
An Automatic Protocol Verification Framework
for the Development of Wireless Sensor Networks

Taehyun Kim Jaeho Kim Sangshin Lee Ilyeup Ahn Minan Song Kwangho Won
Korea Electronics Technology Institute

 #68 Yatapdong Bundanggu
Seongnamsi Gyeonggido REPUBLIC OF KOREA

+82-31-789-7515

{thkim, jhkim, sslee, iyahn, mhsong, khwon}@keti.re.kr

ABSTRACT
In recent years, there are many active researches on Wireless
Sensor Networks (WSNs) as a way to collect diverse context
information around the world. A lot of new WSN protocols have
been proposed and implemented for the various application fields
such as military, environmental, habitat monitoring, health, home
and office, and other applications. When we compose a WSN
protocol stack using several layers which have been designed and
implemented individually, some uncertain protocol layer modules
with malfunctions may cause the serious faults of their own or
entire WSNs. Therefore, it is very important to verify functions
and interoperability of each layer as well as to make well-defined
protocol specifications. In this paper, we propose an automatic
protocol verification framework for WSNs. The proposed
framework consists of a test procedure description language
written in XML and a test harness which executes test procedures.
We have implemented the proposed framework and used it to
verify some of our own WSN protocol layers. And our test
framework has performed nicely. Therefore, we think that this
framework would make it possible for WSN protocol developers
to verify protocols easily.

Categories and Subject Descriptors
B.8.1 [Performance and Reliability]: Reliability, Testing, and
Fault-Tolerance.

General Terms
Experimentation

Keywords
WSN, Test Automation, XML

1. INTRODUCTION
As a way to collect context information of real world environment,
the Wireless Sensor Networks (WSNs) are in the limelight. A lot

of versatile application specific WSN protocol stacks are designed
and implemented to maximize the performance of WSNs under
the restricted environment in terms of low power capacity, low
bandwidth, low computing power, and so on. Even though there
are some famous sensor network protocols such as
IEEE802.15.4[1], TinyOS[2] and ZigBee[3], there are little
generic sensor network protocols supporting all different kind of
applications. Because of these characteristics of WSNs, the
protocol designer should make lots of efforts to overcome its
restriction. And it is too difficult to make an entire protocol stack
which may have several layers such as PHY, MAC, NWK, APP
and so forth. In this reason, we are apt to adopt not only a layered
architecture but also some ready-made layers from others.

Because of the flexibility and extensibility of layered architecture,
it is possible to implement each protocol layers as an independent
module. Due to the characteristic of functional transparency, we
can compose a WSN protocol stack using several layers which
have been designed and implemented individually. But some
uncertain protocol layer modules with malfunctions may cause the
serious faults of their own or entire WSNs. Therefore, it is very
important to verify functions and interoperability of each layer.

In this paper, we propose a well defined test procedure description
language and a test harness to make sure whether the implemented
WSN protocol stack works properly or not. The test procedure
description language is easily understandable to a test operator as
well as the test harness. The test harness of our framework
interprets the given test procedure description document to run
test procedure step by step in the way of the test procedure
description.

We present in Section 2 detailed descriptions about the XML
schema for the test procedure description language and section 3
overviews the WSN protocol stack verification framework. The
mechanism for generating a part of test harness program source
code is explained in section 4. And section 5 depicts how the
proposed test framework works on the test procedure with case
study on ZigFest Spain 2006. Last three sections are conclusions,
acknowledgments and references.

2. The Test Procedure Description Language
In software engineering, a test suite is a collection of test cases
that are intended to be used as input to a software program to
show that it has some specified set of behaviors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
 Tridentcom 2008, March 18 – 20, 2008, Innsbruck, Austria.
Copyright © 2008 ACM ISBN # 978-1-60558-009-8.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Tridentcom 2008 March 18–20, 2008, Innsbruck, Austria
Copyright 2008 ACM 978-1-60558-009-8 ...$5.00.

peri
Callout

peri
Typewriter
TRIDENTCOM 2008, 17th–20th Mar 2008, Innsbruck, Austria.
Copyright © 2011–2012 ICST ISBN 978-963-9799-24-0
DOI 10.4108/icst.tridentcom.2008.3015

peri
Typewriter

peri
Typewriter

Figure 1. The schema for the test suite description language

A test suite often also contains detailed instructions or goals for
each collection of test cases and information on the system
configuration to be used during testing.

