
A survey on distributed approaches to graph based
reputation measures

Konstantin Avrachenkov
INRIA Sophia Antipolis

2004 Route des Lucioles
06902 France

kavratch@sophia.inria.fr

Danil Nemirovsky
INRIA Sophia Antipolis

France, and
St.Petersburg State University

Russia
dnemirov@sophia.inria.fr

Kim Son Pham
St. Petersburg State University

Russia
sonsecure@yahoo.com.sg

ABSTRACT
Reputation systems are indispensable for the operation of
Internet mediated services, electronic markets, document
ranking systems, P2P networks and Ad Hoc networks. Here
we survey available distributed approaches to the graph based
reputation measures. Graph based reputation measures can
be viewed as random walks on directed weighted graphs
whose edges represent interactions among peers. We clas-
sify the distributed approaches to graph based reputation
measures into three categories. The first category is based
on asynchronous methods. The second category is based
on the aggregation/decomposition methods. And the third
category is based on the personalization methods which use
the information available locally.

1. INTRODUCTION
Trust and reputation are imperative for Internet mediated

service provision, electronic markets, document ranking sys-
tems, P2P networks and Ad Hoc networks. It is necessary to
distinguish clearly between the notions of trust and reputa-
tion. Following the works [16, 26], we can define Trust as the
extent to which one party is willing to depend on something
or somebody with a feeling of relative security, even though
negative consequences are possible. And we can define Rep-
utation as what is generally said or believed about a person’s
or thing’s character or standing. Thus, Reputation is a more
objective notion and Trust is a more subjective one. Repu-
tation is typically acquired over a long time interval, whereas
Trust is based on a personal reflection before taking a de-
cision to interact with another person. In other words, the
reputation about a person or a thing is given by the society
and the trust is a decision taken by an individual member
of the society to rely on the other party. The estimation of
trust is quite application specific. Examples of trust metrics
for instance can be found in [16, 19, 26] and in references
therein. The computation of reputation measures is less ap-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SMCTools’07, October 26, 2007, Nantes, France
Copyright 2007 ICST 978-963-9799-00-4.

plication specific. Many reputation systems are based on
graph centrality measures. A social/information network
is typically represented by a directed/undirected/weighted
graph. If the graph is directed, an edge from node A to
node B signifies that node A recommends node B. Here we
review distributed approaches to the graph based central-
ity/reputation measures. The distributed approaches are
particularly needed for large systems such as WWW or P2P
networks. Intuitively, graph centrality measures are based
on the following two observations: (a) it is more likely that
individuals will interact with friends of friends than with un-
known parties. This is so-called transitivity of trust; and (b)
individuals incline to trust more somebody who is trusted by
some of their friends with high reputation. As case studies of
the graph based reputation systems we shall take PageRank
[29] and TrustRank [19]. The other graph based reputation
measures appear to be modifications of the latter ones.

PageRank [29] is one of the principle criteria according
to which Google search engine ranks Web pages. The basic
idea of PageRank algorithm is to use the hyper-links as in-
dication that one Web page recommends another Web page.
Also, PageRank can be interpreted as the frequency that a
random surfer visits a Web page. Thus, PageRank reflects
the popularity and reputation of a Web page. The formal
definition of PageRank is as follows: Denote by n the total
number of pages on the Web and define the n × n hyper-
link matrix P as follows. Suppose that page i has k > 0
outgoing links. Then pij = 1/k if j is one of the outgoing
links and pij = 0 otherwise. If a page does not have out-
going links, we call it a dangling page, and the probability
is spread among all pages of the Web with some distribu-
tion v, namely, pij = vj . In order to make the hyper-link
graph connected, it is assumed that a random surfer goes
with some probability to an arbitrary Web page with the
distribution v. In the standard PageRank formulation, this
distribution is chosen to be uniform. Thus, the PageRank is
defined as a stationary distribution of a Markov chain whose
state space is the set of all Web pages, and the transition
matrix is

G = cP + (1− c)ev, (1)

where e is a vector whose all entries are equal to one, v =
1
n
eT , and c ∈ (0, 1) is the probability of following a link on

the page and not jumping to a random page (it is chosen by
Google to be 0.85). The constant c is often referred to as a
damping factor. The Google matrix G is stochastic, aperi-
odic, and irreducible, so there exists a unique row vector π

such that

πG = π, πe = 1. (2)

The row vector π satisfying (2) is called a PageRank vector,
or simply PageRank.

There is a drawback of PageRank as a reputation measure.
All outgoing links from a node provide equal contributions.
However, in many applications one node can have worse or
better experience when interacting with another node and
consequently, the relations between two nodes can have dif-
ferent level of trust. This factor was taken into account in
[19, 35, 36]. Namely, now the entries of matrix P are not
simply defined as uniform distributions over the outgoing
links, but represent levels of trust the node has in respect
to his peers. Thus, we could regard the TrustRank measure
as a random walk on a weighted graph. We would like to
mention that the other works that study the reputation sys-
tems for P2P networks are [30, 31, 33]. The authors of [35,
36] apply the graph based reputation measures to Semantic
Web and the authors of [8] suggest to use the graph based
reputation measures in mobile Ad Hoc networks.

