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Abstract

Large scale rating data usually contains both ratings of sensitive and non-sensitive issues, and the ratings of
sensitive issues belong to personal privacy. Even when survey participants do not reveal any of their ratings,
their survey records are potentially identifiable by using information from other public sources.

In order to protect the privacy in the large-scale rating data, it is important to propose new privacy principles
which consider the properties of the rating data. Moreover, given the privacy principle, how to efficiently
determine whether the rating data satisfied the required privacy principle is crucial as well. Furthermore, if
the privacy principle is not satisfied, an efficient method is needed to securely publish the large-scale rating
data. In this paper, all these problem will be addressed.
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1. Introduction
The problem of privacy-preserving data publishing has
received a lot of attention in recent years. Privacy
preservation on relational data has been studied
extensively. A major category of privacy attacks on
relational data is to re-identify individuals by joining
a published table containing sensitive information
with some external tables. Most of existing work
can be formulated in the following context: several
organizations, such as hospitals, publish detailed data
(called microdata) about individuals (e.g. medical
records) for research or statistical purposes [22, 23, 28,
32].

Privacy risks of publishing microdata are well-
known. Famous attacks include de-anonymisation of
the Massachusetts hospital discharge database by
joining it with a public voter database [32] and privacy
breaches caused by AOL search data [16]. Even if
identifiers such as names and social security numbers
have been removed, the adversary can use linking [32],
homogeneity and background attacks [23] to re-identify
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individual data records or sensitive information of
individuals. To overcome the re-identification attacks,
k-anonymity was proposed [25–27, 32]. Specifically, a
data set is said to be k-anonymous (k ≥ 1) if, on the
quasi-identifier (QID) attributes (that is, the maximal
set of join attributes to re-identify individual records),
each record is identical with at least k − 1 other records.
The larger the value of k, the better the privacy is
protected. Several algorithms are proposed to enforce
this principle [1, 7, 12, 18–21]. Machanavajjhala et al.
[23] showed that a k-anonymous table may lack of
diversity in the sensitive attributes.

To overcome this weakness, they propose the l-
diversity [23]. However, even l-diversity is insufficient
to prevent attribute disclosure due to the skewness
and the similarity attack. To amend this problem,
t-closeness [22] was proposed to solve the attribute
disclosure vulnerabilities inherent to previous models.

Recently, a new privacy concern has emerged
in privacy preservation research: how to protect
individuals’ privacy in large survey rating data.
Though several models and many algorithms have been
proposed to preserve privacy in relational data (e.g., k-
anonymity [32], l-diversity [23], t-closeness [22], etc.),
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non-sensitive sensitive
ID issue 1 issue 2 issue 3 issue 4
t1 6 1 null 6
t2 1 6 null 1
t3 2 5 null 1
t4 1 null 5 1
t5 2 null 6 5

(a)

non-sensitive issues
name issue 1 issue 2 issue 3
Alice excellent so bad -
Bob awful top -
Jack bad - good

(b)
Table 1. (a) A published survey rating data set containing ratings of survey participants on both sensitive and non-sensitive issues. (b) Public
comments on some non-sensitive issues of some participants of the survey. By matching the ratings on non-sensitive issues with public available
preferences, t1 is linked to Alice, and her sensitive rating is revealed.

most of the existing studies are incapable of handling
rating data, since the survey rating data normally does
not have a fixed set of personal identifiable attributes
as relational data, and it is characterized by high
dimensionality and sparseness. The survey rating data
shares the similar format with transactional data. The
privacy preserving research of transactional data has
recently been acknowledged as an important problem
in the data mining literature [14, 37].

2. Motivation

On October 2, 2006, Netflix, the world’s largest online
DVD rental service, announced the $1-million Netflix
Prize to improve their movie recommendation service
[15]. To aid contestants, Netflix publicly released a data
set containing 100,480,507 movie ratings, created by
480,189 Netflix subscribers between December 1999
and December 2005. Narayanan and Shmatikov shown
in their recent work [24] that an attacker only needs
a little information to identify the anonymized movie
rating transaction of the individual. They re-identified
Netflix movie ratings using the Internet Movie Database
(IMDb) as a source of auxiliary information and
successfully identified the Netflix records of known
users, uncovering their political preferences and other
potentially sensitive information.

We consider the privacy risk in publishing anony-
mous survey rating data. For example, in a life style sur-
vey, ratings to some issues are non-sensitive, such as the
likeness of book “Harry Potter", movie “Star Wars" and
food “Sushi". Ratings to some issues are sensitive, such
as the income level and sexuality frequency. Assume
that each survey participant is cautious about his/her
privacy and does not reveal his/her ratings. However,
it is easy to find his/her preferences on non-sensitive
issues from publicly available information sources, such
as personal weblog or social networks. An attacker
can use these preferences to re-identify an individual
in the anonymous published survey rating data and
consequently find sensitive ratings of a victim.