In this section, we present how you can write a test procedure
description language using XML. The XML has the hierarchical
structure that is good for us to define test suite systematically and
it is relatively immune to changes in technology because of its
platform-independent characteristics. Above all, the biggest
strength of the XML based test suite description language lies in
extensibility. The test operator can extend some XML elements
as occasion demands. Figure 1 illustrates whole structure of the
XML based test suite description language.

2.1 The TestSuite element
The “TestSuite” element is the root element of the test procedure
description XML document that consists of a “DataTypes”
element, a “CommandList” element and one or more “TestGroup”
elements. And this element has the “title” attribute and “role”
attribute. The “title” attribute offers advisory information about
the whole Test Suite and “role” attribute specifies role of this
sensor node on the test scenario.

2.2 “DataTypes” and “CommandList”
element
The “DataTypes” element and “CommandList” element are a
container element that contains “DataType” element and
“Command” element respectively. These elements contain the
basic information to be used by source code generator.

2.2.1 DataType element
To prevent a mistaken interpretation of the command message
frames between the Test Application and the Test Driver, the
“DataType” element defines platform neutral data type and its
mapping to the Test Application and the target WSN sensor node
platform. This way we can get a more portable source code.

The “DataType” element has three attributes. The “teypId”
attribute specifies the ID of a platform neutral data type definition
and the value of the “applicationType” element and “driverType”
attribute determines the data type which translated into each
platform.

2.2.2 “Command” element
The “Command” element can be used to define the interface
message frame format and the message handler function
prototypes. This element can contain the two attributes and zero
or more “ParameterType” element. The “name” attribute and the
“code” element specifies the human readable name and the code
value respectively, and “ParameterType” element defines detailed
parameter information of this command.

2.2.3 “ParameterType” element
The “ParameterType” element contains information that describes
the data structure of a parameter of the containing “Command”
element. This element can have six attributes. The “name”
attribute and “type” attribute identify the name and data type of
this parameter. The value of the “name” attribute must be unique
within containing “Command” element and the value of the
“type” attribute must refer “DataType” element. The “isArray”
attribute specifies whether this parameter is an array data or not
and the value of the “maxLength” attribute means maximum array
length when the value of the “isArray” attribute equals to
“TRUE.”

2.3 “TestGroup” element
The “TestGroup” element allows several associated Test Cases
classify into small groups and attach a tag to each groups. This
element can have one or more “TestCase” element and a
“description” attribute. The value of the “description” attribute is
a brief description of the small group.

2.4 “TestCase” element
In software engineering, a test case is a set of conditions or
variables under which a tester will determine if a requirement or
use case upon an application is partially or fully satisfied. The
“TestCase” element is used to define a test case. A “TestCase”
element has a “description” element which offers advisory
information about this test case, and one or more “TestAction”
element or “TestIteration” element.

2.5 “TestAction” element
The “TestAction” element defines a standard function to support
the containing test case. In other words, it has detailed
information to execute an action which cannot be divided into
smaller than. Information for test action comprises a reference to
the “Command” element and actual parameter list to pass dynamic
setting on runtime.

When the Test Execution Engine component meets a
“TestAction” element, it makes command message frame and send
through the Sensor Node Interface Adaptor component.

2.6 “TestIteration” element
If you want to repeat any test action or group of test actions, then
use the “TestIteration” element. The “TestIteration” element
wraps one or more “TestAction” elements to execute repetitively.
The total number of test repetition is specified by the value of the
“loopCount” attribute.

3. WSN Stack Verification Framework
The proposed WSN stack verification framework is a software
framework which performs WSN protocol stack test procedure for
the target WSN protocol stack or a WSN protocol stack layer
using test suite document written in XML. This framework has
two software blocks. One block is “Test Application” which
operates on a personal computer environments and the other is
“Test Driver” which operates on a sensor node. These two blocks
communicate with each other to exchange messages and
commands going on test procedure. The framework provide
diverse channels that commonly used wired communication
methods for example RS232, RS485, USB and Ethernet. The
system architecture of the test framework is depicted on Figure 2.