Since PageRank and TrustRank are only different in the
definition of the entries of matrix P , many algorithms de-
signed for one reputation rank metric will work for the other
reputation rank metric. Thus, in our survey, if an algorithm
can be applied to either PageRank or TrustRank, we simply
denote the outcome of the algorithm as a Rank vector. In
particular, to find the value of the Rank vector, it is often
convenient to transform the eigenproblem based definition
to an equivalent form of the linear system [25, 21]:

π = πcP + (1− c)v. (3)

The structure of the paper is organized as follows: In Sec-
tion 2 we review the asynchronous approaches to the graph
based reputation measures. Then, in Section 3 we review the
aggregation/decomposition approaches. In fact, the aggre-
gation/decomposition approaches can be regarded as some
limiting cases of the asynchronous approaches. However, the
class of aggregation/decomposition approaches is large and
it deserves a special section. Finally, in Section 4 we review
the personalized approach to the graph based reputation
measures. The personalized approach uses the information
available locally. This is a natural approach to the repu-
tation measures as the reputation discounts quickly in the
chain of acquaintances.

2. ASYNCHRONOUS APPROACH
The most standard way for the computation of the Rank

vector is the method of power iteration. Namely, in the
power iteration method one just needs to iterate equation
(3).

π(t+1) = π(t)cP +
1− c

n
eT , t = 0, 1, ... , (4)

with π(0) = 1
n
eT . Since the matrix cP is substochastic,

the algorithm converges. Furthermore, its convergence rate
is bounded by c [12]. The number of FLOPS required to
achieve the accuracy ε is equal to log ε

log c
nnz(P), where nnz(P)

is the number of nonzero elements of the matrix P [32]. Even
though an implementation of the power iteration method for
sparse matrices can be very efficient, one still would like to
distribute its computation. The reasons for this are two-fold.

Firstly, the computation on parallel computers can signifi-
cantly accelerate the basic algorithm. In particular, one can
apply GRID technology [9]. Secondly, in some applications
like P2P network a distributed approach to the computation
of reputation measures is indispensable. Below we review de-
terministic and stochastic approaches to the asynchronous
computation of the graph based reputation measures.

The asynchronous iterations for the solution of fixed point
linear systems like (3) was proposed in [6]. The class of
asynchronous iterative methods of [6] can be described as
follows:

x
(t+1)
j =

{ ∑n
i=1 cPijπ

(t−d(t,i,j))
i + 1−c

n
if j ∈ U(t),

x
(t)
j if j 6∈ U(t),

(5)

where the function U(t) gives a set of states to be updated
at each step, and the function d(t, i, j) gives the relative
“age” of the entries used in the updates. Then, from [13,
14] we have the following result about the convergence of
asynchronous methods.

Theorem 1. Let the functions U(t) and d(t, i, j) satisfy
the following conditions:

1. Each vector entry, j, features in an infinite number of
update sets;

2. For each pair of vector entries, i and j, we have that
(t−d(t, i, j)) →∞ as t →∞ as well as ∀t : d(t, i, j) ≤
t.

Then, if the spectral radius of cP is strictly less than one,
every sequence of iterates within the class given by (5) con-
verges to the unique fixed point.

The authors of [20] have shown that the asynchronous
iterates also converge in the eigenproblem formulation with
the largest eigenvalue equal to one.

Monte Carlo method provides a framework for the con-
struction of stochastic asynchronous methods [2, 5]. Let us
for example describe one particular method from [2].

Algorithm 1. Simulate N runs of the random walk ini-
tiated at a randomly chosen node. For any node j, evalu-
ate πj as the total number of visits to node j multiplied by
(1− c)/N .

We note that the random walks are generated indepen-
dently, which provides a natural framework for distributed
implementation. As was shown in [2], to find nodes with
high reputation it is enough to simulate the random walk a
number of times equal to the number of nodes. This is in
turn equivalent to the complexity of just one iteration of the
power iteration method.

3. AGGREGATION/DECOMPOSITION AP-
PROACH

Aggregation/decomposition methods (A/D methods) for
computation of the Rank vector use the decomposition of
the set of pages which we denote by I. Let us assume that
the set I is decomposed into N 6 n non-intersecting sets

I(i), i = 1, . . . , N , such that

I(1) = {1, . . . , n1} ,

I(2) = {n1 + 1, . . . , n1 + n2} ,
...

I(N) =
{∑N−1

i=1 ni + 1, . . . ,
∑N

i=1 ni

}
,

(6)

with
∑N

i=1 ni = n.
According to the decomposition of the set of pages the

transition matrix can also be partitioned as follows:

P =


P11 P12 . . . P1N

P21 P22 . . . P2N

...
...

