
Automated Troubleshooting of a
UMTS-WLAN Test Platform

Ronan Skehill
University of Limerick

ECE Department
Limerick, Ireland

ronan.skehill@ul.ie

Sean Mc Grath
University of Limerick

ECE Department
Limerick, Ireland

sean.mcgrath@ul.ie

Carlos Antonio de
Ramos

University of Limerick
ECE Department
Limerick, Ireland
wireless@ul.ie

ABSTRACT
Amongst troubleshooting tasks, correct diagnosis of faults
is a complex and time consuming task. Bayesian Networks
provide a modelling approach suitable to cater for the un-
certainty inherent in human reasoning. The method pre-
sented in this paper, valid towards any system, is applied to
a UMTS/WLAN test platform which replicates a real world
cellular networks. The results conclusively show Bayesian
Networks automatically diagnoses faults in the test platform
with a high success rate.

Categories and Subject Descriptors
H.1.1 [Systems and Information Theory]: Value of
information; H.4 [Information Systems Applications]:
Miscellaneous

General Terms
Measurment, Analysis.

Keywords
Automated Troubleshooting, Test Platform

1. INTRODUCTION
Troubleshooting can be defined as a process where the

source of the problem is isolated and then fixed. This is
typically through a process of elimination whereby possi-
ble sources of the problem are investigated and eliminated
beginning with the most obvious or easiest problem to fix.
Troubleshooting has been used in many different disciplines
including; medicine [1], forensic science [2], printer customer
care and cellular networks. Automating and improving this
task is an emerging topic. Automation is particularly useful
in telecommunication field, where large networks are con-
trolled and monitored to ensure operation. Current cellu-
lar telecommunication networks now consist of several radio

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Tridentcom 2008 March 18 - 20, 2008, Innsbruck, Austria.
Copyright 2008 ACM 978-1-60558-009-8 ...$5.00.

networks integrated together to provide a complex system in
terms of architecture and management. The large number of
possible faults; software, hardware, configuration and envi-
ronmental, makes troubleshooting a complex task. The au-
tomation of troubleshooting in general, and fault diagnosis
in particular will allow mobile operators to alleviate the bur-
den of troubleshooting teams and to shorten the time nec-
essary to identify faults and thus reduce the time in which
the network suffers from poor performance. The need for
troubleshooting is paramount as it ensures the network is
managed and operating correctly. As with other disciplines
current cellular network management [3] troubleshooting is
a manual process and executed by experts in the RAN part
of the network. These experts are personnel dedicated to
carry out daily a series of checks in order to identify the
faults. This troubleshooting process usually uses the prin-
ciple of eliminating likely problem causes in order to single
out the actual one. To do this, the troubleshooter needs
to check several applications and databases and also needs
to analyse performance indicators, cell configurations and
alarms. The more experience the troubleshooter has results
in a faster identification of the fault. Furthermore, the type
of information available and the quality of the tools display-
ing relevant pieces of information can determine the speed
of the work. This means that, in addition to a good under-
standing of the possible causes of the problems, a very good
understanding of the tools available to access the sources of
information is also required. It is difficult to transfer and
share an expert’s knowledge, an automated method for di-
agnosis that could learn over a period of time would alleviate
the risk of losing expert knowledge.

1.1 Motivation
There are several reasons for developing a troubleshooting

tool for systems, the main ones are; fast accurate diagnosis
and retention of knowledge. Limited fidelity and flexibil-
ity of simulators has prompted researchers to build wireless
network test platforms for realistic testing [4]. Test plat-
forms have been developed as part of research and academic
projects, examples include Roofnet, ORBIT, WHYNET etc.,
to provide a means of testing and evaluating new algorithms.
The platforms developed are often complex as they replicate
current networks to a fine level of detail. Generally, small
teams develop test platforms and know every aspect and
would be considered as ’experts’. The nature of research
centres and universities see a high turnover of researchers
and experts taking with them the expert knowledge of the
platform. This can leave platforms redundant, losing hun-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Tridentcom 2008 March 18–20, 2008, Innsbruck, Austria
Copyright 2008 ACM 978-1-60558-009-8 ...$5.00.

peri
Callout

peri
Typewriter
TRIDENTCOM 2008, 17th–20th Mar 2008, Innsbruck, Austria.
Copyright © 2011–2012 ICST ISBN 978-963-9799-24-0
DOI 10.4108/icst.tridentcom.2008.2989

peri
Typewriter

peri
Typewriter

dreds of person months of work. Further motivation is the
fact test platforms require several hundred configuration files
which users of the test platform have access to. The user can
change certain files/parameters in order to evaluate a new
algorithm, protocol etc. The problem arises when a user ac-
cidently sets a file/parameter to an incorrect value and then
runs evaluation tests. The user has no way of knowing that
the test platform is not running correctly with the guidance
of expert users. A tool that could retrain the experts knowl-
edge and diagnosis a fault automatically, only looking at the
output of the test platform, would give the user confidence
in the results obtained.

The advantage of using troubleshooting techniques on a
test platform is multifold. Firstly, the test platform can be
quickly diagnosed if a fault occurs. Secondly, the test plat-
form provides a means of evaluating new troubleshooting
techniques. Finally, since test platforms are based on cur-
rent standards every effort has been done to replicate real
network such as UMTS, WLAN etc., studying the effective-
ness of troubleshooting techniques provides insight to how
they will behave in a real network.