Based on the public preferences, person’s ratings
on sensitive issues may be revealed in a supposedly
anonymized survey rating data set. An example is
given in the Table 1. In a social network, people make
comments on various issues, which are not considered
sensitive. Some comments can be summarized as in
Table 1(b). People rate many issues in a survey. Some
issues are non-sensitive while some are sensitive. We
assume that people are aware of their privacy and do
not reveal their ratings, either non-sensitive or sensitive
ones. However, individuals in the anonymoized survey
rating data are potentially identifiable based on their
public comments from other sources. For example,
Alice is at risk of being identified, since the attacker
knows Alice’s preference on issue 1 is ‘excellent’, by
cross-checking Table 1(a) and (b), s/he will deduce that
t1 in Table 1(a) is linked to Alice, the sensitive rating
on issue 4 of Alice will be disclosed. This example
motivates us the following research questions:

(Satisfaction Problem): Given a large scale rating
data set T with the privacy requirements, how to
efficiently determine whether T satisfies the given privacy
requirements?

Although the satisfaction problem is easy and
straightforward to be determined in the relational
databases, it is nontrivial in the large scale rating data
set. The research of the privacy protection initiated
in the relational databases, in which several state-
of-art privacy paradigms [22, 23, 32] are proposed
and many greedy or heuristic algorithms [12, 19, 20,
28] are developed to enforce the privacy principles.
In the relational database, taking k-anonymity as an
example [26, 32], it requires each record be identical
with at least k − 1 others with respect to a set of
quasi-identifier attributes. Given an integer k and a
relational data set T , it is easy to determine if T
satisfies k-anonymity requirement since the equality
has the transitive property, whenever a transaction a
is identical with b, and b is in turn indistinguishable
with c, then a is the same as c. With this property,
each transaction in T only needs to be check once and
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the time complexity is at most O(n2d), where n is the
number of transactions in T and d is the size of the
quasi-identifier attributes. So the satisfaction problem
is trivial in relational data sets. While, the situation
is different for the large rating data. First of all, the
survey rating data normally does not have a fixed set
of personal identifiable attributes as relational data. In
addition, the survey rating data is characterized by high
dimensionality and sparseness. The lack of a clear set
of personal identifiable attributes together with its high
dimensionality and sparseness make the determination
of satisfaction problem challenging. Second, the defined
dissimilarity distance between two transactions (ε-
proximate) does not possess the transitive property.
When a transaction a is ε-proximate with b, and b is ε-
proximate with c, then usually a is not ε-proximate with
c. Each transaction in T has to be checked for as many
as n times in the extreme case, which makes it highly
inefficient to determine the satisfaction problem. It
calls for smarter technique to efficiently determine the
satisfaction problem before anonymizaing the survey
rating data. To our best knowledge, this research is the
first touch of the satisfaction of privacy requirements in
the survey rating data.

How to preserve individual’s privacy in the large scale
rating data set?

Though several models and algorithms have been
proposed to preserve privacy in relational data, most
of the existing studies can deal with relational data
only [22, 23, 31? ]. Divide-and-conquer methods are
applied to anonymize relational data sets due to the fact
that tuples in a relational data set are separable during
anonymisation. In other words, anonymizing a group
of tuples does not affect other tuples in the data set.
However, anonymizing a survey rating data set is much
more difficult since changing one record may cause a
domino effect on the neighborhoods of other records, as
well as affecting the properties of the whole data set.
Hence, previous methods can not be applied to deal
with survey rating data and it is much more challenging
to devise anonymisation methods for large scale rating
data than for relational data.

3. Related work
Privacy preserving data publishing has received
considerable attention in recent years. especially in
the context of relational data [1, 7, 12, 18–20, 23,
25, 36]. All these works assume a given set of
attributes QID on which an individual is identified,
and anonymize data records on the QID. Their main
difference consist in the selected privacy model and in
various approaches employed to anonymize the data.
The author of [1] presents a study on the relationship
between the dimensionality of QID and information
loss, and concludes that, as the dimensionality of

QID increases, information loss increases quickly.
Transactional databases present exactly the worst case
scenario for existing anonymisation approaches because
of high dimension of QID. To our best knowledge,
all existing solutions in the context of k-anonymity
[26, 27], l-diversity [23] and t-closeness [22] assume a
relational table, which typically has a low dimensional
QID.

There are few previous work considering the
privacy of large rating data. In collaboration with
MovieLens recommendation service, [11] correlated
public mentions of movies in the MovieLens discussion
forum with the users’ movie rating histories in the
internal MovieLens data set. Recent study reveals
a new type of attack on anonymized data for
transactional data [24]. Movie rating data supposedly
to be anonymized is re-identified by linking non-
anonymized data from other source. No solution exists
for high dimensional large scale rating databases.