. . .
...

PN1 PN2 . . . PNN

 ,

where Pij is a block with dimension ni × nj . In the same
manner the Google matrix G can be presented in blocks,

G =


G11 G12 . . . G1N

G21 G22 . . . G2N

...
...

. . .
...

GN1 GN2 . . . GNN

 . (7)

Following the partitioning of the Google matrix, the Rank
vector is partitioned into components:

π = (π1, π2, . . . , πN), (8)

where πi is a row vector with dim(πi) = ni. All aggrega-
tion methods use an aggregation matrix A. The matrix A
is a matrix whose each element corresponds to a block of
matrix G, i.e. aij ↔ Gij . Typically the elements of the
matrix A are formed as aij = ζiGije, where ζi is a probabil-
ity distribution vector. We call the vector ζi the aggregation
vector. Each aggregation method forms the aggregation ma-
trix in its own way using different probability distributions
as aggregation vectors and different partitioning. One can
consider the aggregated matrix as a transition matrix of a
Markov chain with state space formed by sets of pages.

The convergence rate of an aggregation method depends
on the choice of the decomposition. The aggregation method
converges faster than power iteration method if off-diagonal
blocks Pij are close to zero matrix. It means that the ran-
dom walk performed by the transition matrix G most likely
stays inside sets I(i) and with small probability goes out.

In the following discussion the aggregation methods are
applied to the Google matrix (1) and the Rank vector (2),
but some of them can be applied to a general (irreducible or
primitive) stochastic matrix and its stationary probability
distribution.

3.1 Block-diagonal case
Let us consider the case when all blocks excluding the

diagonal ones are zeroes [1], i.e.

P =


P1 0 . . . 0
0 P2 . . . 0
...

...
. . .

...
0 0 . . . PN

 .

Since P is a stochastic matrix then all Pi are stochastic. For

the ith block define the Google matrix

Gi = cPi + (1− c)(1/ni)ee
T ,

where the vector e has an appropriate dimension. Let vector
πi be the Rank vector of Gi,

πi = πiGi.

Then the original Rank vector π is expressed by

π =
(n1

n
π1,

n2

n
π2, . . . ,

nN

n
πN

)
.

The block-diagonal structure of the matrix P allows to pro-
duce computation of each component of the Rank vector in
absolutely independent way from the other components.

3.2 Full aggregation method (FAM)
The method is based on the theory of stochastic comple-

ment and the coupling theorem [24]. Here we introduce it
for the completeness.

Definition 1 (Stochastic complement). For a given
index i, let Gi denote the principal block submatrix of G ob-
tained by deleting the ith row and ith column of blocks from
G, and let Gi∗ and G∗i designate

Gi∗ = (Gi1Gi2 · · ·Gi,i−1Gi,i+1 · · ·GiN)

and

G∗i =



G1i

...
Gi−1,i

Gi+1,i

...
GNi


.

That is, Gi∗ is the ith row of blocks with Gii removed, and
G∗i is the ith column of blocks with Gii removed. The stochas-
tic complement of Gii in G is defined to be the matrix

Si = Gii + Gi∗(I −Gi)
−1G∗i.

Theorem 2 ([24, Theorem 4.1] Coupling theorem).
The Rank vector of the Google matrix G partitioned as (7)
is given by

π = (ν1σ1, ν2σ2, . . . , νNσN) ,

where σi are the unique stationary distribution vector for the
stochastic complement

Si = Gii + Gi∗(I −Gi)
−1G∗i

and where

ν = (ν1, ν2, . . . , νN)

is the unique stationary distribution vector for the aggrega-
tion matrix A whose entries are defined by

aij = σiGije.

In respect to the scope of the survey, Theorem 2 is given
in application to the Google matrix. For the most general
formulation of the theorem an interested reader is referred
to [24]. Theorem 2 implies that the Rank vector can be
found by the exact aggregation but it forces to compute the
stochastic complements of diagonal blocks and their station-
ary distributions. One can avoid it by using approximate
iterative aggregation method.

Algorithm 2. Determine an approximation π(k) to the
Rank vector π of a Google matrix G in k iterations.

1. Select a vector π(0) =
(
π

(0)
1 , π

(0)
2 , . . . , π

(0)
N

)
with π(0)e =

1.

2. Do k = 0, 1, 2 . . .

(a) Normalize σ
(k)
i = [π

(k)
i], i = 1, . . . , N.

(b) Form aggregated matrix A(k)

aij = σ
(k)
i Gije.

(c) Determine the stationary distribution ν(k) of A(k)

ν(k) = ν(k)A(k).

(d) Determine disaggregated vector

π̃(k) =
(
ν

(k)
1 σ

(k)
1 , ν

(k)
2 σ

(k)
2 , . . . , ν

(k)
N σ

(k)
N

)
.

(e) Do l steps of power iteration method

π(k+1) = π̃(k)Gl.

