
Session Mobility of SIP over Multiple Devices
Min-Xiou Chen

Department of Computer Science and Information
Engineering,

ChungHua University, Hsinchu, Taiwan, R.O.C.

mxchen@chu.edu.tw

Fu-Ju Wang
Department of Computer Science and Information

Engineering,
ChungHua University, Hsinchu, Taiwan, R.O.C.

m9402046@chu.edu.tw

ABSTRACT
Session Initiation Protocol (SIP) has been widely applied to
telephony service. SIP is also adopted as the signal communication
protocol of VoIP and 3GPP, so the development of SIP receiving
much concern. Currently the research of SIP can be divided into
four issues, including terminal mobility, session mobility, personal
mobility, and service mobility. In this paper, we address the issue of
session mobility. We want to solve the problem allowing a user to
transfer, split, and retrieve a session over multiple devices by using
SIP. In order to provide the service, three new agents have been
introduced based on the definition of user agent proposed in RFC
3261. There are session manager, session user, and free node.
Based on these agents, we propose a complete mechanism, to
transfer and retrieve a session over multiple devices. According to
our mechanism, the user will facility transfers, splits, and retrieves a
session over multiple devices. Finally, we implement the mechanism
by modifying the open source project of “Sip-Communicator”.

Keywords: Split session, Session Mobility, SIP, Open Source

1. INTRODUCTION
Recent advances in communication bandwidth have

enabled the development of Internet applications, such as
WWW, HTTP, FTP and Instant Message. Due to the rapid
development of Internet applications, Internet services
come into our daily life. Take instant message service as
an example, people could only exchange their real time
information through the telecommunication network in the
past years. But now the Instant Message service can be
used to carry multimedia service, such as voice, video or
data, anywhere at any time with any devices. Thus, people
can exchange their real time information with their friends
through the Internet.

Due to the popular application of Internet, Voice over
Internet Protocol (VoIP) had been proposed by the
researchers in order to reduce the cost of the overseas call.
Moreover, in order to carry multimedia service through
the Internet, the Session Initiation Protocol (SIP) [1] had
been introduced and adopted by the VoIP and 3GPP
communities. SIP is an application layer signaling
protocol for creating, modifying, and terminating sessions
with one or more devices. It is designed to be independent
of the underlying transport protocols. Thus, SIP can run on

TCP, UDP or SCTP. Moreover, SIP can be used to
establish one or multiple sessions that include multimedia
streams, such as audio, video and text information. It
widely used as a signaling protocol in home networks and
personal area networks as discussed in [2-4].

Mobility management is an important issue of SIP.
According to the descriptions in [5][6], the mobility
management problems of SIP can be divided in two four
classes. There are terminal mobility, personal mobility,
session mobility and service mobility. The major objective
of terminal mobility is to allow a device to move between
IP subnets, while continuing to serve any incoming request
and continuing to serve sessions across IP subnet changes.
The ability of personal mobility is to support a user to
access mobility services from anywhere, at anytime, using
any device. The main function of service mobility is to
provide a user to use the same service even when the user
attaches the Internet at different device.

Session mobility is to maintain an ongoing media
session from one device to another. Two approaches can
be used to support session mobility using SIP. The first
approach using the REFER method defined in RFC 3515
[7] to provide the Call Transfer mechanism, and the other
one is using the Third Party Call Control (3PCC)
mechanism defined in RFC 3725 [8]. Both these
approaches can transfer an ongoing media session from
one device to another, and can retrieve a transferred media
session. However, these approaches cannot be used to
transfer an ongoing media session to multiple devices.

The major purpose that transferring a session over
multiple devices is to allow the user to transfer, split, and
retrieve a session over multiple devices. Therefore, a user
can create a session, which contains a video stream and an
audio stream, with his friend at his mobile device. Then,
when he backs home, he may transfer the video stream to
his TV, but keep the audio stream at his mobile device due
to the voice echo problem. Moreover, when he walks away,
he can retrieve the video stream to his mobile device for
continue communication.