Privacy-preservation of transactional data has been
acknowledged as an important problem in the data
mining literature. There us a family of literature [5, 6]
addressing the privacy threats caused by publishing
data mining results such as frequent item sets and
association rules. Existing works on topic [4, 34] focus
on publishing patterns, The patterns are mined from
the original data, and the resulting set of rules is
sanitized to present privacy breaches. In contrast,
our work addresses the privacy threats caused by
publishing data for data mining. As discussed above,
we do not assume that the data publisher can perform
data mining tasks, and we assume that the data must
be made available to the recipient. The two scenarios
have different assumptions on the capability of the data
publisher and the information requirement of the data
recipient. The recent work on topic [14, 37] focus on
high dimensional transaction data, while our focus is
preventing linking individuals to their ratings.

This paper is also related to the work on anonymizing
social networks [8], and the large scale rating data can
be considered as a special case of the complex social
network. A social network is a graph in which a node
represents a social entity (e.g., a person) and an edge
represents a relationship between the social entities.
Although the data is very different from transaction
data, the model of attacks is similar to ours: An
attacker constructs a small subgraph connected to a
target individual and then matches the subgraph to
the whole social network, attempting to re-identify the
target individual’s node, and therefore, other unknown
connection to the node. [8] demonstrates the severity of
privacy threats in nowadays social networks, but does
not provide a solution to prevent such attacks.
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4. Privacy models

The auxiliary information of an attacker includes: (i) the
knowledge that a victim is in the survey rating data; (ii)
preferences of the victims on some non-sensitive issues.
The attacker wants to find ratings on sensitive issues of
the victim.

In practice, knowledge of Types (i) and (ii) can be
gleaned from an external database [24]. For example,
in the context of Table 1(b), an external database
may be the IMDb. By examining the anonymous data
set in Table 1(a), the adversary can identify a small
number of candidate groups that contain the record of
the victim. It will be the unfortunate scenario where
there is only one record in the candidate group. For
example, since t1 is unique in Table 1(a), Alice is at
risk of being identified. If the candidate group contains
not only the victim but other records, an adversary
may use this group to infer the sensitive value of the
victim individual. For example, although it is difficult
to identify whether t2 or t3 in Table 1(a) belongs to Bob,
since both records have the same sensitive value, Bob’s
private information is identified.

Intuitively,in order to avoid such attack, a two-step
protection model is needed. The first step is to protect
individual’s identity, which is to make sure that in the
released data set, every transaction should be “similar"
to at least to (k − 1) other records based on the non-
sensitive ratings so that no survey participants are
identifiable. For example, t1 in Table 1(a) is unique,
and based on the preference of Alice in Table 1(b), her
sensitive issues can be re-identified in the supposed
anonymized data set. Jack’s sensitive issues, on the other
hand, is much safer. Since t4 and t5 in Table 1(a) form a
similar group based on their non-sensitive rating.

The second step is to prevent the sensitive rating from
being inferred in an anonymized data set. The idea is
to require that the sensitive ratings in a similar group
should be diverse. For example, although t2 and t3 in
Table 1(a) form a similar group based on their non-
sensitive rating, their sensitive ratings are identical.
Therefore, an attacker can immediately infer Bob’s
preference on the sensitive issue without identifying
which transaction belongs to Bob. In contrast, Jack’s
preference on the sensitive issue is much safer than both
Alice and Bob.

In our previous work, two privacy models have
been proposed. The first one is (k, ε)-anonymity model,
which targets at protecting individual’s identity and the
second model is (k, ε, l)-anonymity model, which not
only protects individual’s identity, but also the personal
sensitive information. In the next, section, these two
models will be discussed.

4.1. (k, ε)-anonymity
Let TA = {oA1

, oA2
, · · · , oAp , sA1

, sA2
, · · · , sAq } be

the ratings for a survey participant A and
TB = {oB1

, oB2
, · · · , oBp , sB1

, sB2
, · · · , sBq } be the ratings for

a participant B. We define the dissimilarity between
two non-sensitive ratings as follows.

Dis(oAi , oBi ) =


|oAi − oBi | if oAi , oBi ∈ {1 : r}
0 if oAi = oBi = null
r otherwise

(1)

Definition 1 (ε-proximate). Given a survey rating data set
T with a small positive number ε, two transactions TA,
TB ∈ T , where TA = {oA1

, oA2
, · · · , oAp , sA1

, sA2
, · · · , sAq }

and TB = {oB1
, oB2

, · · · , oBp , sB1
, sB2

, · · · , sBq }. We say TA
and TB are ε-proximate, if ∀ 1 ≤ i ≤ p, Dis(oAi , oBi ) ≤ ε.
We say T is ε-proximate, if every two transactions in T
are ε-proximate.

If two transactions are ε-proximate, the dissimilarity
between their non-sensitive ratings is bounded by ε. In
our running example, suppose ε = 1, ratings 5 and 6
may have no difference in interpretation, so t4 and t5 in
Table 1(a) are 1-proximate based on their non-sensitive
rating. If a group of transactions are in ε-proximate,
then the dissimilarity between each pair of their non-
sensitive ratings is bounded by ε. For example, if T =
{t1, t2, t3}, then it is easy to verify that T is 5-proximate.