The Rank vector is the fix point of Algorithm 2. Indeed, if
π(k) = π, then A(k) = A and ν(k) = ν. Therefore, π̃(k) = π,
and π(k+1) = π.

For the local convergence of the Algorithm 2 it is required
to fulfill one of the conditions:

1. G � 0 and G > δQ, where Q = eπ,

2. G > eb, where b is a row vector, be = δ.

Since the Google matrix satisfies the both conditions, Al-
gorithm 2 converges locally [23, Theorem 1]. Algorithm 2
also converges globally if l is large enough [23].

Let us provide an estimation of the rate of convergence of
Algorithm 2 [27].

1. Consider the condition G > δ1Q. Let us find δ1. De-
note by gmin the minimum entry of the matrix G. If
pij = 0 then gij = gmin. Hence,

gmin =
1− c

n
. (9)

The maximum of the elements of the Rank vector π is
achieved when all the other elements achieving mini-
mum, because of π > 0 and πe = 1. The minimum
entry of the Rank vector for a page is realized if there
is no other page referring to it. The minimum entry
of the Rank vector is 1−c

n
. Therefore the maximum of

one of the element of the Rank vector is equal to

πmax = 1− 1− c

n
(n− 1) =

1 + c(n− 1)

n
. (10)

Hence, if we find δ1 from the constraint

gmin > δ1πmax, (11)

it ensures that G > δ1Q. From the equalities (9), (10)
and (11) we get

δ1 6
1− c

1 + c(n− 1)
.

2. Consider the condition G > eb, where be = δ2. Let
us determine δ2. From the equalities (1) we obtain,
that G > 1−c

n
E. The equality can be rewritten as

G > e
(

1−c
n

eT
)
. Therefore, as the vector b one can

take
(

1−c
n

eT
)
. Hence,

δ2 = 1− c.

The error vector of the method at the kth iteration is given
by

π(k+1) − π = (π(k) − π)J(π(k)).

The definition and expressions for the matrix J(v) can be
found in [23].

From the above estimation and [23] we can conclude that
the spectral radius of the matrix J(π):

1. is less than 1− δ1 = cn
1+c(n−1)

< 1,

2. is less than
√

1− δ2 =
√

c < 1.

For n big enough the second estimation becomes better
than the first one. The second estimation ensure that the
convergence rate of the method is no less than

√
c. Un-

fortunately, the estimation does not ensure that the method
converges faster than the power iteration method. Neverthe-
less, for the partial aggregation method which is discussed
in the next subsection and is actually a particular case of
the full aggregation method it was shown that there ex-
ists such partitioning of the Google matrix which provides
faster convergence than the convergence of the power itera-
tion method.

3.3 Partial aggregation method (PAM)
The partial aggregation method is considered in detail

in [10]. Here we discuss the application of the method to
the Google matrix and the Rank vector. The method is ap-
plied to the 2 × 2 case, i.e. N = 2, and the matrix G is
partitioned as follows

G =

(
G11 G12

G21 G22

)
.

The matrix I − G is singular, but the matrix I − G11 is
nonsingular [3]. Hence we can factor I − G = LDU [24,
proof of Theorem 2.3], where

L =

(
I 0

−G21(I −G11)
−1 I

)
,

D =

(
I −G11 0

0 I − S2

)
,

U =

(
I −(I −G11)

−1G12

0 I

)
,

where S2 is a stochastic complement of the block G22.
Since the matrix U is nonsingular we have π(I − G) = 0

if and only if πLD = 0. Hence

π2S2 = π2 π1 = π2G21(I −G11)
−1, (12)

which means that π2 is a stationary distribution for the ma-
trix S2. The expression (12) represents a particular case of
Theorem 2 for the 2×2 decomposition of the transition ma-
trix [24, Colorary 4.1]. The matrix S2 has unique stationary
distribution

σ2S2 = σ2, σ2e = 1.

And we can find π2 as π2 = ρσ2, where the factor ρ is chosen
to satisfy the normalization condition πe = 1.

The component π1 and the factor ρ can be expressed as
components of the stationary distribution of the aggregated
matrix

A1 =

(
G11 G12e

σ2G21 σ2G22e

)
.

From (12), π2 = ρσ2 and σ2e = 1 we get

(π1, ρ)(I −A1) = 0, (π1, ρ)e = 1.

Since A1 is stochastic and irreducible [24, Teorem 4.1], it
has a unique stationary distribution α,

αA2 = α, αe = 1.

By the uniqueness we get α = (π1, ρ).
The above analysis imply that the Rank vector can be

found by the partial exact aggregation but it forces to com-
pute the stochastic complement of G22 block of the Google
matrix G and its stationary distribution. One can avoid it by
using the approximate iterative partial aggregation method.

Algorithm 3. Determine an approximation π(k) to the
Rank vector π of a Google matrix G in k iterations.

1. Select a vector π(0) =
(
π

(0)
1 , π

(0)
2

)
with π(0)e = 1.