1.2 Paper Outline
The paper is structured as follows. Section 2 provides a

guide to automated troubleshooting techniques i.e, Bayesian
Networks, and describes the benefits of automating trou-
bleshooting techniques. Section 3 describes a UMTS/WLAN
test platform that is built according to 3GPP and IEEE
standards. The platform consist of several interconnected
modules that needs configuration and produces key perfor-
mance indicators (KPI) similar to real world networks. Sec-
tion 4 introduces common faults into the test platform and
acquires KPI knowledge from normal and fault behaviour.
This section also presents a step-by-step guide to the di-
agnosis model. The results from six faults introduced into
the test platform and solved by the diagnosis model are pre-
sented in section 5. Finally in section 6 conclusion on the ap-
plicability and accuracy of Bayesian networks in automated
troubleshooting is provided.

2. AUTOMATING TROUBLESHOOTING

2.1 Naïve Bayesian Networks
The concept of conditional probability can be used to solve

a range of problems [5]. Consider a simple network manage-
ment scenario with five discrete random variables the prob-
lem must handle 25- 1 discrete parameters. However in a
real network situation a problem could have over 20 discrete
random variables resulting in a joint distribution of over 220

and this becomes unmanageable [3].
Consider the following parameters; Ci denotes a cause for

bad functioning in the network, Sj as a symptom that can
contribute to assessment of the network quality, and E is
evidence from a set of N symptoms Sj. If, given certain
values for the symptoms, the probability of each cause is
calculated, the diagnosis consists of identifying the cause
with the highest probability. This process can be seen as a
classification process in which each class and attribute cor-
responds to a given cause and symptom, respectively. Using
Bayes’ rule [6], one can calculate the probability for the cause
Ci to occur given the set of observed symptoms. Typically,
certain conditions on the diagnosed network are known a
prior, such as the type of services provided, the number of

frequencies used by the base station, or any other a priory
knowledge. The set of conditions is denoted by D. This can
be described as:

P (Ci|E, D) =
P (Ci|D)P (E|Ci)

P (E)
(1)

It is assumed in the formula that the symptoms are inde-
pendent of the conditions. Calculating the joint likelihood
distribution P (E|Ci) is difficult and impractical. It is at
this point that Näıve Bayesian Network can be used, which
makes the assumption that symptoms given the causes are
independent. With this assumption, it is only needed to
specify the likelihood distribution of each symptom, P (Sj|Ci),
separately. This assumption is an approximation however
the Näıve Bayesian classifier remains efficient even with sig-
nificant dependencies between the symptoms. Hence, the
classification in the diagnosis process will be performed us-
ing the approximation:

P (Ci|E, D) =
P (Ci|D)

QN

j=1
P (Sj|Ci)

P (E)
(2)

With this assumption, a Bayesian Network structure could
be created to encode the assertions of conditional indepen-
dence. The following example uses 2 to solve a simple prob-
lem with 2 faults and 3 KPIs. The evidence, symptoms and
conditions are invented to highlight how the model works.

2.1.1 Example
Using KPIs [7], common to real networks and the test plat-

form, an illustrated example of a system operating normal
which has ’No Fault’ (NF) and with two imaginary faults
namely; a hardware failure (HW) and bad parameters value
(BP). The aim of the example is to explain how Bayesian
newtworks work by ranking these faults given some symp-
toms. Consider the following KPIs.

• Block Call Rate (BCR) This is the number of blocked
calls during a measurement period divided by the total
calls attempted during the measurement period.

• Dropped Call Rate (DCR) The number of calls
that have been established and then disconnected.

• Ping-Pong(PP) The effect occurs when a mobile moves
closer and further from a cell boundary causing fre-
quent handovers.

Using the näıve Bayesian rule as in Equation 2, we can
rank each fault given KPIs as:

P (Fault|BCR,DDR, PP) =

P (Fault)P (BCR|Fault)P (DCR|Fault)P (PP |Fault)

P (E)
(3)

The same prior probability for each fault is established in
this example. Then:

P (NF) = P (BP) = P (HW) = 1/3 (4)

Before creating the Bayesian network the conditional prob-
ability of each KPI given each fault needs to be calculated.
As KPIs are continuous values, it is impossible to establish

a probability an each infinite number of values that indica-
tors can reach. So using a process called discretization each
KPI is divided in two or more states according the numerical
value.

Returning to the example, each KPI is discretized into
three states, NORMAL, HIGH and VERY HIGH. It is as-
sumed that hardware failure (HW) produces an abnormal
BCR and PP values. If there is a bad parameter (BP) fault
then DCR and PP are forced to abnormal states. There is
no association between HF and BCR nor BP and DCR. In
Table 1, all probability values and the different states are
invented to illustrate and understand how the model works.