Definition 2 ((k, ε)-anonymity). A survey rating data set T
is said to be (k, ε)-anonymous if every transaction is ε-
proximate with at least (k − 1) other transactions. The
transaction t ∈ T with all the other transactions that ε-
proximate with t form a (k, ε)-anonymous group.

For instance, there are two (2,5)-anonymous groups
in Table 1(a). The first one is formed by {t1, t2, t3}
and the second one is formed by {t4, t5}. The
idea behind this privacy principle is to make each
transaction contains non-sensitive attributes are similar
with other transactions in order to avoid linking
to personal identity. (k, ε)-anonymity well preserves
identity privacy. It guarantees that no individual is
identifiable with the probability greater than the
probability of 1/k. Both parameters k and ε are intuitive
and operable in real-world applications. The parameter
ε captures the protection range of each identity,
whereas the parameter k is to lower an adversary’s
chance of beating that protection. The larger the k and
ε are, the better protection it will provide.

Although (k, ε)-anonymity privacy principle can
protect people’s identity, it fails to protect individuals’
private information. Let us consider one (k, ε)-
anonymous group. If the transactions of the group have
the same rating on a number of sensitive issues, an
attacker can know the preference on the sensitive issues
of each individual without knowing which transaction
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belongs to whom. For example, in Table 1(a), t2 and t3
are in a (2, 1)-anonymous group, but they have the same
rating on the sensitive issue, and thus Bob’s private
information is breaching.

4.2. (k, ε, l)-anonymity
This example illustrates the limitation of the (k, ε)-
anonymity model. To mitigate the limitation, we require
more diversity of sensitive ratings in the anonymous
groups. In the following, we define the distance
between two sensitive ratings, which leads to the metric
for measuring the diversity of sensitive ratings in the
anonymous groups.

First, we define dissimilarity between two sensitive
rating scores as follows.

Dis(sAi , sBi ) =


|sAi − sBi | if sAi , sBi ∈ {1 : r}
r if sAi = sBi = null
r otherwise

(2)

Note that there is only one difference between
dissimilarities of sensitive ratings Dis(sAi , sBj ) and
dissimilarities of non-sensitive ratingsDis(oAi , oBj ), that
is, in the definition of Dis(ooi , ooj ), null − null = 0, and
for the definition of Dis(sAi , sBj ), null − null = r. This is
because for sensitive issues, two null ratings mean that
an attacker will not get information from two survey
participants, and hence are good for the diversity of the
group.

Next, we introduce the metric to measure the
diversity of sensitive ratings. For a sensitive issue s,
let the vector of ratings of the group be [s1, s2, · · · , sg ],
where si ∈ {1 : r, null}. The means of the ratings is
defined as follows:

s̄ =
1
Q

g∑
i=1

si

where Q is the number of non-null values, and si ±
null = si . The standard deviation of the rating is then
defined as:

SD(s) =

√√√
1
g

g∑
i=1

(si − s̄)2 (3)

For instance in Table 1(a), for the sensitive issue 4, the
means of the ratings is (6 + 1 + 1 + 1 + 5)/5 = 2.8 and
the standard deviation of the rating is 2.23 according
to Equation (3).

Definition 3 ((k, ε, l)-anonymity). A survey rating data set is
said to be (k, ε, l)-anonymous if and only if the standard
deviation of ratings for each sensitive issue is at least l
in each (k, ε)-anonymous group.

Still consider Table 1(a) as an example. t4 and
t5 is 1-proximate with the standard deviation of

2. If we set k = 2, l = 2, then this group satisfies
(2,1,2)-anonymity requirement. The (k, ε, l)-anonymity
requirement allows sufficient diversity of sensitive
issues in T , therefore it could prevent the inference
from the (k, ε)-anonymous groups to a sensitive issue
with a high probability. The following theorem gives
the upper bound of the parameter l in the (k, ε, l)-
anonymity model. The proof of the following theorem
can be found in [30].

Theorem 1. Let S be the set of ratings of the sensitive
issue of T . Suppose S_min and S_max be the minimum
and maximum ratings in S, then the maximum
standard deviation of S is (S_max−S_min)

2 .

5. Validating privacy requirements
In this section, we formulate the satisfaction problem
and develop a slicing technique to determine the
following Satisfaction Problem.

Problem 1 (Satisfaction Problem). Given a survey rating data
set T and privacy requirements k, ε, l, the satisfaction
problem of (k, ε, l)-anonymity is to decide whether T
satisfies the k, ε, l privacy requirements.

The satisfaction problem is to determine whether
the user’s given privacy requirement is satisfied by
the given data set. It is a very important step before
anonymizing the survey rating data. If the data set has
already met the requirements, it is not necessary to
make any modifications before publishing. As follows,
we propose a novel slice technique to solve the
satisfaction problem.