2. Do k = 0, 1, 2 . . .

(a) Normalize σ
(k)
2 = [π

(k)
2].

(b) Form aggregated matrix A
(k)
1

A
(k)
1 =

(
G11 G12e

σ
(k)
2 G21 σ

(k)
2 G22e

)
.

(c) Determine the stationary distribution α(k) of A
(k)
1

α(k) = α(k)A
(k)
1 .

(d) Partition α(k)

α(k) = (ω
(k)
1 , ρ(k)).

(e) Determine disaggregated vector

π̃(k) =
(
ω

(k)
1 , ρ(k)σ

(k)
2

)
.

(f) Do l steps of power iteration method

π(k+1) = π̃(k)Gl.

Let us consider l = 1. Algorithm 3 is the power iteration

methods with matrix G̃ [10, Proposition 5.1, Theorem 5.2],
where

G̃ =

(
0 0

G21(I −G11)
−1 S2

)
Therefore, the rate of convergence of Algorithm 3 is equal
to |λ2(S2)| [10, Theorem 5.2]. If power iteration methods
converges for matrix G then Algorithm 3 converges, too [10,
Proposition 7.1]. If we consider a general stochastic ma-
trix instead of the Google matrix Algorithm 3 can converge
slower than the power iteration method [10, Example 6.3],
but for the Google matrix there always exists such decompo-
sition which ensures that Algorithm 3 converges faster than
the power iteration method.

3.4 BlockRank Algorithm (BA)
The next method exploits the site structure of the Web.

According to the experiments made by the authors of [17]
the majority of links are the links between pages inside Web
sites. Hence, we can decompose the set of pages I into the
subsets according to the Web sites, i.e. I(i) is the set of
the pages of site i. Then, the Google matrix is partitioned
according to the decomposition of I.

Algorithm 4. Determine an approximation π(k) to the
Rank vector π of the Google matrix G in k iterations.

1. Determine local Rank vector for each diagonal block Pi

(a) Normalize Pi, i.e.
(
P̄i

)
jk

=
(Pi)jk

(Pi)j1
.

(b) Form Gi, Gi = cP̄i + (1− c)(1/n)E.

(c) Approximately determine π̄i

i. Select a vector π
(0)
i .

ii. Do k = 1, 2 . . .

π
(k)
i = π

(k−1)
i Gi.

2. Determine BlockRank

(a) Form aggregated matrix A

aij = π̄iPije.

(b) Form B, B = cA + (1− c)(1/n)E.

(c) Approximately determine β

i. Select a vector β(0).

ii. Do k = 1, 2 . . .

β(k) = β(k−1)B.

3. Determine global Rank vector

(a) Form the vector π(0) = (β1π̄1, β2π̄2, . . . , βN π̄N).

(b) Do k = 1, 2 . . .

π(k) = π(k−1)G.

It was empirically shown that Algorithm 4 is faster than
the power iteration method by at least the factor of two [17].

3.5 Fast Two-Stage Algorithm (FTSA)
The next method also exploits the structure of the Web

and in particular the presence of dangling nodes [22]. The
main idea of the method is to lump dangling nodes into one
state and find the Rank vector of the new aggregated matrix
at the first stage and to aggregate non-dangling pages into
one state at the second stage. Therefore, the set of pages
is decomposed into two sets I1 and I2, where I1 ∪ I2 = I,
and I1 contains all non-dangling pages and I2 contains all
dangling pages. Hence, the matrix G is represented in the
following way:

G =

(
G11 G12

en1vn1 en2vn2

)
,

where e =
(
eT

n1 , eT
n2

)T
and v = (vn1 , vn2).

Algorithm 5. Determine an approximation π(k) to the
Rank vector π of the Google matrix G in k iterations.

1. The first stage: lump dangling pages

(a) Form the lumped matrix G(1)

G(1) =

(
G11 G12en2

vn1 vn2en2

)
.

(b) Approximately determine π1

i. Select a vector π
(0)
1 .

ii. Do k = 1, 2 . . .

π
(k)
1 = π

(k−1)
1 G(1).

(c) Determine aggregation weights of the second stage

η =
π1∑n1

i=1(π1)i
.

2. The second stage: aggregate non-dangling pages

(a) Form aggregated matrix G(2)

G(2) =

(
ηG11en1 ηG12

vn1en1 en2vn2

)
.

(b) Approximately determine π2

i. Select a vector π
(0)
2 .

ii. Do k = 1, 2 . . .

π
(k)
2 = π

(k−1)
2 G(2).

3. Form the Rank vector

π = (π1, π2) .

The first stage requiring less computation work than the
power iteration method does, roughly O(n1) as opposed to
O(n) per iteration, and converges at least as fast as the
power iteration method. The second stage usually converges
to after about three iterations. If the second stage does not
converge after about three iterations the acceleration based
on Aitken Extrapolation [18] can be applied:

(π2)i =

((
π

(2)
2

)
i
−

(
π

(1)
2

)
i

)2

(
π

(3)
2

)
i
− 2

(
π

2)
2

)
i
+

(
π

(1)
2

)
i

.