Table 1: The probabilities of KPIs BCR, DCR and
PP given each fault

BCR NF HW
NORMAL 0.85 0.01

HIGH 0.05 0.09
VERY HIGH 0.1 0.9

DCR NF BP
NORMAL 0.7 0.05

HIGH 0.2 0.15
VERY HIGH 0.1 0.8

PP NF HW BP
NORMAL 0.8 0 0.1

HIGH 0.15 0.03 0.3
VERY HIGH 0.05 0.97 0.6

It is possible to calculate the posterior probability of each
fault. As each of the three KPIs could be in any of these
three states, there is 33=27 cases per fault. The whole
Bayesian network is composed by 81 different posterior prob-
abilities. For clarity, only one fault scenario is studied in this
example. The scenario selected and KPIs values are shown
in the Table 2:

Table 2: Fault Scenario: BCR in a ’Very High state’
KPIs CURRENT VALUE STATE
BCR 0.949 VERY HIGH
DCR 0.014 VERY HIGH
PP 0.069 HIGH

Using Bayes formula the exact probability can be calcu-
lated as:

P (Fault|BCRvh, DDRvh, PPh) =

P (Fault)P (BCR|Fault)P (DCR|Fault)P (PP |Fault)

P (E)
(5)

The P (E) term can be regarded as a normalising or scaling
factor, and the P (Fault) depends the number of faults and
their probability distribution, in this example it’s 1/3. Using
data from Table 1.

• P (BP)=1/3

• P (BCRvh|BP) = 0.1 It is 0.1 because the assumption
is that if there is no association, the default probability
of P (BCRvh|NoFault) is used

• P (DCRvh|BP) = 0.8

• P (PPh/BP)= 0.3

• P (E) using the chain rule :

P (E) = P (BP)P (BCRvh/BP)P (DCRvh/BP)P (PPh/BP)

+ P (HW)P (BCRvh/HW)P (DCRvh/HW)P (PPh/HW)

+ P (NF)P (BCRvh/NF)P (DCRvh/NF)P (PPh/BP)

= 0.0094

(6)

This result and the state information is introduced into
formula (5) and the following fault ranking is obtained.

• 1. Bad Parameter P (BP)=0.851 This is the most
likelihood cause.

• 2. Hardware Failure P (HW)=0.095 This is the
second most likelihood.

• 3. No fault case P (NF)=0.053

The results conclusively show that a Bad Parameter is the
most likely cause of the fault with 85%. The hardware fault
is ranked 2nd with a 9.5%. Finally, there is a 5.3% that the
scenario is a no fault situation. The same method is used
to determine faults in a UMTS-WLAN test platform, before
illustrating the process a brief overview of the test platform
is presented.

3. TEST PLATFORM
The UMTS-WLAN test platform [8] is a hardware/software

platform that emulates an integrated UMTS-WLAN net-
work system. This system includes multimedia terminals,
UMTS and WLAN functional entities and IP connectivity.
The test platform has the ability to support real-time multi-
media calls in a large multi-user, multi-service UMTS system
with WLAN cells embedded in the RAN and produces as-
sociated KPIs. The test platform spans nine PC’s running
the Linux operating system. From the UMTS domain there
are test platform machines which replicate UE/MT (User
Equipment/Mobile Terminal), UTRAN (Universal Terres-
trial Radio Access Network), CN (Core Network) and Ap-
plication Server functionalities. Similarly there are machines
serving as entities from the WLAN domain in the form of
an Access Point and WLAN client. At the centre of the
test platform is a single, real, fully interactive client termi-
nal, capable of utilising both UMTS and WLAN networks.
Complete UMTS and WLAN protocol stacks have been con-
structed for this client terminal or ‘reference user’. The test
platform then emulates the effect that multiple users have
on a real user’s traffic. The test platform aims to reproduce
the real behaviour of a single reference user terminal with
more accuracy than a simulator but with less implementa-
tion complexity than a real system. Testbed experiments are
scenario driven with scenarios being defined by user mobility
patterns and various service profiles, it is therefore essential
that the testbed is correctly configured and operating within
its normal range.

The test platform is implemented as a set of higher layer,
lower layer and RRM functions distributed across a number
of PCs. Each machine runs a set of modules that replicate
common UMTS/WLAN functionalities using a very specific
programming philosophy i.e. mono-task approach, common
procedures for communication with other modules and well
defined interfaces. Each of these modules have configuration

files and settings which are set to reproduce 3GPP stan-
dards. The test platform is organised then as a set of mod-
ules tightly connected to a control structure known as the
Communications Manager (CM). The CM manages all the
test platform at module level, providing support for inter-
module communication and a text based console for module
control. The dissemination of these modules and the in-
terfaces connecting them is shown in Figure 1. The test
platform comprises five main blocks: the UE/MT, UTRAN,
Access Point, CN and Application Server [8].

