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Abstract 

Complexity  definitions introduce context dependence. Molecular diversity is reviewed focusing on information theory. 
Compound set is viewed as static microstate collection registering information about environment. Method tends to 
oversample remote feature space and produce unbalanced designs. Results show limitation and provide rationale for 
failure. Affinity includes traverse ease via  chreodes to effector. Lag results because of time/concentration needed for 
drug to displace transmitter molecules from chreodes. Molecules unfit for system are excluded from effector not fitting 
chreode patterns. Enzyme catalytic products leave active site at faster rate via  chreodes minimizing delay of diffusion-
controlled rate limitation. Interdisciplinary research in systems biology promises insights into life, evolution and disease 
organizational principles. Complex disorders represent umbrella terms for collections of conditions caused by rare, 
recent mutations in any of large number of genes. 
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1. Introduction 

Systems are things that one is interested in, defined by 
boundaries and made up of agents  [1]. Complexity is some-
systems property, special kind of organization and 
associated with life. Systems are ranked: simple, 
complicated and complex. The former are understood from 
agents, present little change and describe most inanimate 
things; their properties are agent sum; they show little 
diversity; usually they are man-made and each is fungible. 
Complicated systems are learned from agents; functions are 
not related to parts; one lacks tools to learn. They are 
inanimate systems; numerical aspects are reoccurring 
events. Complex systems are not understood from agents, 
formed by different agents, always in motion, perform 
different functions and have history. Complexity results way 
to approach living systems: old method is reductionism; new 
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one results synergy. Approach is systems biology. Complex 
system characteristics are: agents are dynamic, type 
diversity is enormous, they self-organize and exist within 
hierarchy. Agents change; each has history; they interact 
locally with neighbours. No agent types and perpetual 
novelty exist. Their phenomena are related to 
self-organization: everything is dynamic and things 
aggregate. No orderliness master control exists, which is 
local. Diversity is everywhere; agent types/combinations 
exist where agents respond to crises, adapting to 
environmental changes; it exists in hierarchy. Each agent is 
complex system; each system exerts control over agents and 
is part of next higher order. Studies cannot exceed 
immediate relation called logical depth. Complex-system 
functions are: agents interact extensively, constant change in 
agent structure, position/properties and adaptation; diversity 
permits degree of interactions. In emergence, interaction 
changes agents producing new properties, which are not 
predictable from old ones; whole is more important than 
parts. Ways to study complex systems are to understand 
functions, synergy, create models and systems bioapproach. 
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Complexity was reviewed from trendy buzzword to 
emerging science [2]. It/emergence were discussed [3]. 

In earlier publications, fractal hybrid-orbital analyses of 
protein tertiary structure were performed [4]. Complexity, 
emergence and molecular diversity via  information theory 
were analyzed. Valence topological charge-transfer indices 
for dipoles were obtained [5] and extended to 
homo/heterocycles and proteins [6]. Information-entropy 
molecular classification was applied to local anaesthetics 
[7,8] and inhibitors of human immunodeficiency virus type 
1 (HIV-1) [9,10]. It was reported structural classification of 
complex molecules by artificial intelligence, information 
entropy and equipartition conjecture, e.g., anti-cancer [11], 
phenolics [12], flavonoids, analgesics and cardiovascular 
system drugs [13]. It was calculated bond-based linear 
indices of non/stochastic edge adjacency matrices of organic 
physicochemical properties [14] and novel coumarin-based 
tyrosinase inhibitors discovered by quantitative structure–
activity relationship (QSAR) validated by Organisation for 
Economic Co-operation and Development (OECD) 
principles [15]. The present report reviews molecular 
diversity classification based on information theory. The 
following section describes computational method. In the 
next section calculation results are presented/discussed. The 
final section summarizes our perspectives.  