3.6 Distributed PageRank Computation (DPC)
The following method is designed for distributed computa-

tion of the Rank vector [34]. The set of pages is decomposed

by sites, i.e. I(i) is the pages of site i. The main idea of the
method is to allow each site to compute the Rank vector for
local pages and after that construct the entire Rank vector.
We refer to a site as a super-node which can independently
perform computations.

Let S(π) denote a N × n disaggregation matrix as

S(π) =


S(π)1 0 . . . 0

0 S(π)2 . . . 0
...

...
. . .

...
0 0 . . . S(π)N

 ,

where S(π)i = [πi] is a row vector denoting the censored
stationary distribution of pages in site i. Also let us denote
by Gi the ith block row of the matrix G partitioned as (7),
i.e.

Gi = (Gi1, Gi2, . . . , GiN) .

Algorithm 6. Determine an approximation π(k) to the
Rank vector π of the Google matrix G in k iterations.

1. For each super-node i

(a) Construct an ni × ni local transition matrix Ḡii,
i.e. normalize Gii(

Ḡii

)
jk

=
(Gii)jk

(Gii)j 1
.

(b) Determine the stationary distribution π
(0)
i for Gi.

2. Do k = 0, 1, 2, . . .

3. the central node

(a) Normalize σ
(k)
i = [π

(k)
i].

(b) Construct the aggregated matrix A(k) with

aij = σ
(k)
i Gije.

(c) Determine the stationary distribution ν(k) for A(k).

4. For each super-node i

(a) Construct an (ni + 1) × (ni + 1) extended local
transition matrix

B
(k)
i

=


Gii eT (

I − Gii
)(

ν(k)S(π(k))Gi−ν
(k)
i

π
(k)
i

Gii

)
1−ν

(k)
i

αk

 ,

where the scalar αk ensures the row sum of B
(k)
i

is one.

(b) Determine the stationary distribution bk
i for B

(k)
i .

(c) Partition bk
i

bk
i = (ω

(k)
i , β

(k)
i),

where β
(k)
i is a scalar.

(d) Form local vector π̃
(k)
i

π̃
(k)
i =

1− ν
(k)
i

β
(k)
i

ω
(k)
i .

5. The central node

(a) Construct vector π̃(k)

π̃(k) =
(
π̃

(k)
1 , π̃

(k)
2 , . . . , π̃

(k)
N

)
.

(b) Normalize π(k) = [π̃(k)].

The method is proved to be equivalent to iterative aggre-
gation/disaggregation method based on Block Jordan de-
composition [34]. The main advantage of this method is that
it provides a distributed way to calculate the Rank vector,
at the same time the communication overhead is not high
due to only scalars and vector are being sent between nodes
and not matrices. The entire communication overhead is of
the magnitude O(nnz((L̄ + Ū)S(π))) + O(n), where L̄ and
Ū are low-triangular and upper-triangular matrices of the
matrix P , respectively.

3.7 Discussion of the A/D methods
The considered A/D methods can be classified into two

groups. Whiles FAM and PAM are general methods which
can be applied to any decomposition of the set of nodes, BA
and FTSA propose to use a particular decomposition. The
rate of convergence of FAM and PAM essentially depends
on the chosen decomposition. The questions of “optimal”
decomposition of the set of nodes and convergence acceler-
ation are still not fully answered. BA and FTSA methods
have made a step in the direction of solving the both ques-
tions. Whilst the BA method accelerates the power itera-
tion method, the FTSA method converging as fast as the
power iteration method reduces the dimension of matrices
and vectors used in iterations. The DPC method, being
distributed and parallel method, converges like aggregation-
disaggregation method and at the same time has low com-
munication overhead.

4. PERSONALIZED APPROACH
The above presented algorithms compute the global rep-

utation measure. Namely, to calculate the Rank vector we
need an input (may be indirect) from all the nodes. However,
the reputation discounts quickly in the chain of acquain-
tances. This provides a motivation to consider “localized” or
“personalized” versions of the graph based reputation mea-
sures. Furthermore, one often needs to encompass different
notions of importance or reputation for different users and
queries. Thus, the original algorithm should be modified to
take into account personalized view for the reputation of the
nodes.

As we mentioned in the introduction, in general a random
walk follows the outgoing links with probability c, and makes
a random jump with probability (1 − c) according to the
probability distribution given in v. Depending on the “type”
of users, vector v will not be uniform, but biased to some
set of nodes, which are considered to be important for these
“types” of users. For this reason, the vector v is referred
as personalization vector. Let π(v) denote the personalized
Rank vector (PRV), corresponding to the personalization
vector v. It can be computed by solving the equation π =
πG

π = πcP + (1− c)v,

π − πcP = (1− c)v,

π(I − cP) = (1− c)v.