5.1. Search by slicing
The slicing technique is proposed to efficiently search
for the neighbor within distance ε in high dimension.
As we shall see, the complexity of the proposed
algorithm grows very slowly with dimension for small
ε. We illustrate the proposed slicing technique using
a simple example in 3-D space, as shown in Figure
1. Given t = (t1, t2, t3) ∈ T , our goal is to slice out a
set of transactions T (t ∈ T ) that are ε-proximate. Our
approach is first to find the ε-proximate of t, which is
the set of transactions that lie inside a cube Ct of side
2ε centered at t. Since ε is typically small, the number
of points inside the cube is also small. The ε-proximate
of C′t can then be found by an exhaustive comparison
within the ε-proximate of t. If there are no transactions
inside the cube Ct , we know that the ε-proximate of t is
empty, so as the ε-proximate of the set C′t .

The transactions within the cube can be found
as follows. First we find the transactions that are
sandwiched between a pair of parallel planes X1, X2
(See Figure 1) and add them to a candidate set. The
planes are perpendicular to the first axis of coordinate
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Figure 1. The slicing technique finds a set of transactions Ct inside
a cube of size 2ε within the ε-proximate of t. The ε-proximate of the
set Ct can then be found by an exhaustive search in the cube.

frame and are located on either side of the transaction
t at a distance of ε. Next, we trim the candidate set by
disregarding transactions that are not also sandwiched
between the parallel pair of Y1 and Y2, that are
perpendicular to X1 and X2, again located on either side
of t at a distance of ε. This procedure is repeated for Z1
and Z2 at the end of which, the candidate set contains
only transactions within the cube of size 2ε centered at
t.

Since the number of transactions in the final ε-
proximate is typically small, the cost of the exhaustive
comparison is negligible. The major computational cost
in the slicing process occurs therefore in constructing
and trimming the candidate set.

6. Anonymous survey rating data
In this section, we describe our modification strategies
through the graphical representation of the (k, ε)-
anonymity model. Given a survey rating data set T =
{t1, t2, · · · , tn}, its graphical representation is the graph
G = (V , E), where V is a set of nodes, and each node in
V corresponds to a record ti (i = 1, 2, · · · , n) in T , and E
is the set of edges, where two nodes are connected by an
edge if and only if the distance between two records is
bounded by ε with respect to the non-sensitive ratings.

Two nodes ti and tj are called connected if G contains
a path from ti to tj (1 ≤ i, j ≤ n). The graph G is called
connected if every pair of distinct nodes in the graph
can be connected through some paths. A connected
component is a maximal connected subgraph ofG. Each
node belongs to exactly one connected component, as

t1 t2

t3 t4

t5 t6

G1

G2

t1

t3 t4

G134

Figure 2. Graphical representation example

does each edge. The degree of the node ti is the number
of edges incident to ti (1 ≤ i ≤ n).

We say G is a clique if every pair of distinct nodes
is connected by an edge. The k-clique is a clique with
at least k nodes. The maximal k-clique is the a k-
clique that is not a subset of any other k-clique. We say
the connected component G = (V , E) is k-decomposable
if G can be decomposed into several k-cliques Gi =
(Vi , Ei) (i = 1, 2, · · · , m), and satisfies Vi

⋂
Vj = ∅ for

(i , j),
⋃m
i=1 Vi = V , and

⋃m
i=1 Ei ⊆ E. The graph is k-

decomposable if all its connected components are k-
decomposable.

Theorem 2. Given the survey rating data set T with its
graphical representation G, if G is k-decomposable,
then T is (k, ε)-anonymous.

The proof of Theorem 2 can be found in [29]. For
instance, the survey rating data shown in Table 2
is (2, 2)-anonymous since its graphical representation
(Figure 2(a)) is 2-decomposable. With Theorem 2, to
make the rating data satisfy privacy requirement, it
only needs to make its graphical representation k-
decomposable.

6.1. Distortion Metrics
In this section, we define a measure to capture the
information loss.

Definition 4 (Tuple distortion). Let t = (t1, t2, · · · , tm) be a
tuple and t′ = (t′1, t

′
2, · · · , t′m) be an anonymized tuple of

t. Then, the distortion of this anonymisation is defined
as:

Distortion(t, t′) =
m∑
i=1

|ti − t′i |

For example, if the tuple t = (5, 6, 0) is generalized to
t′ = (5, 5, 0), then the distortion of this anonymisation is
|5 − 5| + |6 − 5| + |0 − 0| = 1.