2. Computational method 

Lin [16] assessed molecular diversity based on information 
theory [17–20]. Compound set is static molecular collection 
of microstates, which can register information about 
environment at predetermined capacity. Molecular diversity 
is related to population information content I  as: 
 

I = Smax − S                               (1) 
 
where S  is system entropy  given by von Neumann-
Shannon expression: 
 

S = − pi ln pi
i=1

n

∑
                          (2) 

 
where n  is total number of microstates in system and pi, i-th  

microstate probability subject to pii=1

n∑ = 1. Each 
compound set represents finite number of distinguishable 
molecular species. System entropy results: 
 

S m, n( ) = − pij  ln pij  
i=1

m

∑
j=1

n

∑
          (3) 

 
where m  is number of species, n, that of individuals in 
population, and pij, probability of finding individual i-th  in 

species j-th, which must satisfy piji=1

m∑j=1

n∑ = 1 in which 
maximum entropy [Equation (1)] is given by Smax(m,n) = –
nlnm. Collection information content rises as species 

number decays. Difficulty stems because m  is unknown. 
Each population member is unique, distinguishable species, 
and system entropy is related to species distinguishability  
rather than similarity to a priori  known prototype set. 
Equation (3) is replaced by: 
 

S n, n( ) = − pij  ln pij  
i=1

n

∑
j=1

n

∑
           (4) 

 
subject to ΣΣpij = 1 and Smax becomes Smax(n,n) = –nlnn. In 
Equation (4), pij are computed from molecular similarity 
table. Methods for quantifying similarity assign scores in 
[0,1], which involve computing similarity ρij using 
established approach and normalization factor to derive 

probabilities [21,22]. Factor results c = 1 ρiji=1

n∑j=1

n∑ , 
and actual probabilities, pij = cρij . As probabilities close, 
species become less indistinguishable, system entropy 
decays and information registered by population rises. 

3. Results and discussion 

While information theory to quantify molecular diversity 
presents intellectual appeal, it results limited [23–25]. Figure 
(1) displays two sets of three imaginary compounds plotted 
vs. uniform properly scale. Distances between pairs are 
d13 = d23 = 0.5 and d12 = 1.0. Distance dij is taken as 
similarity measure ρij. Two methods result: 
 

ρij = α − dij                              (5) 
 
and: 
 

ρij =
1

1 +αdij                            (6) 
 
where α  is constant (=1.0). Using Equation (4), one 
computes entropies, and sets Sa = 1.887 and Sb = 1.609 using 
linear form [Equation (5)], and Sa = 2.163 and Sb = 2.144 
using reciprocal one [Equation (6)], where a  and b  refer to 
collections on left/right sides. According to Equation (1), 
set-a  diversity is greater than b  regardless of similarity 
functional form. 
 

   
  (a)       (b) 

Figure 1. Two sets of three imaginary compounds vs. 
uniform properly scale; in (b) points 2 and 3 coincide 

Figure (2) represents entropy of three-point set above vs. 
position of one point relative to the others. Both extremes 
denote cases where third point coincides with one of the two 
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reference points, while middle indicates situation depicted in 
Figure (1a). Profile is based on reciprocal function 
[Equation (6)] but similar results are obtained with Equation 
(5). Entropy function is at maximum when third point is 
located halfway, between two reference points, and 
monotonically decays as point moves from centre in either 
direction. 

Symmetry decay decreases entropy. Diudea [26] edited a 
special issue on symmetry in nanostructures in Symmetry: 
Culture and Science. Entropy was extended [27–31], with 
illustrations in high-energy experiments in LHC-
CERN/RHIC-Brookhaven and financial events with risk 
[32]. 

Table 1. Definitions of network and node parameters 

Parameter 
Degree 

Type 
Node 

Description 
Number of interactions 

Average 
degree 

Network Average number of interactions for 
all nodes in a network 

Power law 
coefficient 

Network Exponent in equation describing 
network degree distribution 

Closeness 
centrality 

Node Reciprocal of sum of all shortest 
paths between a particular node 
and all other network nodes 

Average 
closeness 
centrality 

Network Closeness centrality averaged for 
all network nodes 

Average 
clustering 
coefficient 

Network Connectivity of all immediate 
neighbours of a particular node 
averaged for all network nodes 