Figure 2. WSN Stack Verification Framework Architecture

3.1 The Test Application block
The Test Application block is a Graphic User Interface (GUI)
application running on a personal computer. This block is
responsible for interacting with user and driving the execution of
each step of the selected test case described on XML based test
description document. The Graphic User Interface component
allows the test operator to select the test case to be executed and
to change test parameter values of the test actions which belongs
to the selected test cases. The primary function of the Test
Execution Engine component is to parse and interpret the test case
definitions that are part of the test procedure description
document. Even when these Test Cases involve the Test Suite
Processor, Message Generator and Test Result Processor
components, the interpretation of the Test Cases is under the
control of the Test Execution Engine.

The Sensor Node Interface Adapter component gives flexibility to
the Test Framework. The APIs of the Sensor Node Interface
Adapter component are separate from communication channel
specific mechanism.

3.2 The Test Driver block
The Test Driver represents the higher layer for the test target
WSN protocol stack. It receives command message from Test
Application and event notifications from the WSN Protocol stack,
and issues the SAP request primitives which manage the WSN
protocol stack and send RF messages.

The command message from the Test Application through I/O
Interface of the Test Driver will be routed to the Message Handler
component by the Message Dispatcher. Then, the Message
Handler updates settings that are managed by the Higher-layer
Simulator or issues SAP primitive of the test target WSN protocol
stack.

4. Interface Source Generator
In the Test Development step of the test process, the Test driver
source code can be generated automatically using the source code
generator from a test suite document. In this section, the
underlying principles are depicted to generate source code.
Figure 3 shows a part of the test suite document example that
helps to describe our source code generation procedures.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

<?xml version="1.0" encoding="UTF-8"?>
<xtaf:TestSuite ... >
 <xtaf:DataTypes>

 </xtaf:DataTypes>
 <xtaf:CommandList>

 <xtaf:Command xtaf:name="set_data_payload"
 xtaf:code="14">
 <xtaf:ParameterType xtaf:name="payload_size"
 xtaf:type="int" xtaf:isArray="false"/>
 <xtaf:ParameterType xtaf:name="payload"
 xtaf:type="hexa" xtaf:isArray="true"
 xtaf:maxLength="100"/>
 </xtaf:Command>

 </xtaf:CommandList>
....
</xtaf:TestSuite>

Figure 3. Example of the test suite document

4.1 Test driver header file
The test driver header file provides some definitions easy to port
generated source code to the target sensor node platform. It
consists of constant definition, message handler prototype
definition and etc.

Figure 4 presents culled lines from the generated test driver
header file.

1
2
3
4

#define CMD_SET_DATA_PAYLOAD 14

void call_set_data_payload(uint8_t payload_size, uint8_t
payload[]);

Figure 4. Generated Test driver header file

4.2 Message dispatcher source file
Message dispatcher parses the command message from the test
application and routes command to the message handler. The
facture below illustrates how the message dispatcher parses and
routes the command. The Message dispatcher makes variables for
message handler parameter and calls the corresponding message
handler with these variables.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

bool_t messageDispatcher(
uint8_t * buffer, uint8_t nLength)
{
...
 switch(buffer[nIdx ++])
 {
 case CMD_SET_DATA_PAYLOAD:
 {
 uint8_t payload_size = buffer[nIdx ++];

 uint8_t nLen = buffer[nIdx ++];
 uint8_t payload[100];
 for(aryIdx=0; aryIdx < nLen; aryIdx ++)
 payload[aryIdx] = buffer[nIdx++];
 uint8_t payloadLength = buffer[nIdx++];

 call_set_data_payload(payload_size, payload);

 return TRUE;
 }
 break;
 ...

 default:
 return FALSE;
 break;
 }

 return FALSE;
}

Figure 5. Generated Message dispatcher source file

4.3 Message handler skeleton source file
The last job for test developer is implementing the message
handler. The test developer just put the program body into the
message handler skeleton code generated by source code
generator. The program body must include the features to control

WSN protocol stack or to send RF message through test target
WSN protocol stack.