T C P / U D P

R A N A P

N A S
D r i v e r

R S V P

Q o S
M a n a g e r

C R R M

R R M

R R C
R R C

N A S
D r i v e r

Q o S
M a n a g e r

R S V P

A p p l i c a t i o n s

T C P / U D P

P D C P

R L C

M A C

P h y
M A C

P h y

C h a n n e l
M A C

P h y

P D C P

R L C

M A C

P h y

R A N A P

C h a n n e l

N o n A c c e s s
S t r a t u m

A c c e s s
S t r a t u m

U E : M T A P / U T R A N C N

U u i n t e r f a c e Iu I n t e r f ace

C o n t r o l P l a n e

U s e r P l a n e

U M T S

W L A N

H i g h e r
L a y e r s

I u E m u l a t i o n

I P B S
M a n a g e r

Figure 1: Testbed Modules

Each module in the test platform is associated with a set
of control parameters that define how that module operates.
These parameters can be adjusted pre-simulation using a
management tool. One of the most important modules in
the test platform is the RRM module found in the UTRAN.
The RRM Module implements RRM algorithms like admis-
sion and congestion control, power control, handover man-
agement and transmission parameters management. The
effect of the emulated UMTS users has been included in-
side the RRM Module. RRM strategies are executed inside
the RRM module for all the users in the system as if all
users were real like the reference user. The tunable param-
eters associated with the RRM module include the number
of simulated users for each available service in the test plat-
form (video calling, email, internet), the speed and mobility
patterns of those users, activity factors, target BLER val-
ues for each service, load factors for uplink and downlink
amongst other algorithm data.

The functions of RRM module (’701’) as seen in situ by
Figure 1 is shown in greater detail in Figure 2. The mod-
ule is at the core of the test platform and is used in every
evaluation. The module is complex as all RRM parameters
regarding the single user under test and the RRM behaviour
of the other virtual users. Currently the module has over 130
different parameters. Examples include propagation charac-
teristic, number of users and type of user (realtime, stream-
ing etc.) Each of these users can then be assigned a speed
and a mobility pattern. RRM characteristics and targets
can be set in the module also, for example the admission
control strategy, congestion control and load factor targets.
Properties regarding the radio can also be set in this mod-
ule for all users. Examples include; NodeB power, mobile
station power, the Block Error Rate (BLER) range, the sig-

Figure 2: RRM Module 701 in the testbed

nal to noise ratio (Eb

No
), signal level for handover, Pilot levels

etc. If parameters in this module are set incorrectly they can
distort the results/KPIs obtained from the test platform.

3.1 Scenario
As described in the previous section, several modules in

the test platform require parameters to be configured/adjusted.
In normal conditions these parameters are set to the default
settings as outlined by 3GPP standards. In order to produce
normal KPIs for the test platform a sample user scenario is
used. A proportion between realtime (RT), streaming (STR)
and background (WWW) users were selected to give a re-
alistic representation of wireless users in a cellular/WLAN
network.

• Real time (RT): 1500 users, all of them moving at
3Km/h.

• Streaming (STR): 300 users, all of them moving at
3Km/h.

• WWW: 300 users, all of them moving at 3Km/h.

• Best Effort: 0 users, this parameter is not considered.

In all tests executed, faults are introduced in the RRM
module. When it is necessary to create a fault and simulate
the network, a parameter is artificially changed in this mod-
ule. Initially the rest of the parameters of the test platform
is set to default in order to obtain knowledge from the test
platform.

4. KNOWLEDGE ACQUISITION
Gaining knowledge from any system follows a process as

shown in Figure 3. Selecting the faults category is a sig-
nificant problem as wireless test platforms and communi-
cation networks have a wide range of faults. Independent
models for each fault can be developed. In this case test
platform experts have picked and categorised several faults.
Defining consists of selecting causes (C1, ..., CK), symptoms
(Si, ..., SM), state of symptoms (si) and conditions (Di

r).
These are generally stored in a database. When defining the

cause-smyptom relationship, the cause is related to symp-
toms and the condition associated with the cause. For each
continuous symptom, intervals or threshold must be deter-
mined. Finally, specifying the probabilities can be aided by
expert knowledge.

Figure 3: Knowledge Acquisition

In order to obtain the range of a KPI, the test platform
is configured with all normal values for all modules. Sim-
ulations are executed and the test platform is allowed to
initialise and run for an extended period of time. This pro-
cess is repeated for several runs to obtain average values.
Three runs determined statistical significant average values,
however in some cases further runs were needed. The du-
ration of the simulations is not a necessary parameter to
create the model, but in order to achieve a converged pa-
rameter value from the test platform, a minimum duration
of 15 minutes is used to determine the parameter. The time
value however is used in calculating the admission request
and rejects per second. Several simulations of each fault is
needed until sufficient learning data is collected to create the
model selecting appropriate thresholds.

4.1 Selecting Faults
In order to demonstrate the use of Bayesian networks, a

wide range of faults are chosen from the the test platform.
For example, if more than 10 faults are chosen the time
needed to execute and obtain all the results from the test
platform is increasing exponentially, however it will not give
the Bayesian network any more information. Therefore it is
necessary for experts to selectively pick faults and assigning
them to categories. It is at here where the initial transfer
of the expert knowledge to the Bayesian network is accom-
plished. In the case of this paper all faults belong to the
RRM category as all the faults will be created in the RRM
module. The selected potential parameters where faults can
occur in the test platform RRM module are described briefly
below and listed in detail in [9].

• No Fault (NF) In order to develop a troubleshooting
model, several tests are executed in a normal state to
determine normal KPI ranges.

• BLER Target RT Uplink forced to an incorrect
minimum value: The Block error Rate is required
for each simulation. Specifically, this parameter refers
to the real time service. A minimum value affects the
adapting power control.

• BLER Target RT Uplink forced to an incorrect
maximum value: The same as previous fault except
this is a maximum value.

• Pms Max forced to an incorrect value : The Mo-
bile Station maximum transmission power.