Average 
shortest 
path 

Network Average of all shortest paths (in 
number of edges) between all pairs 
of nodes in network 

Density Network Ratio of actual number of edges in 
a network to possible number of 
edges 

Diameter Network Longest shortest path across 
network 

 
 
3.1. Network parameters/structure analysis 

Network parameters are calculated to analyze net structure 
and identify key nodes. Definitions of network and node 
parameters used for net analyses are listed in Table 1 [33–
37]. Atomic proximity referred to the other atoms is an 
index based on computer networks. 
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Figure 2. Variation of entropy as a function of x 

3.2. Category theory and periodic table 

Polystochastic model developments require running 
computations for processes of processes, etc. [38]. 
Stabilization hypothesis helps for difficult task [39,40]; it 
refers to k-tuply monoidal n-categories in which objects are 
multiplied in k  ways, all of which interchange with each 
other up to isomorphism, which implies that k  ways end up 
being equivalent but that single resulting operation is 
increasingly commutative as k  rises. Stabilization 
hypothesis  states that when one reaches k = n + 2, 
multiplication becomes maximally commutative; each 
column in n-category periodic table (PT) stabilizes at certain 
precise point. The PT for classifying n-categories contains 
(n + k)-category conjectured description with one 
j-morphism for j < k. Idea is to study n-category degenerate 
forms: n-categories that are trivial below certain dimension 
k. Such an n-category presents only non-trivial cells in top 
n–k  dimensions, so one performs dimension shift regarding 
this as (n – k)-category. Previous k-cells become new 
0-cells, previous (k + 1)-cells undergo new 1-cells and 
previous n-cells turn into new (n – k)-cells, which is called 
k-fold degenerate n-category. The PT shows that 
(n + k)-category with one j-morphism for j < k  is 
reinterpreted as n-category; however, it will be n-category 
with k  ways to multiply: k-tuply monoidal n-category (if 
n = 1, k = 1, 2-category with one object is monoidal 
category). The PT outlines properties (monoidal, braided, 
sylleptic, involutory and symmetric). In first row, k = 0, 
0-monoidal n-category is n-category. In next row, k = 1, 
1-monoidal n-category is monoidal n-category [1-monoidal 
0-category is one-object category (monoid) and 1-monoidal 
1-category is one-object 2-category (monoidal category)]. 
Monoidal 2-category is defined as one-object 3-category or 
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directly as 2-category with tensor. In third row, k = 2, 
degenerate monoidal category is commutative monoid and 
doubly degenerate 3-category is braided monoidal category. 
In first column, n = 0, one-object braided monoidal category 
is commutative monoid together with extra data for braiding 
satisfying axioms, which gives entry for k = 3, n = 0, and the 
same applies all way down column rest. Similar results are 
established for second column n = 1. For k ≥ 3, k-monoidal 
1-category is just symmetric monoidal category. Column 
stabilizes and stabilization point is most symmetric possible 
object. Sylleptic characterization is completed by more 

terms (involutory). Braided category is monoidal category 
with additional structure, sylleptic category is braided 
category with additional structure, etc. [41]. Table 2 lists PT 
of local anaesthetics, ice and benzyl alcohol.. 

It was reported reaction-net partially ordered set (poset) 
combinatorics [42], net-QSARs with reaction poset 
quantitative superstructure–activity relationships (QSSARs) 
for polychlorinated biphenyl (PCB) chromatography 
[43] and posets/substances’ property ranking/prediction 
[44].

