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Abstract

The Sznajd model is basically an Ising spin model, widely used in sociophysics studies as a simple mechanism
for predicting decision-making in a closed community through interactions among the nearest neighbors.
In the present work we aim to deepen our understanding of this model by analyzing not only local or first
neighbor interactions but also long range ones. Besides, we consider the system as being subjected to two
signals, a stochastically social internal one, mimicking “social temperature”, and an external periodic signal
playing the role of the effects of fashion or propaganda. Under these conditions, we show the occurrence of a
double stochastic resonance phenomenon when depicting signal-to-noise ratio as a function of both, the social
temperature and the non local interaction parameters.

Keywords: Sznajd model, stochastic resonance.

Received on 28 March 2012; accepted on 5 July 2012; published on 22 November 2012

Copyright © 2012 Gimenez, et al., licensed to ICST. This is an open access article distributed under the terms of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/trans.cs.2012.10-12.e3

1. Introduction
The study of complex systems has recently attracted
the attention of theoretical physicists. Statistical physics
has in particular been extended beyond its usual
limits, to tackle sociological problems, leading to the
so called sociophysics [1–5]. In such a context, the study
of the evolution of public opinion through simple
mathematical models is a favorite topic. Some of these
models involve a population, where each member of
the group can adopt an “opinion" value chosen between
two possible alternatives (say +1 or −1). These values
may represent the position for or against a particular
topic or the preference for one or other candidate
or political party. That individual agent’s opinion can
evolve according to some simple rules. A widely studied
case is the so called Sznajd model [6]. In the present
work we analyze a modified version of this model that
was initially proposed in [7]. The model was modified
so as to include contrarians [8], namely people who
are non-conformist opposition. This was achieved by
introducing a certain probability, depending on a social
temperature, a parameter that corresponds to social
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turmoil, and which adds a fluctuating component to the
system [9, 10].

Although several two-dimensional lattice models and
even small world networks were studied [12–14], we
have considered the agents as being arranged in a
simple one-dimensional array of L components. The
present model also involves the presence of an external
field, representing the fashion or propaganda, which
may induces alternate changes in the agent’s opinion.
We have studied the phenomenon of stochastic resonance
(SR) [11], which consists in an enhancement of the
system’s response when subjected to the action of a
periodical external field (the fashion or propaganda)
when the internal noise (in this case, the social
temperature) reaches an optimal value. Within this
social context, SR was previously studied by several
authors [13, 15–18]. As a complement to a previous
work [20], we also analyze the effect of introducing
some degree of non locality in the selection of those
agents whose opinion is modified at each time step. To
the best of our knowledge, it is the first time that non
local interactions are considered in the Sznajd model,
so the systems’s response to this new factor remains
unknown.
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The paper is organized as follows: in Section 2 the
model and simulation method are introduced, Section
3 presents the main results and discussions, and finally
some conclusions are put forward in Section 4.

2. Model and simulation method
2.1. The model
The model consists of a one dimensional array of L
components, each one representing an agent, which
can take two possible opinion values (si = ±1). Periodic
boundary conditions are considered. The Sznajd model
with social temperature was considered in previous
works [9, 20]. Here we consider four possibilities when
choosing the interacting agents.

2.2. Interaction agent rules
Each trial consists in choosing one agent at random, e. g.
agent i, and then fixing another agent i + 1. Let call the
value of that agent’s opinion si (si = ±1), and i and i + 1
discussion agents, i.e., the ones who first meet each other
and exchange their opinions; agents i and i + 1 interact
with agents j and k. These agents are called modification
agents, i.e., those who react after the discussion agents
decision has been made.
Interaction A: we take j = i − 1 and k = i + 2 (this
model is also studied in a related work [20]).
Interaction B: we take j = i − n and k = i + 1 + n, where
n − 1 is the number of neighbors to be skipped.
This model attempt to take into account long-range
interactions.
Interaction C: it is a variant of model B. Here we
randomly choose agents j and k: the former, between
i − 1 and i − n and agent the latter, between i + 2 and
i + 1 + n, where n is the number of neighbors among
whom the choice is made. With the present model we
attempt to study the effect of accidental encounters on
the system’s response.
Interaction D: in this variant, we take the four agents at
random (i, l-not necessarily i + 1, j and k).

Once we have defined the interactions, the Sznajd
rules are set in the following way:

• If si × si+1 = 1, then sj y sk take the same values of
si and si+1.