• Pms Min forced to an incorrect value: The Mobile
Stations minimum transmission power.

• Pbs Max forced to an incorrect value: Base sta-
tion maximum transmitted power. This value is mea-
sured in dBm, and indicates the maximum power that
could transmit the base station.

• Pot Pilot forced to an incorrect value (PP min):
Base station Common Pilot Channel (CPICH power).
In UMTS, CPICH is a down link channel, broadcast
with constant power. This power usually is a percent-
age of the total Node-B power.

Table 3 represents normal values for the parameters in the
test platform according to 3GPP specification.

Table 3: Normal parameter values
FAULT NORMAL VALUE

BLER RT min 0.01
BLER RT max 0.04

Pbs min 43 dBm
Pot Pilot min 33 dBm

Pms max 21 dBm
Pms min −44 dBm

4.2 Defining Variables
In the diagnosis model, 13 KPIs were selected to be used

and then monitored in each test. Initially a further 10 were
selected but then rejected as the first tests indicated no asso-
ciation with the fault, so they were not real KPIs, a similar
selection process is described in [10].

The KPIs selected are:

• Active users: Is the average number of users using
WLAN/UMTS network at any one instance.

• Load factor Uplink (LoadF(u)): The Uplink spec-
tral efficiency of WCDMA cell is commonly captured
by the uplink cell load factor. It is a function of the
number of instantaneous users.

• Load factor Downlink (LoadF(d)): Is defined as a
function of the number of simultaneous transmissions
and their characteristics.

• F value for Downlink admission (fdl): The noise
figure in dB for new admissions in the network.

• Real Time BLER Uplink(RTBLER(u)): BLER
is Block error rate. The main difference with BER (Bit
Error Rate) is that the first detects errors on transport
block level and the BER only at a bit level.

• WWW BLER Uplink:(WWWBLER(u)): The
same as previous but with reference to WWW traf-
fic.

• Real Time request per sec. (RTReq/s): Number
of total real time admission requests divided by the
duration of the test.

• Real Time rejects per sec. (RTRej/s): Num-
ber of total real time admission rejects divided by the
duration of the test.

• WWW request per sec. (WWWReq/s): Num-
ber of total WWW admission requests divided by the
duration of the test.

• WWW rejects per sec. (WWWRej/s): Num-
ber of total WWW admission rejects divided by the
duration of the test.

• Streaming requests per sec. (STRReq/s): Num-
ber of total streaming admission requests divided by
the duration of the test.

• Streaming rejects per sec. (STRRej/s):Number
of total streaming admission rejects divided by the du-
ration of the test in seconds.

With test platform faults selected and appropriate KPIs
identified the next process in automated troubleshooting is
to learn the relations and normal operating ranges for KPIs.
To acquire this data, the testbed is allowed to run in a nor-
mal state for extended period of time and KPIs are moni-
tored. This data is often referred to as the models “Learning
Data”.

4.3 Learning Data and Defining KPI Relations
As illustrated by the Table 4 all KPIs have different val-

ues for each test which is typical for test platforms and real
systems. For each fault, only parameters with relative differ-
ence of more than 15% from the average are shown. Math-
ematically it is expressed as:

ParamAvrgnormal − ParamAvrgfault

ParamAvrgnormal

100 ≥ 15 (7)

The first fault to acquire knowledge on is BLER Tar-
get RT Uplink forced to a minimum value. From Table 5
changing the value of modifies output BLER in the uplink.
Furthermore, it affects the Load factor, the fdL and the ad-
mission rejects for real time services. Changing the BLER
Target for realtime to be a maximum value the relation-
ship between KPIs are different as shown in Table 6.

In the case of the fault Pms Max forced to a minimum
value, almost all parameters can be considered KPIs. Only
the values related to streaming do not change. For this
special case more than three tests is needed to achieve con-
fidence in the results. The results are illustrated in Table 7.

The next fault evaluated is Pbs Max forced to a mini-
mum value. In this case all KPIs are far from the normal
case averages and it expresses a serious fault in the test plat-
form. For example there is no Load factor, fdL, RT rejects,
WWW request or rejects. In all the tests the BLER in real
time for downlink is one and in the uplink approximately
zero. The BLER in www services is zero. The rest of the
KPIs values can be viewed in Table 8.

The next fault is produced by changing the values Pot
Pilot to a minimum value. As shown in Table 9 in the main
changes appear in the load factor downlink and in the fdl
KPI. Furthermore, there are differences in the number of
rejects in real time and www services.

The last fault is to force the Pms Min to a maximum
value. Significant differences in almost all the KPIs appear,
Table 10 illustrates the results.

4.4 Defining Thresholds
Each KPI needs to be discretized in a range of states, as

explained in the previous section. In this paper there are
thirteen indicators and it is necessary to decide how many
states are necessary and which is going to be the general
rule to select it.

Looking at the faults and their dependence to the KPIs
it is evident that three states is not sufficient. Firstly in
some faults the value of the KPI is smaller than the no fault
case, so a low state must be needed. Secondly in some KPIs
depending on the fault five states can be clearly identified.
For example the KPI fdl, the average in normal case is 1.41,
whereas when the fault is Pbs Max forced to a minimum
value is always zero, in some faults the order of magnitude
is only some tenths, and when the fault is Pot Pilot forced
to minimum value, the order of magnitude of ten. So in this
KPI at least four states is needed to be created.