Since c is different from one, the matrix (I−cP) is invertible
and we have

π(v) = v(1− c)(I − cP)−1. (13)

Let Q = (1− c)(I − cP)−1. By letting v = eT
i

1 we see that
π(ei) = Qi− the ith row of Q. Thus, rows of Q comprise a
complete basis for personalized Rank vectors. Any PRV can
be expressed as a convex linear combination of these basic
vectors. This statement is based on the following theorem:

Theorem 3. Given two arbitrary π1, π2 PRVs and v1, v2

are their corresponding personalization vectors. Then, for
any constant α1, α2 > 0 such that α1 + α2 = 1

α1π1+α2π2 = c(α1π1+α2π2)P +(1−c)(α1v1+α2v2) (14)

1ei has 1 in ith place, and 0 elsewhere.

For any personalization vector v, the corresponding PRV is
given by : vQ. Unfortunately, approach to use the complete
basis for the personalized Rank vector is infeasible in prac-
tice. Computing the dense matrix Q off line is impractical
due to its huge size. However, rather than using the full
basis, we can use a reduce basis with k < n vectors. In
this case, we can not express all PRVs but only those corre-
sponding to convex combinations of the vectors in reduced
basis set

π(ω) = wQ̂. (15)

4.1 Scaled Personalization
In [15] the authors have presented a method that enables

the computation of PRVs which scales well with the increas-
ing number of users. The authors of [15] have developed
their method in the context of information retrieval. Then,
the authors of [7] have adopted the method of [15] to the
reputation management in P2P networks. In this survey,
we also present a broader reputation measure based inter-
pretation of the algorithm of [15]. We would like to mention
that the division of the users in two groups: pre-trusted
peers and regular users provide yet another application of
the results of [7, 15] in the context of Bionets [4].

The central notion of the scaled personalization algorithm
is the set of pre-trusted peers (or hub peers). A regular
pear can choose some of pre-trusted peers. This does not
mean that the hub peers selected by a user more trustworthy
than the other hub peers. This simply means that a user
might prefer certain hub peers because they supply a specific
service of a very good quality. Next let us describe several
stages of the scaled personalization algorithm.

Specification.
Let us consider a set of the personalization vectors uh

where uh = eh is biased to a specific hub node h ∈ H. We
denote by H the set of hub nodes. The personalized Rank
vector corresponding to uh is called a basis hub vector πh.
If the basis vector for each hub node h ∈ H is computed
and stored, then, by Theorem 3 any PRV corresponding to
a preference set P ⊆ H can be computed. The preference
set P corresponds to the set of hub nodes chosen by a user
as preferred pre-trusted peers.

Each hub vector can be computed naively by power method.
However, this task is very expensive in time and resources.
The algorithm of [15] enables a more scalable computation
by constructing hub vectors from shared components.

Decomposition of Basis Vectors.
To compute a large number of basis hub vectors efficiently,

one can decomposed them into partial vectors and hubs
skeleton, components from which hub vectors can be con-
structed quickly.

Let define the inverse P-distance r′p(q) from p to q as

r′p(q) =
∑

t:p q

P [t](1− c)cl(t), (16)

where the summation is taken over all tours t, starting from
p and finishing at q, possibly visiting p and q more than one
time, l(t) is the length of the tour, and P [t] is the probability
of taking the tour t.

Consider tour t =< w1, . . . , wk >, then

P [t] =

k−1∏
i=1

1

Outdeg(wi)
,

or 1, if l(t) = 0. If there is no any tours from p to q,
the summation is taken to be equal to 0. It is proven that
πp(q) = rp(q) [15].

Let us also define the restricted inverse P-distance. Let
H ⊆ V be some nonempty set of nodes. For p, q ∈ V , rH

p (q)
is defined as a restriction of rp(q) that considers only tours
from p to q that pass through H, that is,

rH
p (q) =

∑
t:p H q

P [t](1− c)cl(t). (17)

Intuitively, rH
p (q) is the influence of p on q through H. Ob-

viously, if all paths from p q come through H, then
rH

p (q) = rp(q). For carefully chosen H, rp(q) − rH
p (q) = 0

for many pages p, q. The strategy is to take advantage of
this property by breaking rp into components (rp− rH

p) and

rH
p .

πp = rp = (rp − rH
p) + rH

p . (18)

The vector (rp − rH
p) is called the partial vector. Comput-

ing and storing partial vectors is cheaper, since they can be
represented as a list of their nonzero entries. Moreover, the
size of each partial vector will decrease as H increases in
size, making this approach particularly scalable. It can be
proven that any rH

p vector can be expressed in terms of the

partial vectors (rh − rH
h) for h ∈ H (see the Hub Theorem

in [15]).