In this paper, we address the issue of session mobility
over multiple devices. We propose a complete mechanism
to transfer and retrieve a session over multiple devices. In Tridentcom 2008, March 18 – 20, 2008, Innsbruck, Austria.

Copyright © 2008 ISBN # 978-1-60558-009-8.
Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Tridentcom 2008 March 18–20, 2008, Innsbruck, Austria
Copyright 2008 ACM 978-1-60558-009-8 ...$5.00.

peri
Callout

peri
Typewriter
TRIDENTCOM 2008, 17th–20th Mar 2008, Innsbruck, Austria.
Copyright © 2011–2012 ICST ISBN 978-963-9799-24-0
DOI 10.4108/tridentcom.2008.3023

peri
Typewriter

peri
Typewriter

order to provide session mobility, three new agents had
been introduced in our mechanism. There are session
manager, session user, and free node. Moreover, we also
propose the session manager transformation (SMT) to
provide much more flexibility in session mobility. Based
on our mechanism, the user can transfer, split, and retrieve
a session over multiple devices.

The remainder of this paper is organized as follows.
The related literatures of session mobility are discussed in
Section II. In Section III, our mechanism is proposed, as
well as how the user can transfer and retrieve a session
over multiple devices. The implementation architecture is
described in Section IV. In Section V, we take an example
to show the correctness of our architecture. Finally, the
conclusion is given in Section VI.

2. RELATED WORKS
The basic idea of session mobility is to transfer an

ongoing media session from one device to another. Two
approaches can be used to transfer an ongoing media
session from one device to another, and can retrieve a
transferred media session. The first approach uses the
REFER method defined in RFC 3515 [7], and the other
one uses the Third Party Call Control (3PCC) mechanism
defined in RFC 3725 [8].

REFER is a SIP extension method, and can be used to
enable many applications. The REFER request contains the
contract information, which is included in the new defined
header field “Refer-To”. The contract information also
indicates a target device. Thus, the function of the
subscription is to keep track of the progress of the REFER
request. This means that a REFER request implicitly
establishes a subscription to the refer event. In REFER
method, all the devices which receive the SIP signals must
be the sender or the receiver of a media session.

Contrary to the REFER method, 3PCC allows a device,
which may not be a media session sender or a media
session receive, to setup and manage a communications
relationship between two or more other devices. There are
four kinds of call flows in the 3PCC mechanism, and all of
them have benefits and drawbacks. All of these call flows
can be used to transfer an ongoing media session from one
device to another.

However, both these mechanisms cannot be used to
transfer or split an ongoing session service over multiple
devices. In the First, the REFER method cannot indicate
which certain media sessions need to transfer. Moreover,
the device has no ability to discern between a request of
split session and a request of new session. There are two
main drawbacks to the 3PCC control mechanism for
session mobility. First, the original session device needs

to remain involved in the session, as it will be contacted to
change or terminate the session. Second, the 3PCC
control mechanism needs a central point of control which
may not be desirable in many environments.

In order to support to transfer or split an ongoing
session service over multiple devices, we proposed a
method, refers to as “Split a SIP session over multiple
devices (SSIP)” [9]. We introduced some improvements
for the user agent to obtain the ability to split a session.
The extension header “Mobility” is used to improve the
REFER method and make it transparent to the remote party.
The concept of “Association” is used to solve the problem
of the user having to terminate all devices separately when
a session was split over multiple devices. Moreover, we
also implemented a SIP user agent with the SSIP to split a
session over multiple devices. However, the session
retrieval mechanism was not implemented in SSIP.

Shacham, et al. proposed an integration mechanisms
to provide session mobility over multiple devices [10].
Their mechanisms involves the REFER method and the
3PCC control mechanism. In order to efficiently manage
the transferred session between multiple devices, the
concept of “Virtual Device” was introduced. In the first, all
the candidate devices are grouped into a set of “Virtual
Device”. One of the devices in the Virtual Device will be
set as coordinator, refers to as Multi-Device System
Manager (MDSM). When a session will be transferred
from the user agent device to different devices which are
in the same Virtual Device, the user agent will issue a
REFER message and send this message to the MDSM.
Then, the MDSM uses 3PCC to invite each local device
and set up media sessions between correspond node and
each device in Virtual Device. Thus, the media sessions
between the device and the correspondent node will be set
up based on the 3PCC control mechanism.