To improve the accuracy of the model some of the KPIs
were divided into five states, others into four and the re-
mainder into three states. The different states are classified
as Very Low, Low, Normal, High and Very High. For KPIs
with three states, Normal High and Very High are used, sim-
ilarly for KPIs with 4 states, Low, Normal, High and Very
High. Only the Very Low state is used for KPIs with five
states.

Regarding the selected thresholds, it is difficult to find a
rule that suits all KPIs. The thresholds were selected using
the knowledge learned from normal, fault tests and input
from the test platform expert. Table 11 lists each KPI and
the threshold for each state.

4.5 Specifying Probabilities
A general way of specifying probabilities is translating

verbal expressions to mathematical representation. For ex-
ample, the verbal expressions “Almost Certain”, “Likely”,
“Fifty-Fifty”, “Improbable” and “Unlikely” can be translated
to probabilities of 0.85, 0.7, 0.5, 0.3 and 0.1. In the case of
the test platform all probabilities of introducing a fault are
equal, in this case each fault probability (including No Fault)
are given a probability of 0.142 which gives a total proba-
bility of ≈ 1.

5. FAULT DETECTION
Illustrated in Table 12 are example configuration errors

found by experts in the RRM module. These faults were
reintroduced into the test platform by an independent user.
The diagnosis team were not aware of the faults and only
used the KPIs obtained to diagnosis the fault offline.

Several simulations using the test platform are done per
each fault in order to achieve statistical significance. The
simulations are done using the same scenario as in the learn-
ing data, i.e. 1500 users in real time services, 300 in WWW
and Streaming services and 0 best effort users, all moving at
3Km/h. The rest of the parameters in modules other than
701 are set to default.

5.1 Test Results
The KPI values from module 701 of each simulation is

used to calculate the probability of a fault. Using the thresh-
olds previously determined each KPI is assigned a state.
Equation 2 is used to rank the possible faults. In this paper

due to space limitation, KPIs for six faults and one normal
case were collected on two occasions i.e. there are two test
runs for each fault. The results are described below.

The result shows that in the thirteen tests the model had
calculated the real fault correctly. Only in one case the most
probable cause is not the real fault. The analysis of each test
is found below.

• Test 1a and 1b: Normal – No Fault In order to de-
velop a real model it is important to run tests in a nor-
mal state of the network without any fault. In both
tests, The model, identifies as the most likely fault,
the no fault case. In the first test, this likely is with
a 70.5%, and in the second test there is no absolutely
doubt about what is the fault because it has a proba-
bility higher than 99%. The Table 13 shows the rest
of the fault probabilities.

• Test 2a and 2b: Pms max forced to an incorrect value.
In both tests the probability is 99%. Other possible
faults have a low likelihood to be the real fault. This
indicates a strong association with the fault.

• Test 3a and 3b: BLER Target RT Uplink forced to
incorrect value. In test 5 the diagnosis failed as it only
assigns 44% to the real fault while the fault Pot Pilot
in minimum value, is the first in the ranking with a
probability of 53%. In test 3b, the diagnosis is cor-
rect but it still doesn’t have a high probability. This
can be interpreted in several ways. On one hand, the
thresholds of the main KPIs for this fault are not well
defined, i.e. one low value could be classified as nor-
mal because the normal range is too wide and although
the value is in the border,with the low state, the model
assigns it the same probability of a normal case.

• Test 4a and 4b: BLER Target RT Uplink forced to an
incorrect value. The diagnosis is clear for test 4a and
4b. The fault is correctly identified with an average of
80 − 85% probability. The second highest probability
is No Fault, with a 20% and the rest are negligible.

• Test 5a and 5b: Pbs Max forced to an incorrect value
In both test 5a and 5b the fault is diagnosed with a
large margin of success.

• Tests 6a and 6a: Pot Pilot forced to a minimum
value (Pot Pilot Min) The model correctly diagnosis
the fault with a high percentage. There are some prob-
abilities that indicate it could be a normal case. How-
ever, the likelihood of another fault is almost residual.

• Tests 7a and 7b: Pms Min MS forced to an incorrect
value In the test Pbs Max BS forced to an incorrect
value. The model correctly identifies the fault. The
probability is high and the diagnosis clearly states in
this scenario the fault is Pms Min is incorrect.

6. CONCLUSION
Bayesian Networks have demonstrated themselves to be a

powerful tool when applied to troubleshooting, mainly in the
fault detection field. It is possible to rank a large number of
faults according to their fault probability in abnormal situ-
ation in an automated manner. This concept was extended
to troubleshoot a UMTS/WLAN test platform. KPIs from

the platform were taken for six faults and used in diagnosing
the fault. The results show that in thirteen out of fourteen
cases the fault was calculated in the first ranking with a
high probability of success, higher than 50%. And in six
cases out of thirteen the real cause of the scenario were cal-
culated with a probability of 99%. Only in one case, the real
fault was ranked as the second most probable fault cause.