Table 2. Periodic table for local anaesthetics, ice and benzyl alcohol 

g000 g010 g100 g101 g110 g111 
ice  benzyl alcohol  diperodon 

pramoxine 
mexiletine 

cocaine 
cyclomethycaine 

 dibucaine 
propanolol 

 benzocaine 
butamben 

dyclonine hexylcaine 
piperocaine 

 dimethisoquin   bupivacaine 
etidocaine 
lidocaine 
mepivacaine 
prilocaine 
tocainide 
(S)-ropivacaine 

benoxinate 
proparacaine 
propoxycaine 

  phenytoin   butacaine 
2-chloroprocaine 
procaine 
tetracaine 

3.3. Ligand diffusion over protein surfaces 

Diffusion via  bulk H2O compares vs. across effector 
landscape; proximal relation exists among metabolic events; 
catalysis rate is biased directed diffusion; microviscosity is 
important. Smoluchowski introduced [45,46] and Debye 
enriched [47] diffusion-controlled reactions; three-
dimensional (3D) random walk of ligand via  bulk H2O to 
effector is slow to accomplish effector complex tasks. 
Welch, Adam and Eigen agreed that two-dimensional (2D) 
surface diffusion to active site enhances diffusion-controlled 
reaction rate. Hasinoff concluded that fast enzyme reactions 
are limited by ligand diffusion to effector. Berg and Purcell 
described ligand skipping over cell surface with 
encountering-effector chance; cell membrane surface 
supports 2D diffusion but contains no variety to influence 
direction [48]. Rhodes, Sarmiento and Herbette invoked 
protein as target followed by lateral diffusion to effector 
across/via  membrane. Blum described ligand guidance to 
effector via  folds created by Bonnet transformation. Chen 
and Zhou explained that effector-outside protein is promoter  
causing ligand flow to effector. Sweet-tasting molecule 
administration produced response; washout created 
persistence. Birch postulated queue formation on receptor 
protein surface; exiting from tailback after washout provided 
persistence until backlog emptied; concept invoked 

washout-resistant residence on protein surface, favoured 
location and directional influence. H2O around hydrophobic 
solute presents greater attraction for itself than solute; 
greater bent exists for H2O to H-bond to nearby H2O than 
hydrate solute, which molecules may/not bond depending on 
electrostriction: hydrophobic solutes occupy cavities while 
hydrophilic ones hydrate. H2O on protein surface is ordered  
because of hydrophobic influences from side chains; 
ordering extends from protein surface, H2O layers; H+ 
exchange between two H2O occurs at 10–14s: landscape is 
hydrodynamic. Kier et al. built ligand diffusion models over 
protein surfaces. Waddington analyzed chreode (probability 
pathway) on epigenetic landscape. Enzyme reactions are fast 
because substrates diffuse to receptor and products diffuse 
from active site rapidly via  chreodes [49,50]. H2O 
molecules/nanostructures were reported [51]. 

3.4. Grain  or particle–pellet  model 

Mathematical models were developed to describe progress 
of successive gas–solid reactions taking place in porous 
pellet, e.g., direct H2(g) reduction of MoS2(s) in CaO(s) 
presence [52–57]. Complexity arising from multi-step 
reactions causes relative deviation between model prediction 
and experiment. Complex-reaction modelling should include 
effects of solid structural change and heat balance 
(non-isothermal condition). 
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3.5. What is complex in complex disorders? 

Compared to new chemical entities (NCEs), biologics are 
sensitive to stability, because of not only large molecular 
weight/size but also complex 3D structure that determines 
bioactivity: structural changes influence bioactivity [58]. In 
addition to chemical instabilities, e.g., de-amidation, 
oxidation, isomerization of certain amino acids (AAs), 
hydrolysis, disulphide scrambling or glycation, 
physical/colloidal instabilities, e.g., protein denaturation or 
formation of in/extrinsic protein particles, are relevant 
because of protein-aggregate immunogenicity. Process 
impacts on protein quality/integrity. Hlavacek et al. 
reviewed rules for modelling signal-transduction systems, 
proposing combinatorial complexity: number of possible 
protein complexes and protein-modification combinations 
increase exponentially [59]. Dopazo reported case of high-
performance computing (HPC) in genomics, which analysis 
 

 

Figure 3. Finding mutations causative of diseases 

requires extreme calculating to know, e.g., which genome 
regions are methylated (switched off) [60]. Finding disease-
causing mutations is complex problem (cf. Figure 3). 