This mechanism has the advantages of the 3PCC
mechanism and the REFER method. However, there are
some problems with this mechanism. In the first, because
that only the original user agent can retrieve the split
session, the split session can only be combined into the
original user agent. This means that although there are
many devices in the Virtual Device, the split session
cannot be combined into any one of the device in the
Virtual Device. This problem restricts the flexibility of
session mobility. Moreover, in order to efficiently manage
the signal messages, the MDSN was introduced into their
mechanism. The MDSN is not included in the standard of
SIP.

3. SESSION MOBILITY OVER MULTIPLE
DEVICES
3.1 System Architecture

In the first, an ongoing session contains a set of media
streams. For instance, a user may create a session with a
video stream and an audio stream with his friend. Then, we
define some common components which will be used in
the section. There are four logical network nodes defined
in the standard of SIP. There are user agents (UA),
registrars, proxy servers, and redirect servers. The major
functions of these network nodes can be found in [1]. Six
basic requests are also defined in the standard of SIP.
There are INVITE, ACK, BYE, REGISTER, OPTION and
REGISTER. The function of INVITE and ACK are used to
initiate a new session and to confirm a session
establishment request (INVITE request), respectively. The
REGISTER request is used to register location
information into the registrars. The ability of OPTION is
used to determine requested capabilities of a session. The
ability of BYE is used to terminate a session that has been
established. Finally, the CANCEL request is to terminate a
session that has not been established yet. All the detail
definition of SIP can be found in the standards [1].

In order to provide session mobility, three new logic
states are introduced in our mechanism. All of these logic
states are the user agent, and there are session manager,
session user, and free node. Before we describe the
definition and the function of these logic components, we
introduce the concept of partial session in the first. The
concept of partial session is that one or more media
streams of a session are on a user agent, and the others are
on the different user agents. As shown in Figure 1, node A,
node B and node C are the user agents. Suppose that there
is a session with video and audio stream between node A
and node C. Then, node A splits the audio stream from the
session, and transfer the audio stream to node B. Now,
both node A and node B keep the partial session.

The user agents which keep no any partial session are
the free node, and the user agent which has partial sessions
are the session manager, or session user. The difference
between a session manager and session user is that the
session manager will has all the information of the partial
session, such as configuration, security, and authorization,
and the session user just only has the partial session on
itself. Thus, based on the information, all the partial
session can be transferred, retrieved, and terminated by the
session manager. The session user only can transfer itself
partial session to the session manager. After transferring
the partial session, the updated information should be send
to the session manager.

3.2 Protocols
In [9], The SSIP method had been proposed to split a

session over multiple devices. However, the session
retrieval mechanism was not implemented in SSIP. In this
paper, we will design the session mobility mechanism
based on the architecture of SSIP. First, we should
implement the session retrieval mechanism in our
mechanism. The Nested REFER method proposed in RFC
3892 [11] was introduced in order to solve the session
retrieval mechanism. The concept of Nested REFER is that
the Refer-To URI is a SIP URI indicating the REFER
method. This means that the Nested REFER method can be
used to request another REFER. Thus, the a user agent A
can send a Nested REFER to a user agent B to retrieve the
partial session split from A’s partial session.

Take the Figure 2 as an example, node A is the
session manager, and node B is the session user. Suppose
that node A wants to retrieve the partial session on node B,
node A will send a Nested REFER to node B. The message
format of the Nested REFER from node A to node B is
composed as follows:

Refer-To: <sip:A.example;method=REFER?Refer-
To="<sip:C.example>">

When node B receives the Nested REFER, node B
will send a REFER request to node A, and the Refer-To is
set to “sip:C.example”. Then, node A will send the INVITE
request to node C to retrieve the partial session between
node B and node C. The retrieved partial session can be
identified by the Mobility header proposed in SSIP.
Therefore, the session retrieval mechanism can be solved
based on the Nested REFER method and SSIP method.