Definition 5 (Total distortion). Let T ′ = (t′1, t
′
2, · · · , t′n) be the

anonymized data set from T = (t1, t2, · · · , tn). Then, the
total distortion of this anonymisation is defined as:

Distortion(T , T ′) =
n∑
i=1

Distortion(ti , t
′
i )
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non-sensitive sensitive
ID issue 1 issue 2 issue 3 issue 4
t1 3 6 null 6
t2 2 5 null 1
t3 4 7 null 4
t4 5 6 null 1
t5 1 null 5 1
t6 2 null 6 5

Table 2. Sample survey rating data (I)

non-sensitive sensitive
ID issue 1 issue 2 issue 3 issue 4
t1 3 6 null 6
t2 2 5 null 1
t3 4 7 null 4
t4 5 6 null 1
t5 1 null 5 1
t6 2 null 6 5
t7 6 null 6 3
t8 5 null 5 2

Table 3. Sample survey rating data (II)

For example, let T = (t1, t2, t3, t4), where t1 = (5, 6, 0),
t2 = (2, 5, 0), t3 = (4, 7, 0) and t4 = (5, 6, 0). Let T ′ =
(t′1, t

′
2, t
′
3, t
′
4) be anonymization of T , where t′1 = (5, 5, 0),

t′2 = (3, 5, 0), t′3 = (3, 7, 0) and t′4 = (5, 7, 0). Then, the
distortion between the two data sets is 1 + 1 + 1 + 1 = 4.

For ease, we first illustrate our approach in the scale
of single attribute, and then we extend it to multiple
attributes.

Let t = (t1, t2, · · · , tn) be the ratings of some issue from
n survey participants with the privacy requirement ε.
We assume that some ratings in t are not bounded by ε,
and our aim is to modify t to make every pair of ratings
is bounded by ε while minimizing the distortion. The
idea of the approach is as follows. Order all ratings
for the issue t, and find the minimum rating Min
and maximum rating Max. Find all intervals of the
size ε between Min and Max. Change the ratings that
does not fit in this interval such that the distortion
is minimized. In the case of some tuples with the
same minimum distortion, randomly pick up one of
them as the anonymization. The process is described in
Algorithm 1.

Algorithm 1: single_anonymizer(t, ε)
1 Input: an ascended tuple t = (t1, · · · , tn), and ε
2 Output: t′ = (t′1, · · · , t′n) with minimum distortion
3 / ∗ Computing distortions for all intervals ∗ /
4 for i ← 1 to tn−t1

ε
5 do for j ← 1 to n
6 do if tj ∈ (ti , ti + ε)
7 then t′j ← tj
8 else if tj < ti
9 t′j ← ti

10 else t′j ← ti + ε
11 D(i)← Distortion(t′ , t);
12 / ∗ Finding minimum distortion ∗ /
13 k ← 1;Dmin ← D(k);
14 for i ← 2 to tn−t1

ε
15 do if D(i) < Dmin
16 then Dmin ← D(i);
17 k ← i;
18 / ∗ Retrieving t′ with minimum distortion ∗ /
19 for i ← 1 to n
20 do if ti ∈ (tk , tk + ε)

21 then t′i ← ti
22 else if ti < tk
23 t′i ← tk
24 else t′i ← tk + ε
25 return t′

For example, if t = (3, 4, 5, 6, 7, 7, 8, 8) and ε = 2. The
Min is 3 and Max is 8. Build all the intervals with the
size of 2, which are (3,5), (4,6), (5,7) and (6,8). Following
Algorithm 1, the anonymization of t is shown in Table
4, in which the vector in bold is the anonymisation we
choose.

Intervals Anonymization Distortion
(3, 5) (3, 4, 5, 5, 5, 5, 5, 5) 11
(4, 6) (4, 4, 5, 6, 6, 6, 6, 6) 7
(5, 7) (5, 5, 5, 6, 7, 7, 7, 7) 5
(6, 8) (6, 6, 6, 6, 7, 7, 8, 8) 6

Table 4. Example of the anonymization algorithm

Let us take Table 1(a) as an example with k =
2, ε = 1. There are two groups HG1 = {t1, t2, t3, t4} and
HG2 = {t5, t6}. HG2 has already satisfied the privacy
requirement, but HG1 does not. The anonymization of
HG1 is shown in Table 5, in which the vector in bold is
the anonymisation we choose.

Intervals Anonymization Distortion
(2,3) (3,3,3,2) 4

Issue 1 (3,4) (4,3,4,3) 3
(4,5) (5,4,4,4) 4
(5,6) (6,5,5,5) 6

Intervals Anonymization Distortion
(1,2) (1,2,2,2) 10
(2,3) (2,3,3,3) 8

Issue 2 (3,4) (3,4,4,4) 6
(4,5) (4,5,5,5) 4
(5,6) (5,6,5,5) 4

Table 5. Anonymizing HG1 of Table 1(a)

6.2. Complexity analysis
Recall that our objective is to anonymize data consisting
of a set of transactions T = {t1, t2, · · · , tn}, |T | = n. Each
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transaction ti ∈ T contains m issues. The computation
cost consists of three parts, which are sorting, finding
intervals and computing distortion. The complexity of
the sorting is O(mnlogn). During the next phrase of the
algorithm, for each attribute, we find the Min and Max
and all the possible intervals with size ε, which incur
the amount of O(2(n − 1)) overhead, and the cost for
comparisons to search the one with least distortion is
O(n). So, the total complexity of all attributes in this
phrase is O(mn). The last phrase to compare original
and anonymous data sets to estimate the distortion has
the cost ofO(mn). The computational complexity of this
alternative approach is O(mnlogn +mn).