The current model can be extended to cover all faults
in the testbed. Furthermore, the method presented in this
paper can be applied to any test platform that produces
indicators. To conclude, the approach of using Bayesian
networks serves as an accurate solution to the problems of
traditional troubleshooting. The properties of the Bayesian
network makes it possible to quickly modify models and
thereby overcoming the problem with the variety of com-
ponent configurations in modern cellular networks.

Acknowledgment
This work was supported by the National Communications
Network Research Centre, a Science Foundation Ireland Project,
under Grant 03/IN3/1396.

7. REFERENCES
[1] D. Nivoski. Constructing bayesian network for medical

diagnosis from incomplete and partially correct
statistics. IEEE Trans. Knowledge Data Eng., Vol.
12(Number 4):pp. 509–516, 2000.

[2] Franco Taroni, Colin Aitken, Paolo Garbolino, and
Alex Biedermann. Bayesian Networks and Probabilistic
Inference in Forensic Science. Wiley, February 2006.

[3] Z. Altman, B.Solana, R.Khanafer, L.Molsten,
R.Barco, L.M. Matamoros, etc. Automating Diagnosis
in Troubleshooting . Celtic Gandalf Deliverable D5.3a,
December 2006.

[4] Pradipta De, Ashish Raniwal, Srikant Sharma, and
Tzi cker Chiueh. Design considerations for a multihop
wireless network testbed. IEEE Communications
Magazine, pages 102–109, October 2005.

[5] N. Goldszmidt N. Friedmann. Learning Bayesian
Network from data, January 1998.
http://www.erg.sri.com/people/moises/tutorial.

[6] D. Niedermayer . An introduction to Bayesian
Network and their contemporary Applications,
December 1998. www.niedermayer.ca/papers.

[7] R. Kreher. UMTS Performance Measurement: A
Practical Guide to KPIs for the UTRAN
Environment. John Wiley.

[8] W. Kent, R. Skehill, M. Barry, and S. McGrath. An
Integrated UMTS-WLAN Testbed. 3rd IEEE
International Conference on Testbeds and Research
Infrastructures for the Development of Networks and
Communities (TridentCom), May 2007.

[9] R. Skehill, M. Barry, M. O’Callaghan, N. Gawley,
W. Kent, and S. McGrath. Common RRM Approach
to Admission Control for Converged Heterogeneous
Wireless Networks. Special Issue of IEEE Wireless
Communications Magazine on Technologies On Future
Converged Wireless And Mobility Platform, April
2007.

[10] B. Solana. Determination of parameters and KPIs
adapatation processing . Celtic Gandalf Deliverable 5.1
A, Telefónica I+D, June 2006. Version:1.0.

Table 4: Testbed in Normal Operating Conditions. KPI Results with no Fault Tests
Run RT Active Load Load fdL RT RT STR STR WWW WWW

BLER(u) Users Factor(u) Factor(d) Req/s Rej/s Req/s Rej/s Req/s Rej/s
1 0,041 531,06 0,85 0,04 0,21 5,95 4.02 0.21 0.17 1.8 0.96
2 0,041 516,54 0,87 0,06 0.3 6.4 6,11 0,24 0.22 1.79 0.97
3 0,047 550 0,87 0,05 0,27 5.9 4.01 0.22 0.23 1.77 0.94
4 0,047 535 0,83 0,09 0,6 6,41 3,91 0,23 0,16 1,78 0,95
5 0,056 448 0,83 0,03 0,21 5,95 4,08 0,27 0,2 1,82 1,01
6 0,044 510,98 0,86 0,06 0,55 5,71 4,06 0,2 0,15 1,75 1,12
7 0,041 521,6 0,86 0,06 0,32 4,02 6,11 0,24 0,18 1,81 0,9
8 0,057 552 0,78 0,04 6,3 6,37 3,89 0,31 0,24 1,79 0,8

Avg. 0,0467 520,6 0,84 0,053 1,41 6,88 5,632 0,298 0,186 1,79 0,956

Table 5: Results of BLER RT Target in minimum value
Run BLER(u) LoadF(d) fdL REJ/s

RT RT
1 0,004 0,08 0,26 4,29
2 0,004 0,08 0,65 4,26
3 0,003 0,04 0,28 4,41

Avg. 0,0036 0,066 0,39 4,32

Table 6: Results of BLER rt Target set to a maximum value
Run DUR. BLER(u) LoadF(d) fdL REJ/s

(min) RT
1 44 0,191 0,08 0,46 3,84
2 19 0,22 0,08 0,6 3,63
3 17 0,26 0,09 0,64 3,42

Avg. 26,7 0,223 0,083 0,56 3,63

Table 7: Results of Pms Max forced to a minimum value
Run BLER(u) BLER(d) Active Users LoadF(u) LoadF(d) fdL Req/s

RT
1 0,184 0,94 57,41 0,24 0,09 0,46 11,4
2 0,183 0,909 57,28 0,86 0,02 0,22 11,6
3 0,188 0,946 59,25 0,15 0,02 0,1 12,03
4 0,171 0,91 57 0,24 0,05 0,38 12,18
5 0,172 0,93 57 0,19 0,02 0,03 12,04
6 0,18 0,951 59,96 0,18 0,07 0,13 11,66
7 0,188 0,929 60,4 0,19 0,02 0,03 11,86