Although the session retrieval mechanism can be
provided by the Nested REFER method and SSIP method,
the split session can only be combined into the original
user agent. This solution restricts the flexibility of session
mobility. Thus the concept of session manager was
introduced to provide much more flexibility in session
mobility. From the definition of session manager
described in previous session, we can know that the
session manager will have all the information of the partial
session, such as configuration, security, and authorization.
This means that a session manager has enough information
to send a Nested REFER to any session user to retrieve the
partial session. Moreover, suppose the information of
session manager can be transferred from the user anger to
any other user agent, the partial session can be combined
into the user agent, which is at the session manager state.

It is obvious that the session manager has strong
control power for session mobility. According to the need
for ease of operation and a concern for security, we
propose two operation modes. There are the centralized

operation mode and the distributed operation mode. In the
centralized operation mode, there is only one user agent in
the session manager state. The centralized operation mode
is very suitable for the security risk environment. In
contrast to the centralized operation mode, in the
distributed operation mode, all the user agents which keep
partial session are in the session manager state. It means
that in the distributed operation mode, all the user agents
either are a session manager, or are a free node.

We will introduce the centralized operation mode in
the first. In order to provide the flexibility of session
mobility, we propose one method, refers to as “session
manager transformation (SMT)”, used to support the
session manager state transformation between different
user agents. The ability of the SMT method is to provide a
session manager to transfer all the session information to
a session user or a free node. After SMT, the session user
will become the session manager, and the original session
manager will become a session user or a free node.

As shown in Figure 3 and in Figure 4. In the first, the
session manager will select a user agent (session user or
free node) as a target user agent, and send the SMT
message to the target user agent. The authentication
information will also be added into the SMT message. As
shown in Figure 4, the target user agent will check the
authentication information, and will check its own state. If
the target user agent is already in session manager state of
another session or the SMT message is illegal, the SMT
request will be rejected. Otherwise, the target user agent
can accept the SMT request or not. If the target user agent
accepts the SMT request, an accept message will be
responded to the original session manager. Then, the
session manager will send the session information to the
target user agent, and inform all session user about the new
session manager. Finally, the original session manager will
become a session user or a free node, and the target user
agent will become the new session manager.

Contrary to the centralized operation mode, there is
no user agent in session user state in the distributed
operation mode. This means that all user agent which
keeps the partial session will be in session manager state.
There are some differences in SMT method. The old
session manager must inform all other session manager
about the new session manager. Moreover, after splitting
session, the session information should be send from the
session manager to the split user agent. This means that,
after a session transfer, or a session split, the session
information should be send from the session manager to
all other session manager Contrast to the session transfer
and a session split, when the partial session retrieve to a
session manager, the user agent which keeps the original

partial session will become free node, and its session
information will be released.

4. IMPLEMENTATION
Lately some SIP projects have been proposed.

According to these projects and their SIP stacks, the user
agent and many SIP applications can be implemented. In
the paper, we chose the JAIN-SIP, NIST-SIP and SIP
Communicator as the fundamental architecture for our
implementation. These softwares are all open sources and
are implemented by Java. We will briefly introduce these
softwares.

a. Java APIs for Integrated Networks (JAIN)-SIP

The JAIN-SIP Specification [12] as defined by the
JAIN Protocol Expert Group Java Community Process
Participants for SIP is based on the RFC 3261 [1]. JAIN-
SIP is a low level protocol API for SIP. Many interfaces of
SIP API have been defined in JAIN-SIP. These APIs allow
for the rapid creation and deployment of dynamic
telephony services into a Java telephony platform. Thus,
based on the JAIN-SIP, the user can rapidly develop, test,
and integrate numerous services on the JAVA platform.