7. Experimental study
In this section, we experimentally evaluate the
efficiency of the proposed slicing algorithm and the
proposed anonymization algorithm. Our objectives are
two-fold. First, we verify that our slice algorithm is fast
and scalable for the satisfaction problem. Second, we
show that the slicing technique is not only time efficient,
but also space efficient compared with the heuristic
pairwise algorithm.

7.1. Data sets
Our experimentation deploys two real-world databases.
MovieLens1 and Netflix data sets2. MovieLens data
set was made available by the GroupLens Research
Project at the University of Minnesota. The data set
contains 100,000 ratings (5-star scale), 943 users and
1682 movies. Each user has rated at lease 20 movies.
Netflix data set was released by Netflix for competition.
The movie rating files contain over 100,480,507 ratings
from 480,189 randomly-chosen, anonymous Netflix
customers over 17 thousand movie titles. The data
were collected between October, 1998 and December,
2005 and reflect the distribution of all ratings received
during this period. The ratings are on a scale from 1 to
5 (integral) stars. In both data sets, a user is considered
as an object while a movie is regarded as an attribute
and many entries are empty since a user only rated
a small number of movies. Except for rating movies,
users’ ratings some simple demographic information
(e.g., age range) are also included. In our experiments,
we treat the users’ ratings on movies as non-sensitive
issues and ratings on others as sensitive ones.

7.2. Efficiency
Data used for Figure 3(a) is generated by re-sampling
the Movielens and Netflix data sets while varying the

1http://www.grouplens.org/taxonomy/term/14.
2http://www.netflixprize.com/.

percentage of data from 10% to 100%. For both data
sets, we evaluate the running time for the (k, ε, l)-
anonymity model with default setting k = 20, ε = 1, l =
2. For both testing data sets, the execution time for
(k, ε, l)-anonymity is increasing with the increased data
percentage. This is because as the percentage of data
increases, the computation cost increases too. The result
is expected since the overhead is increased with the
more dimensions.

Next, we evaluate how the parameters affect the cost
of computing. Data set used for this sets of experiments
are the whole sets of MovieLens and Netflix data and
we evaluate by varying the value of ε, k and l. With
k = 20, l = 2, Figure 3(b) shows the computational cost
as a function of ε, in determining (k, ε, l)-anonymity
requirement of both data sets. Interestingly, in both
data sets, as ε increases, the cost initially becomes lower
but then increases monotonically. This phenomenon
is due to a pair of contradicting factors that push
up and down the running time, respectively. At the
initial stage, when ε is small, more computation efforts
are put into finding ε-proximate of the transaction,
but less used in exhaustive search for proper ε-
proximate neighborhood, and this explains the initial
decent of overall cost. On the other hand, as ε grows,
there are fewer possible ε-proximate neighborhoods,
thus reducing the searching time for this part,
but the number of transactions in the ε-proximate
neighborhood is increased, which results in huge
exhaustive search for proper ε-proximate neighborhood
and this causes the eventual cost increase. Setting ε =
2, Figure 4(a) displays the results of running time by
varying k from 10 to 60 for both data sets. The cost
drops as k grows. This is expected, because fewer search
efforts for proper ε-proximate neighborhoods needed
for a greater k, allowing our algorithm to terminate
earlier. We also run the experiment by varying the
parameter l and the results are shown in Figure 4(b).
Since the rating of both data sets are between 1 and 5,
then according to Theorem 1, 2 is already the largest
possible l. When l = 0, there is no diversity requirement
among the sensitive issues, and the (k, ε, l)-anonymity
model is reduced to (k, ε)-anonymity model. As we can
see, the running time increases with l, because more
computation is needed in order to enforce stronger
privacy control.

In addition to show the scalability and efficiency
of the slicing algorithm itself, we also experimented
the comparison between the slicing algorithm (Slicing)
and the heuristic pairwise algorithm (Pairwise), which
works by computing all the pairwise distance to
construct the dissimilarity matrix and identify the
violation of the privacy requirements. We implemented
both algorithms and studied the impact of the execution
time on the data percentage, the value of ε, the value of
K and the value of L.
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Figure 3. Running time comparison on Movielens and Netflix data sets vs. (a) Data percentage varies (b) ε varies
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Figure 4. Running time comparison on Movielens and Netflix data sets vs. (c) k varies (d) L varies
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Figure 5. Running time comparison of Slicing and Pairwise methods on Movielens data set vs. (a) Data percentage varies (b) ε varies