• If si × si+1 = −1, then si takes the value of sj and
si+1, takes the value of sk .

(in case D, consider sl instead of si+1).
Let call R1 the rule as indicated before. This rule,

which is a variant of the Sznajd model, has already
been used in [7]. In previous versions of the Sznajd
rule, when si × si+1 = −1, the modification agents either
adopts antiferromagnetic values, or nothing happens.
In the present version, each discussion agent aligns with
its corresponding modification agent.

2.3. Fashion and social temperature
The effect of fashion is modeled by taking into account
the signal of a periodic external field [20], and it is
introduced as follows. An agent i is chosen and R1 is
applied to the four agents (i, i + 1, j and k). For each
agent modified according to rule R1, we calculate the
following probability:

p = Λ exp(
α + q ×H

T
), (1)

where q denotes the new value of the opinion of the
considered agent recently modified according to rule
R1 (every agent’s opinion is considered separately), α
is a fixed parameter related to the strength of nearest-
neighbor interactions, which just defines the units for
temperature is measurement (we use natural units in
what follows α = 1), T is the social temperature and H is
a periodic function of the form:

H = H0 × sin(ωt), (2)

where H0 is the field amplitude (fashion) (we take 0 ≤
H0 < α) and ω = 2π/P (P = period). The normalization
constant Λ takes the form:

Λ−1 = exp(
α + q ×H

T
) + exp(−

(α + q ×H)
T

). (3)

We then choose a random number u (0 ≤ u ≤ 1).

(i) If u < p, the agent retains the position resulting
from the application of R1.

(ii) If u > p, the agent considered adopts the opposite
opinion to that established by R1 (the sign is
inverted).

Note that, when q and H have the same direction
(q ×H > 0), the probability p of retaining the new value
(obtained according to R1) is increased. On the other
hand, when q ×H < 0, the probability p decreases and
the selected agents’s opinion is more likely to shift to
the opposite sense. In both cases, then, the factor q ×H
contributes to aligning the agents in the direction of
field H .

Note that p→ 1 when T → 0 and p→ 0, 5 when
T →∞. If temperature tends to 0, the effect of fashion
disappears.

3. Results and discussion
A time step consists of L trials, where L is the size of the
system. At each simulation time t, we define the mean
opinion m as:

m =
∑
i si
L

. (4)

Hence, we have that −1 ≤ m ≤ 1.
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Figure 1. External field (black line) and mean opinion m, as a
function of time, t, for L = 256, H0 = 0.1, period P = 256 and
three different social temperatures for interactions A (a), B with
n = 14 (b) and C with n = 14 (c)

Figure 1 shows the external field (black line) and
the mean opinion as a function of time, for different
social temperatures T and for three of the interactions
considered. In all these cases, the system size was L =
256, the field amplitude was set as H0 = 0.1, and the
field period was P = 256. The effect of different system
sizes, L, and different field amplitudes, H0, is analyzed
in other work [20].

For interaction A (Fig. 1(a)) we can notice that at a
low temperature the system’s response (mean opinion)
does not follow the external field. For intermediate
temperatures (T = 1) it follows the field with a short
delay, an aspect that has already been analyzed
elsewhere ([20]). For high temperatures, m follows the
field too, but oscillating close to zero.

Something peculiar occurs for interactions B and C.
At relatively low temperatures (T = 0.4 for interaction
B and T = 0.5 for model C) the value of m converges
to a full polarization (−1 in these cases), that is,
people’s opinion becomes almost uniform (i.e. a kind
of consensus is reached), but a small oscillation is
observed around this value, driven by the external field.
At higher temperatures (T = 0.56 for interaction B and
T = 0.7 for interaction C), the value of m also goes close
to an extreme value, oscillating around it, but from time
to time it changes the sign in an aperiodic form, almost
randomly. At higher temperatures (T = 1) it follows the
external field.

We have also calculated the Fourier transform for m
as a function of time in the presence of the external
field, and then, the signal-to-noise ratio (SNR) for the
frequency corresponding to the driving field, defined as

Figure 2. SNR as a function of T for interaction B and different
values of n, for the case of L = 256, H0 = 0.1 and period
P = 256.

SNR =

∫ w0+δ
w0−δ

S(w)dw∫ w0+δ
w0−δ

Sback(w)dw
(5)

where

S(w) = limτ→∞

∫ ∞
−∞

< m(t)m(t + τ) > exp(−iwτ)dτ (6)

where Sback means the value of S in the background of
that region. We have calculated the value of SNR for
each temperature, averaging over 1000 realizations.