b. NIST-SIP

NIST-SIP [13] is a project proposed by the National
Institute of Standards and Technology (NIST). NIST-SIP
contains a SIP protocol stack and a number of libraries. A
number of tools including the official Reference
Implementation of the JAIN-SIP, and an implementation of
the JAIN-SDP are implemented in NIST-SIP. The goal of
NIST-SIP is to facilitate the development of improved
VoIP transport mechanisms and to expedite the
development of programmable telephony services. Thus,
based on NIST-SIP, the user can rapidly build SIP
applications and servers

c. SIP communicator

SIP communicator [14] also is a Java based SIP User
Agent. It builds on top of the JAIN-SIP-RI and JMF (Java
Media Framework). The SIP communicator provides audio
and video sessions over IPv4 and IPv6 network. SIP
Communicator is completely Open Source and Free
Software. It i s freely available under the terms of the GNU
Lesser General Public License. It started out as the
JsPhone example in the NIST-SIP project, but recently is
started a life of its own as a separate project on java.net.

In the paper, our implementation is based on the
architecture of SSIP [9]. However, the session retrieval
mechanism was not implemented in SSIP. Thus, we
introduced the Nested REFER method proposed in RFC
3892 [11] to implement the session retrieval mechanism
in our mechanism. In order to provide session retrieval

mechanism, we add the “ReferredByHeader" interface into
the javax.sip.header package, and implement the
ReferredBy method in the NIST-SIP package. Moreover,
we also implement the Nested REFER functions into the
SipManager. Thus, the session retrieval mechanism can be
support in the SIP communicator. The procedures of Nest
REFER were shown in Figure 5 and Figure 6.

The concepts of session manager, session user, and
free node were also implemented in the implementation.
Moreover, in order to provide SMT, the INVITE procedure
of CallProcessing should be modified. Therefore, the
information of session manager can be inserted into the
message body. After SMT, the state of user agent will be
shown in the rule table.

Our implementation, as shown in Figure 7, is a SIP
UA. The media panel is used to show the video stream. In
the Call menu, we can enter the SIP URI of a callee in the
contact box and push the dial button. Then, the SIP UA can
establish a session and show the session information in the
table below the media panel. The device of the notebook
can be shown in the Device menu. All the functions are
provided in the SIP UA.

5. IMPLEMENTATION RESULTS
In order to ensure the ability of our mechanism, we

built an experimental environment as shown in Figure 8.
We prepared four notebooks to play the roles of session
manager, session user, and free node. All of these
notebooks are equipped with a webcam and a microphone.
The node A and node B belong to one domain and the
others belong to another domain. There are two SIP proxy
servers in our experimental environment, but are not
shown in Figure 8.

As shown in Figure 8, node B and node C create a
session with an audio stream and a video stream. At that
time, both node B and node C are the session managers,
and both node A and node D are the free nodes. Then, node
C splits the partial session of audio stream to node D, and
node D is the session user after session splitting. Figure 9
shows the packet traffic of the implementation. From the
Figure 9, we can find that node C splits the partial session
of audio stream to node D, and the traffic of audio stream
is empty after 12 seconds. We also can see the traffic of
audio stream between node B and node D is increased after
12 seconds. At 25 seconds, node B splits the partial
session of audio stream to node A, and the traffic of audio
stream between node B and node D is empty. Then, at 32
seconds, node B retrieves the partial session at node A.
Thus, the traffic of audio stream between node B and node
D is increased, and at that time, node A is the free node.
Finally, After 42 seconds, node C retrieves the partial
session at node D, the traffic of audio stream between

node B and node C is increased, and node D is the free
node.