Avg. 0,180 0,93 58,3 0,29 0,041 0,19 11,82

Table 8: Results of Pbs Max forced to a minimum value
Run DUR. Active Users LoadF(u) REQ/s REQ/s REJ/s

(min) RT Stream
1 26 267,93 0,015 12,86 0,32 0,02
2 20 275,3 0,015 13,06 0,39 0,03
3 17 264 0,016 13,19 0,4 0,03

Avg. 21 269,07 0,015 13,04 0,37 0,027

Table 9: Results of Pot Pilot forced to a minimum value (Pbs min)
Run DUR. BLER(d) LoadF(d) fdL REJ/s REJ/s

(min) RRM RT WWW
1 25 0,008 0,13 3,01 4,03 1,12
2 35 0,03 0,36 25,38 4,15 1,19
3 29 0,006 0,56 29,22 4,3 1,14

Avg. 29,7 0,014 0,35 19,20 4,16 1,15

Table 10: Results of Pot Min forced to a maximum value
Run DUR. BLER(u) BLER(u) Active Users LoadF(u) LoadF(d)

(min) RT WWW
1 29 0,012 0,27 131,27 0,99 0,02
2 25 0,014 0,26 137,23 0,98 0,02
3 16 0,013 0,27 123,24 0,97 0,02

Avg. 23,3 0,013 0,266 130,58 0,98 0,02

Table 11: Threshold for Test Platform KPIs
KPI Threshold

Very Low Low Normal High Very High
Active Users 0-300 300-500 500-550 550-1000 1000-2100
Load Factor (UL) 0.0-0.1 0.1-0.7 0.7-0.87 0.87-0.9 0.9-1.0
Load Factor (DL) 0.0-0.01 0.01-0.04 0.04-0.06 0.06-0.08 0.08-1.0
DFL 0.0-0.1 0.1-0.2 0.2-0.6 0.6-3.0 3.0-100
RT BLER(UL) 0.0-0.08 0.08-0.03 0.03-0.06 0.06-0.19 0.19-1.0
WWW BLER (UL) 0.0-0.0001 0.0001-0.07 0.07-0.09 0.09-0.3 0.3-1.0
RTREQ/s - - 0.0-6.0 6.0-8.0 8.0-15.0
RTREJ/s 0.0-3.0 3.0-4.0 4.0-5.0 5.0-7.0 7.0-15.0
WWWREQ/s 0.0-1.0 1.0-1.7 1.7-1.8 1.8-2.0 2.0-50
WWWREJ/s - 0.0-0.9 0.9-1.0 1.0-1.2 1.2-2.0
STREQ/s - - 0.0-0.3 0.3-0.35 0.35-1.0
STREJ/s - - 0.0-0.2 0.2-0.25 0.25-0.5

Table 12: Fault Values Compared to Normal Values. Faults are Introduced into Module 701.
Fault Normal Value Fault Value

BLER RT min 0.01 0.00001
BLER RT max 0.04 0.1

Pbs min 43 dBm −23 dBm
Pot Pilot min 33 dBm −21 dBm

Pms max 21 dBm −23 dBm
Pms min −44 dBm 21 dBm

Table 13: Results
Test 1a: No Fault Test 1b: No Fault
FAULT Probability % FAULT Probability %
No fault 70.50 No fault 99.724

BLERrtUmax 29.22 BLERrtUmax 0.23
Pot Pilot Min 0.251 BLERrtUmin 0.042
BLERrtUmin 0.018 Pot Pilot Min 0.004

Test 2a : Pms Max Test 2b : Pms Max
FAULT Probability % FAULT Probability %

Pms Max 99.97 Pms Max 99.635
Pms Min 0.03 Pms Min 0.358
Pbs Max 0.01 Pms Max 0.006

Test 3a : BLER RT U min Test 3b : BLER RT U min
FAULT Probability % FAULT Probability %

Pot Pilot Min 52.245 BLER RT U min 52.71
BLER RT U min 44.755 No fault 29.808

BLERrtUmax 2.453 Pot Pilot Min 10.49
No fault 0.46 Pms Min 5.786
Pms Min 0.076 BLERrtUmax 1.083

Test 4a : BLER RT U max Test 4b : BLER RT U max
FAULT Probability % FAULT Probability %

BLERrtUmax 85.237 BLERrtUmax 80.025
No fault 13.388 No fault 19.936
Pbs Max 0.513 BLER RT U min 0.022

Pot Pilot Min 0.484 Pot Pilot Min 0.016
Pms Min 0.25 Pms Max 0.001

Test 5a : Pbs Max Test 5b : Pbs Max
FAULT Probability % FAULT Probability %
Pbs Max 99.996 Pbs Max 100
Pms Min 0.004 No fault 0

Test 6a : Pot Pilot Min Test 6b : Pot Pilot Min
FAULT Probability % FAULT Probability %

Pot Pilot Min 78.303 Pot Pilot Min 70.775
No fault 21.581 No fault 28.527

BLERrtUmax 0.105 BLERrtUmax 0.685
BLERrtUmin 0.011 Pms Min MS 0.007

Test 7a : Pms Min Test 7b : Pms Min
FAULT Probability % FAULT Probability %
Pms Min 99.986 Pbs Min 100
Pms Max 0.012 No fault 0

