. Both the experiments are rate limited to their
assigned throughput values even before they reach channel
saturation. The video quality was also found to be restored.

6. CONCLUSIONS
The unified designs presented in this paper could serve as a
practical foundation for wired/wireless integration in future
heterogeneous testbeds. We believe that the common con-
trol and management model, presented here, for a globally
distributed networking infrastructure will lead to easier and
faster experimentation and more efficient use of testbed re-
sources. Our proof of concept experiments demonstrate the
effectiveness in terms of the ease of experimental deployment

and the overall usefulness of this integrated framework.

7. REFERENCES
[1] NSF Global Environment For Network Innovations

(GENI). http://www.geni.net/

[2] GENI Design Principles in
http://www.geni.net/designprinciples.pdf

[3] D. Raychaudhuri and M. Gerla, New architectures and
disruptive technologies for the future internet in Report
of NSF WMPG Workshop, August 2005.

[4] D. Culler L. Peterson, T. Anderson and T. Roscoe, ”A
blueprint for introducing disruptive technology into the
internet,” in HotNets-I 2002.

[5] L. Stoller R. Ricci S. Guruprasad M. Newbold ”An
integrated experimental environment for distributed
systems and networks,” in Proceedings of the 4th
Symposium on Operating System Design and
Implementation (OSDI 2002), 2002

[6] RFC3147, Generic Routing Encapsulation over CLNS
Networks, IETF draft of the networking working group,
July 2001

[7] DETER TestBed in http://www.isi.edu/deter

[8] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu,
K. Ramachandran, H. Kremo, R. Siracusa, H. Liu, and
M. Singh, Overview of the orbit radio grid testbed for
evaluation of next-generation wireless network
protocols in WCNC,2005

[9] Emulab-PlanetLab portal in Proceedings of the First
Workshop on Real, Large Distributed Systems
(WORLDS 2004),2004.

[10] R. Mahindra, G. Bhanage, G. Hadjicristofi, I. Seskar,
D. Raychaudhuri, YY. Zhang Space Versus Time
Separation For Wireless Virtualization On An Indoor
Grid in proceedings for IEEE NGI 2008

[11] PlanetLab: An Open Platform For Developing,
Deploying and Accessing Planetary-Scale Services in
https://www.planet-lab.org/

[12] Creating virtual ap on madwifi http:

//madwifi.org/wiki/UserDocs/MultipleInterfaces

[13] Click Router http://read.cs.ucla.edu/click/

[14] Videolan Player in http://www.videolan.org/vlc/

[15] Manpage of tcpdump in http://www.tcpdump.org/

[16] IPERF, TCP/UDP Traffic Generation Tool,
http://dast.nlanr.net/Projects/Iperf/