Figures 2 and 3 show SNR vs. T for interactions B and
C for different values of n, for the case of L = 256, H0 =
0.1 and P = 256. Interaction A has already been studied
for different system’s sizes, L, frequencies and field
amplitudes, H0 in another paper ([20]). For interaction
A (or interaction B or C with n = 1), only one peak
is observed, whose maximum is the fingerprint of the
stochastic resonance phenomenon. That means there is
a temperature value at which the system’s response is
optimal, that is, the value ofm nicely follows the fashion
(or the periodical external field). For interactions B and
C, as the value of n grows, we have found that a second
resonant peak occurs, at a temperature lower than
that corresponding to the main peak. As n grows, the
secondary peak remains relatively small in the case of
B, while in the case of C, it grows for higher values of n
(see figure 3). This means that the introduction of some
randomness in the choice of the interacting neighbors
results in the formation of an additional resonant peak
at a lower temperature and a of valley between the two
peaks. However the meaning of this new peak seems to
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Figure 3. SNR as a function of T for interaction C and different
values of n, for the case of L = 256, H0 = 0.1 and period
P = 256.

be similar to the analogous one indicated in [19]. It is
evident that the modified Sznajd model exhibits such a
phenomenon.

Such a secondary peak can be explained by
observing Fig. 1. The case of n = 14 was analyzed.
The temperature corresponding to the maximum of the
small peak is approximately T = 0.4 for B and T =
0.5 for model C. The population’s opinion converges
to an almost uniform value (m ≈ −1 in these cases)
and presents small oscillations around this value. That
results in a significant signal in the value of the SNR
measured at the frequency of the fashion, but there is no
effective change in the sign ofm following the field. The
valley in SNR vs. T , corresponds approximately to T =
0.56 for B and 0.7 for C. In these cases the periodicity is
broken because of the changes of sign of m at relatively
random moments. Finally, the mean peak, for T ≈ 1.0
corresponds to the change of sign of m following the
fashion with the same periodicity.

We have also studied the values of SNR and T
corresponding to the maximum of the first and the
second peak (main peak) as a function of n for B
and C, and for three different systems’ sizes (L =
256, 512, 1024). The results are shown in Figures 4
(interaction B) and 5 (interaction C).

In the case of B (Fig. 4), for small values of n there is
no secondary peak (peak 1) and from a certain value of
n (4 − 6, depending on L) the peak appears with a value
of T approximately between 0.4 and 0.5. The height of
the peak (SNRmax) is variable for L = 256 and L = 512
but it presents a maximum value for n = 19 in the case
of L = 1024. Another resonant-like behavior seems to be
present in this case.

Figure 4. Values of Tmax (up) and SNRmax (down) for the
maximum in the graph of SNR vs T (see figure 2) for the first
(left) and the second peak (right) for interaction B.

Figure 5. Values of Tmax (up) and SNRmax (down) for the
maximum in the graph of SNR vs T (see figure 3) for the first
(left) and the second peak (right) for interaction C.

With respect to the main peak (peak 2), the value of T
is approximately constant between T = 1.0 and T = 1.2.
For low values of n, the value of SNRmax increases up to
a saturation value which is proportional to L.

In the case of C (Fig. 5), there is no peak 1 for
low values of n. The small peak appears around n =
8. The temperature corresponding to the maximum
of this peak, increases up to a saturation value
of approximately T = 0.8. The height of that peak,
SNRmax also increases up to a saturation value that is
proportional to L. For the second peak (the main one),
the value of T increases almost linearly approximately
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Figure 6. External field (black line) and mean opinion m as
a function of time t for L = 256, H0 = 0.1, period P = 256
and three different social temperatures (up: T = 0.4, middle:
T = 1.0, down: T = 2.0) for interactions Cinf (dotted) and
D (dashed). The continuous line represent the external signal.
Left side: one single simulation. Right side: average over 500
realizations.

from T = 1.0 to T = 1.6. The value of SNRmax also
increases initially linearly up to a saturation value
proportional to L.

When C is considered with range n equivalent to the
size of the system this means that we randomly select
three agents: i, then we take agent i + 1, j (excluding i
and i + 1) and k (excluding agents i, i + 1 and j). This
particular case of model C will be called model Cinf .
We will now compare models A, Cinf and D (with the
four agents selected at random).