Figure 5 plots the running time of both slicing and
pairwise algorithms on the Movielens data set. Figure
5(a) describe the trend of the algorithms by varying
the percentage of the data set. From the graph we
can see, the slicing algorithm is far more efficient
than the heuristic pairwise algorithm especially when
the volume of the data becomes larger. This is

because, when the dimension of the data increases, the
disadvantage of the heuristic pairwise algorithm, which
is to compute all the dissimilarity distance, dominates
the most of the execution time. On the other hand, the
smarter grouping technique used in the slicing process
makes less computation cost for the slicing algorithm.
The similar trend is shown in Figure 5(b) by varying the
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Figure 6. Running time comparison of Slicing and Pairwise methods on Netflix data set vs. (c) k varies (d) L varies
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Figure 7. Information loss comparison on Movielens and Netflix databases vs. (a) k varies; (b) ε varies
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Figure 8. Prediction Accuracy: (a) Movielens; (b) Netflix

value of ε, in which the slicing algorithm is almost 3
times faster than the the heuristic pairwise algorithm.
The running time comparisons of both algorithms in
Netflix data set by varying the value of K and L are
shown in Figure 6(a) and (b). Even on a larger data
set, the slicing algorithm outperformed the pairwise

algorithm, and the running time of Slicing is quick
enough to be used in practical.

7.3. Data Utility
Having verifying the efficiency of the slicing technique,
we proceed to test its effectiveness. We measure the
utility by the distortion metric defined in previous
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sections. Generally speaking, the more the distortion is,
the less useful the anonymized data would be.

We first study the influence of ε (i.e., the length of a
proximate neighborhood) on data utility. Towards this,
we set k to 40. Concerning (40, ε)-anonymity, Figure 7(a)
plots the information loss on both data sets as a function
of ε. The anonymization algorithm incurs less distortion
as ε increases. This is expected, since a smaller ε
demands stricter privacy preservation, which reduces
data utility. When ε = 5, there will be no anonymization
required, and therefore the information loss reaches
0. Next, we examine the utility of (k, 2)-anonymous
solution with different k. Figure 7(b) presents the
information loss as a function of k. The error grows with
k because a larger k demands tighter anonymity control
requiring much more data modification.

Figures 8(a) and (b) evaluate the classification
and prediction accuracy of the greedy anonymization
algorithm. Our evaluation methodology is that we first
divide data into training and testing sets, and we apply
the anonymization algorithm to the training and testing
sets to obtain the anonymized training and testing
sets, and finally the classification or regression model
is trained by the anonymized training set and tested
by anonymized testing set. The Weka implementation
[35] of simple Naive Bayes classifier was used for
the classification and prediction. Using the Movielens
data, Figure 8(a) compares the predictive accuracy of
classifier trained on Movielens data produced by the
greedy anonymization algorithm. In these experiments,
we generated 50 independent training and testing sets,
each containing 2000 records, and we fixed ε = 2.
The results are averaged across these 50 trials. For
comparison, we also include the accuracies of classifier
trained on the (not anonymized) original data. From the
graph, we can see that the average prediction accuracy
is around 75%, very close to the original accuracy,
which preserves better utility for data mining purposes.
Similar results are obtained by using the Netflix rating
data in Figure 8(b).

8. Conclusion and future work

We have studied the problems of protecting sensitive
ratings of individuals in a large scale rating data.
Such privacy risk has emerged in a recent study
on the de-identification of published movie rating
data. We proposed a novel (k, ε, l)-anonymity privacy
principle for protecting privacy in such survey rating
data. We theoretically investigated the properties of
this model, and studied the satisfaction problem,
which is to decide whether a survey rating data set
satisfies the privacy requirements given by the user.
A greedy anonymization algorithm has been proposed
to anonymize large scale rating data. Extensive

experiments confirm that our technique produces
anonymized data sets that are useful.

This work also initiates the future investigations of
approaches on anonymizing the survey rating data.
Traditional approaches on anonymizing no matter
relational data sets or transactional data set are by
generalization or suppression, and the published data
set has the same number of data but with some fields
being modified to meet the privacy requirements. As
shown in the literatures, this kind of anonymization
problem is normally NP-hard, and several algorithms
are devised along this framework to minimize the
certain pre-defined cost metrics. Inspired by the
research in this paper, the satisfaction problem can
be further used to develop a different method to
anonymizing the data set. The idea is straightforward
with the result of the satisfaction problem. If the rating
data set has already satisfies the privacy requirement, it
is not necessary to do any anonymization to publish it.
Otherwise, we anonymize the data set by deleting some
of the records to make it meet the privacy requirement.
The criteria during the deletion can be various (for
example, to minimize the number of deleted records)
to make it as much as useful in the data mining
or other research purposes. We believe that this new
anonymization method is flexible in the choice of
privacy parameters and efficient in the execution with
the practical usage.
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