Principle is patient/family comparison to reference 
controls (cf. Figure 4); e.g., how to find mutations associated 
with diseases? Illness is coded in genome: in monotonic 
diseases only one mutation causes illness; bioinformatics 
challenge is finding disease-causing mutation. Technical 
limit exists in analyzing genomes: <200 letters at a time; one 
must assemble data. Mutations change word meaning of 
genetic message. Challenge is to analyze mutated code 
fragments. In pipeline resequencing, problem is how to 
speed up pipe. Sequence data property is that they can be 
dealt in parallel. In ribonucleic acid (RNA), sequencing 
complexity of mapping transcripts exists: problem is finding 
matching regions. In deoxyribonucleic acid (DNA) de novo  
assembly, difficulty is that no genome reference is available. 

Sequencing genomes of first eukaryotes seemed that gene 
number shows no correlation with organism complexity 
(paradox G-value); attempts tried to resolve inconsistency, 
e.g., protein multifunctionality, alternative splicing, 
microRNAs or non-coding DNA. As intrinsic protein 
disorder was linked with complex responses to 
environmental stimuli/communication between cells, 
perhaps structural disorder increase species complexity. 
Schad et al. revisited paradox G-value, analyzing 
proteomes/complexity via  number of cell types: they found 
that complexity/proteome size, measured by number of 
AAs, correlate showing power function; they analyzed 
complexity features in organisms/tissues finding: (1) 

fraction of protein structural disorder increases between 
pro/eukaryotes but not over evolution, (2) number of 
predicted binding sites in disordered regions in proteome 
augments with complexity and (3) protein-disorder fraction, 
predicted binding sites, alternative splicing and 
protein/protein interactions rise with human tissue 
complexity [61]. Neurodevelopmental disorder encompasses 
disease range, e.g., syndromes caused by rare mutations in 
specific genes/chromosomal loci, and more common 
disorders, e.g., schizophrenia (SZ), autism spectrum and 
 

Populat ion
mut at ions

 

Figure. 4. Comparison of patients to controls. 

idiopathic epilepsy/mental retardation [62]. Unravelling 
common-disorder genetics led to paradigm shift in genetic 
architecture of common neurodevelopmental disease, 
highlighting individual, rare mutations and overlapping 
genetic etiology. They converged on neurodevelopmental 
pathways, providing insights into pathogenic mechanisms. 
Paradigm stated that in individual with SZ, genetic risk is 
because of combination of genetic variants of small effect. 
Experiment prompted re-evaluation of phylogenic, common 
disease-common variant (CDCV) model. Evidence includes 
lack of expected positive findings from genome-wide 
association studies (GWASs) and discovery of mutations 
that predispose to SZ/psychiatric disorders, which led to 
mixed model wherein some cases are caused by polygenic 
mechanisms and others by single mutations. Model runs 
counter to theoretical literature body that supposed rejected 
Mendelian inheritance with genetic heterogeneity. Mitchell 
and Porteous asked how theory/data discrepancy arose and 
proposed evidence base rationalization [63]. They 
reconsidered theoretical analysis methods/conclusions and 
assumptions; they showed that conjectures are false, and 
genetic heterogeneity model is consistent with observed 
familial recurrence risks, endophenotype studies and 
population-wide parameters. Rather than polygenic, 
complex disorders represent umbrella terms for collections 
of conditions caused by rare, recent mutations in any of 
large number of genes [64]. Genetic-mutation list associated 
with human disease is long and grows and, with it, 
challenges of deciphering what goes wrong in sick people 
cells, tissues and bodies [65]. Problem is that ge/phenotype 
relation in health/disease is complex: it is exception when 
single mutation in single gene causes illness. 

4. Perspectives 

From results and discussion, perspectives of review follow. 
1. Attributing complexity to only models and not to 

natural systems, and relativizing conception to chosen 
framework, one arrives at analytically useful idea of 
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complexity, which not only captures concept but also 
compares formulations illuminating philosophical problems. 