6. CONCLUSIONS AND FUTURE WORKS
SIP session mobility over multiple devices becomes

more important in the near future. In this paper, we
proposed our mechanism based on the architecture of
SSIP. According to our mechanism, the user can transfers,
splits, and retrieves a session over multiple devices.
Finally, we implement the mechanism by modifying the
open source project of “Sip-Communicator”. We also
built an experimental environment in order to ensure the
ability of our mechanism. Since JAIN-SIP, NIST-SIP and
SIP Communicator are based on J2SE, our implementation
does not support mobile devices with limited ability, such
as PDA or Smart phone. Therefore, we plan to investigate
how to port the JAIN-SIP, NIST-SIP and SIP
Communicator to the J2ME, and our implementation will
also be ported to J2ME in the near future.

7. ACKNOWLEDGMENTS
The work was supported by the National Science

Council of Taiwan, R.O.C. under Grant NSC95-2221-E-
216-039 and NSC96-2221-E-216-010, and supported by
the ChungHua University under Grant CHU95-2221-E-
216-039 and CHU96-2221-E-216-010.

8. REFERENCES
[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J.

Peterson, R. Sparks, M. Handley, E. Schooler, “SIP: Session
Initiation Protocol,” RFC 3261, IETF, Jun 2002.

[2] S. Moyer, D. Maples, S. Tsang, and A. Ghosh, “Service
Portability of Networked Appliances,” IEEE Communications
Magazine, Vol. 40, No. 1, Jan. 2002

[3] S. Moyer, D. Maples, and S. Tsang, “A Protocol for Wide-
Area Secure Networked Appliance Communication,” IEEE
Communications Magazine, Vol. 39, No. 10, Oct. 2001.

[4] J. Latvakoski, P. Paakkonen, D. Pakkala, A. Tikkala, J.
Remes, and P. Valitalo, “Interaction of All IP Mobile Internet
Devices with Networked Appliance in a Residential Home,”
22nd International Conference on Distributed Computing
Systems Workshops, 2-5 July 2002.

[5] E. Wedlund and H. Schulzrinne, “Mobility Support using SIP,”
in Second ACM/IEEE International Conference on Wireless
and Mobile Multimedia (WoWMoM’99), Aug. 1999.

[6] H. Schulzrinne and E. Wedlund, “Application-Layer Mobility
Using SIP,” IEEE Service Portability and Virtual Customer
Environments, Dec. 2000.

[7] R. Sparks, “The Session Initiation Protocol (SIP) Refer
Method”, RFC 3515, IETF, April 2003.

[8] J. Rosenberg, J. Peterson, H. Schulzrinne, G. Camarillo, “Best
Current Practices for Third Party Call Control (3pcc) in the
Session Initiation Protocol (SIP)”, RFC 3725, IETF, April 2004.

[9] Min-Xiou Chen, Chen-Jui Peng and Ren-Hung Hwang, "SSIP:
Split a SIP Session over Multiple Devices," Computer
Standards and Interfaces. Vol. 29, No. 5 pp. 531-545, July,
2007.

[10] R. Shacham , H. Schulzrinne , S. Thakolsri and W. Kellerer ,
“Session Initiation Protocol(SIP) Session Mobility draft-
shacham-sipping-session-mobility-04”, IETF , July 2007.

[11] R. Sparks, “The Session Initiation Protocol (SIP) Referred-By
Mechanism”,RFC 3892 ,IETF, Sep 2004.

[12] JCP, “JSR-32: JAIN SIP Specification,”
http://www.jcp.org/en/jsr/detail?id=32

[13] NIST, “NIST-SIP 1.2 – SIP Libraries and Tools for the
People,” http://www-x.antd.nist.gov/proj/iptel/

[14] Network Research Team, “SIP-Communicator A Java
Softphone based on JAIN SIP with audio/video and instant,”
https://sip-communicator.dev.java.net/

Figure 1. The Concept of Partial Session

Figure 2. Session Retrieval Mechanism

Figure 3. The Flowchart of SMT at Session Manager

Figure 4. The Flowchart of SMT at Session User or Free Node

Figure 5. Nested REFER Procedure of Client side

Figure 6. Nested REFER Procedure of Server Side

Figure 7. The Interface of User Agent

Figure 8. Experimental Environment

Figure 9. Packet Traffic of Implementation Results