Figure 6 depicts the evolution of the mean opinion m
with time for interactions Cinf and D, at three different
temperatures. On the left side one single simulation and
on the right side the average over 500 realizations can
be seen. At low temperatures (T = 0.4 in this case), the
mean opinion takes the value 1 or −1; for D it presents
an oscillation following the external signal, while for
model Cinf the oscillations near −1 (in this case) seem to
be very noisy. At intermediate temperatures (T = 1.0 in
this case) the Cinf model shows on one side oscillations
following the signal which, from time to time, it jumps
to the other side (with respect to 0), in a seemingly
random way. For model D, m oscillates following the
signal but at one side with respect to 0 (near 1 in
this case). At relatively high temperatures (T = 2.0 in
this case), m oscillates around 0 following the external
signal, for both models.

Figure 7 depicts the histograms for the values of m
for interactions A (up), Cinf (middle) and D (down)
at five different temperatures. At T = 0, m takes the

Figure 7. Histograms of distribution probabilities of m for H0 =
0.1, P = 256, L = 512 and five different temperatures. Average
over 1024 simulations. Up: interaction A. Middle: interaction
Cinf . Down: interaction D.

Figure 8. SNR as a function of T for interactions A (1), Cinf
(2) and D (3), for the case of L = 256, H0 = 0.1 and period
P = 256.

value 1 or −1 in the three cases, but for D we can see
that there is a probability of finding m near ±0.9 due
to the periodic oscillations of the mean opinion. As
temperature increases, the distribution of m tends to
concentrate around 0, specially for A. Meanwhile, for
interaction Cinf the tendency is the same but | m | is
higher than for A at each temperature. For model D,
| m | is higher than for Cinf at each temperature and, not
even for high temperatures, does it concentrate close to
0. The histograms are symmetrical around 0 in all cases.
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Finally, figure 8 illustrates SNR as a function of T
for interactions A, Cinf and D. Note the logarithmic
scale in the vertical axes. For A, at low temperatures
the SNR is very low and it increases up to a maximum
value for T = 1.4 approximately. After that, it starts
to decrease monotonically but with a slope smaller
than the one it previously increases with. For Cinf the
tendency is similar, but two maximums with a valley
between them can be observed, with a minimum at
T = 1.0 approximately and the two peaks at T = 0.8
and T = 1.5. For interaction D, the SNR is very high
at low temperatures and then it starts to decrease until
a minimum value for T = 1.3. Then it increases until
a maximum for T = 2.0 and then it starts to decrease
again, following for high values of T , the same tendency
than interactions A and Cinf .

4. Conclusions
To summarize, we have studied a modified Sznajd
model, where the presence of contrarians, is introduced
in a probabilistic way by means of a social temperature.
The model also includes the effect of fashion or
propaganda, introduced as an external periodic field,
which influence the agents’opinion in one or other
direction.

Each selected agent has two possibilities, i.e. to adopt
some particular opinion according to rule R1, or to do
exactly the opposite (that is, to be a ”contrarian“). In
each case, the probability of being a contrarian depends
on the social temperature and the external field and
gives to the model some random behavior that allows
the possibility for the stochastic resonance phenomenon
to exist.

When studying the SNR of the Fourier transform for
the system’s response as a function of temperature, we
found a stochastic resonance phenomenon. This finding
means that the signal-to-noise curve presents a peak,
at a given social temperature for which the SNR is
maximum.

A modification to the Sznajd rule was introduced
in the sense that the selected agents were choosen
not only in a consecutive way, but also within some
range in the lineal array. In other words, we have
studied what happens to the Sznajd model when
non local interactions between agents take place. This
modification induces a new resonance behavior, namely
the occurrence a second peak in the curves of SNR
vs. T, indicating a kind of double stochastic resonance
phenomenon. To the best of our knowledge it is the
first time thet such a phenomenon is reported within
an opinion formation framework.

The relationship between the peaks and the distance
between the neighbors was also studied, finding that
the main resonant social temperature (peak 2) is
independent of it, while, for the case of the second

resonant peak (peak 1), such a dependence is only weak.
Our results seem to indicate that, even in the case of a
society which is not highly polarized, with little social
turmoil, an adequate level of propaganda could result
in an even stronger support to the majority’s opinion.

Other aspects of non local effects on the modified
Sznajd model behavior will be the subject of further
work.
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