2. We focused on particular complexity measure to 
capture decomposing-expression difficulty and sketched 
possible formal structure to relate different formal languages 
to complexity source analysis, which provided framework 
for systematic method simplification; work could form part 
of complexity science. More can be done: (a) research into 
syntactic structures/expression complexity relation, (b) 
development of semi/automatic simplification methods, (c) 
integration into work in complex systems, especially 
identifying possible complexity causes, (d) complexity-
measure development and (e) use as complexity formulation 
synthesis. Way to extend work is towards model of 
representing process itself, which involves formalizing 
semantic picture and is seen as measure-theory extension to 
nonnumeric structures. As Badii and Politi put it in their 
book: The natural extension of the study of complexity… 
seems, therefore, to point inevitably to a theory of model 
inference. 

3. Self-organizing modelling extracts hidden knowledge 
from data, serving for decision support of real-world 
problems; it is alternative to statistics, neural networks  or 
neurofuzzy  methods since it creates optimal complex 
models automatic, fast and systematically, and provides 
explanation component via  explicit visible model 
descriptions. 

4. Report described experience with approach assessing 
molecular diversity based on information theory. As 
demonstrated with examples, method shows trend to 
oversample remote areas of feature space producing 
unbalanced designs, which is because of certain information 
type whose mathematical definition is inappropriate for 
molecular diversity. 

5. Structure-based subcellular pharmacokinetic models 
chemical behaviour/effects in biosystems, determined by 
chemical/biosystem physicochemical properties/structures. 
Absorption, distribution, metabolism, excretion and toxicity 
are predicted using empirical modelling with molecular 
descriptors using statistics, without attending mechanisms. 
Approaches capture pharmacokinetic complexity via  
unjustified descriptor use, rather than focusing on 
chemicobiological interactions and building mechanistic 
models, which are nonlinear in optimized coefficients. 

6. Till not many time ago, implicit idea was that simple 
systems behave simply, and complex behaviour was 
complex-cause result; however, after chaos theory, the 
former systems can produce complex behaviours and the 
latter systems not necessarily carry associated complex 
answers. Knowledge removes control. 

7. Topical anaesthetics remain powerful advancement for 
minimizing pain during cutaneous procedures. While topical 
agents were released with increased efficacy and faster 
onset, EMLA® (lidocaine/prilocaine 2.5/2.5 wt.%) remains 
most widely used one, given efficacy/safety proven by 
clinical trials. As practitioner options grow, comparison of 
onset of action, efficacy and safety is important. Our 
program MolClas classifies local anaesthetics/mixtures for 
difficult cases that are a priori  hard to sort, e.g., relation 

between procaine, ice, alcohols, etc. Ice/EMLA decay 
discomfort associated with needle injection: although 
EMLA performs better in pain control, ice shows 
advantages in easy of use, fast action and is lesser 
expensive; ice/EMLA are good agents each with 
dis/advantages in clinic. Benzyl alcohol is efficient 
anaesthetic for intact mucous membranes, surpassing 
procaine, ranking with alypine/β-eucaine and weaker than 
holocaine/cocaine; action is not as lasting as cocaine and 1% 
solutions produce considerable smarting; although 
anaesthesia duration provided by benzyl alcohol 0.9% is 
limited, advantages as local anaesthetic in minor plastic 
surgery include inexpensiveness/lesser adverse reactions; 
bacteriostatic saline preinjection decreases pain 
incidence/severity associated with propofol intravenous 
injection; decreased incidence is comparable to mixing 
lidocaine/propofol and makes alternative; however, use is 
not recommended in neonatal/pediatrics. 

8. Complexity is multi-parametric trait determined by 
interaction potential, alternative splicing capacity, tissue-
specific protein disorder and proteome size. Paradox G-
value is apparent when plants are grouped with metazoans, 
because of different complexity/proteome size relation. It 
was argued for mixed model more bioconsilient, which 
involves disease-causing/modifying variant interactions in 
individual. Model implications were considered for moving 
schizophrenia beyond statistical associations to pathogenic 
mechanisms. Rather than polygenic, complex disorders 
represent umbrella terms for collections of conditions 
caused by rare, recent mutations in any of large number of 
genes. 
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