1
2
3
4
5

void call_set_data_payload(uint8_t payload_size, uint8_t
payload[])
{
 // TODO: Add your command handler code here
}

Figure 6. Generated Message handler source file

5. Test Framework application
This section depicts how this test framework can be applied to test
procedure with case study on ZigFest Spain 2006. We made the
best use of this test framework to test interoperability features of
our IEEE 802.15.4 Wireless Medium Access Control (MAC)
protocol stack in ZigFest Spain 2006 (April 25-27, 2006).

5.1 Test suite design
5.1.1 Test command definition
To make test suite document, we derived command list as a result
of analysis IEEE 802.15.4 MAC specification and “ZigFest Level
1 Interoperability Test Procedures” document.

Table 1. Examples of the Test Action command list

Category Command Description

set_device_type
set_mac_address
set_short_address

MAC properties
setting

set_pan_id
set_channel
set_beacon_order
set_superframe_order
set_beacon_payload

Network
properties setting

set_data_payload

Config-
urations

set_assigning
_device_address

NWK layer
simulation

RESET.request
SCAN.request
ASSOCIATE.request
DISASSOCIATE.request
POLL.request
START.request
SYNC.request
GTS.request

MLME Primitives

DATA.request MCPS

The configuration part commands used to set the values for
calling primitives later, and the primitive part commands used to
call the MAC primitives.

5.1.2 Test Group and Test Case definition
In this case, all of the test cases to test interoperability features
were given by ZigBee Alliance. So we just translated the test
documents into XML scripting language.

5.2 Run the test suite
To run the test suite, test operators only executes the test
application and load the test suite document to run. If you need to

change parameters, change the parameter values on Test
Application GUI.

Figure 7. Test Application GUI

6. Conclusions
The main contribution of this paper is the proposal of a test
procedure description language and framework for a layer of
WSNs protocol stack. The test suite description language based
on XML to define test conditions and test procedures in formal
way and gives information to generate source code for exchanging
messages and commands between test application and test driver.
The test framework is a great help to verify correctness of the
WSN protocol stack automatically.

We have shown that an application of our proposal is feasible by
putting it into interoperability test for verifying a IEEE 802.15.4
MAC protocol implementation on ZigFest Spain 2006. Our test
framework would make it possible for us to verify MAC protocol
stack implementations without Network layer protocol as a higher
layer of the target MAC layer. We dispute that the test framework
allows for inspecting WSN protocol stack implementations on
development stage step by step and building more robust WSN
applications.

We plan to improve the performance of test framework by
promising extension of the automated test and combining test
result from several test frameworks to extend capabilities of our
frameworks. The collected test result data from more than one test
frameworks helps to make decision whether the target WSN
protocol stack is interoperable or not. It is possible for the test
framework to collect the test result data from there colleagues by
means of connecting a group of the test applications of the test
frameworks.

7. ACKNOWLEDGMENTS
This research is partially supported by the ubiquitous Computing
and Network (UCN) Project, the Ministry of Information and

Communication (MIC) 21st Century Frontier R&D Program in
Korea. And this work is also partially supported by the Medium-
term Strategic Technology Development Program funded by the
Ministry of Commerce, Industry and Energy(MOCIE, Korea).

8. REFERENCES
[1] IEEE 802.15.4 Wireless Medium Access Control (MAC) and

Physical Layer (PHY) Specifications for Low-Rate Wireless
Personal Area Networks (LR-WPANs),
http://www.ieee802.org/15/pub/TG4.html

[2] TinyOS, http://www.tinyos.net

[3] ZigBee Alliance, http://www.zigbee.org

[4] J. Beutel, M. Dyer, R. Lim, C. Plessl, M. Wöhrle, M. Yücel
and L. Thiele, “Automated Wireless Sensor Network
Testing”. Proc. 4th International Conference on Networked
Sensing Systems (INSS 2007), IEEE, Piscataway, NJ, June,
2007, page 303.

[5] Ian F. Smith, “Test automation for embedded products”,
2004.06

[6] TaeHyun Kim, SangShin Lee, JaeHo Kim, IlYeup Ahn,
MinHwan Song, KwangHo Won, “Design of XML based
interface definition language between embedded device and
host server”, The 9th Conference on Next Generation
Communication Software (NCS 2006), KICS, Pyoungchang,
Republic of Korea, November, 2006

[7] W3C XML specification, http://www.w3.org/TR/REC-xml