Theorem 4. For any p ∈ V, H ⊆ V ,

rH
p =

1

1− c

∑
h∈H

(rp(h)− (1− c)xp(h))(rh − rH
h − (1− c)xh),

(19)

where xh = eh. The quantity (rh−rH
h) appears on the right

hand side of (19) is the partial vector. Suppose we have
computed rp(H) = {(h, rp(h))|h ∈ H} for a hub node p.
Substituting it into equation (18) gives

rp = (rp − rH
p)+

1

1− c

∑
h∈H

(rp(h)− (1−c)xp(h))[(rh−rH
h)− (1−c)xh]. (20)

The equation is central to the construction of hub vectors
from partial vectors. The set S = {rp(H)|p ∈ H} forms
the hubs skeleton, giving the interrelationships among par-
tial vectors. Computing (rp − rH

p), p ∈ H naively by power
method is inefficient due to the large number of hub nodes.
Three scalable algorithms for computing these partial vec-
tors, using dynamic programming are presented. All of them
are based on the decomposition theorem in [15].

Theorem 5. For any p ∈ V

rp =
c

|O(p)|

|O(p)|∑
i−1

rOi(p) + (1− c)xp (21)

where Oi(p) is the ith neighbour of node p.

The above theorem gives the interpretation for PRV. The p’s
view of rp is the average of the views of its out-neighbors,
but with extra importance given to p itself.

Construction of PRV’s.
Let u = α1p1 + . . . + azpz be a preference vector, where

pi ∈ H. Let

ru(h) =

z∑
i=1

αi(rpi(h)− c.xpi(h)). (22)

Then, the PRV π can be computed as follows:

π =

z∑
i=1

αi(rpi−rH
pi

)+
1

1− c

∑
h∈H

ru(h)[(rh−rH
h)−(1−c)xh].

(23)

The choice of H.
The choice of hub nodes can have a strong effect on the

overall performance. Particularly, the size of partial vectors
is smaller when pages in H have high Rank vector values,
since nodes with high Rank vector values are closer in term
of P-reverse distance to other pages. In the context of P2P
networks, it is natural for the members in the pre-trusted
peers to have high Rank values.

4.2 Relation to the A/D approach
Let us relate the Personalized Rank vector approach to

the A/D approach. The BlockRank algorithm proposed in
[17] computes n×k matrix corresponding to k blocks. Each
block corresponds to a host. Instead of choosing an uniform
distribution over pages to which the user jumps, we may
choose a distribution centered on hosts. So, we can encode
the personalization vector in the k-dimensional space. With
this adaptation the local Rank vector will not change for
different personalizations. Only the BlockRank depends on
the personalizations. Therefore, we only need to recompute
the BlockRank for each block-personalization vector. The
BlockRank algorithm is able to exploit the graph’s block
structure to compute efficiently many of the block-oriented
basis vectors.

Acknowledgments
This work was supported by the European project BioNets.
The authors would also like to thank Sara Alouf, Roberto
Cascella and the anonymous reviewer for the helpful sugges-
tions.

5. REFERENCES
[1] K. Avrachenkov and N. Litvak. “Decomposition of the

Google PageRank and Optimal Linking Strategy”.
INRIA Research Report no. 5101, 2004.

[2] K. Avrachenkov, N. Litvak, D. Nemirovsky and N.
Osipova, “Monte Carlo methods in PageRank
computation: When one iteration is sufficient”, SIAM
Journal on Numerical Analysis, v.45, no.2,
pp.890-904, 2007.

[3] A. Berman and R.J. Plemmons. “Nonnegative
Matrices in the Mathematical Sciences”. SIAM
Classics In Applied Mathematics, SIAM, Philadelphia,
1994.

[4] Biologically inspired Network and Services
(BIONETS): http://www.bionets.org/

[5] L.A. Breyer, “Markovian Page Ranking Distributions:
Some Theory and Simulations”, Technical report, 2002;
available online at
http://www.lbreyer.com/preprints.html.

[6] D. Chazan and W.L. Miranker, “Chaotic relaxation”,
Linear Algebra and its Applications, v.2, pp.199-222,
1969.

[7] P.A. Chirita, W. Nejdl, M. Schlosser, and O. Scurtu,
“Personalized reputation management in P2P
networks”, in Proceedings of the Trust, Security, and
Reputation Workshop, 2004.

[8] L. Eschenauer, V. Gligor and J. Baras, “On trust
establishment in mobile Ad Hoc networks”, in
Proceedings of Security Protocols Workshop, pp.47-66,
2002.

[9] I. Foster and C. Kesselman, (eds.) “The GRID:
Blueprint for a new computing infrastructure”,
Elsevier, San Francisco, 2004.

[10] C.F. Ipsen and S. Kirklad. “Convergence analysis of an
improved PageRank algorithm”. NCSU CRSC
Technical Report, 2004.

[11] T.H. Haveliwala, “Topic-Sensitive PageRank”, in
Proceedings of the 11th International World Wide
Web Conference, 2002.

[12] T.H. Haveliwala and S.D. Kamvar, “The Second
Eigenvalue of the Google Matrix”, Stanford University
Technical Report, March 2003.

[13] D. de Jager, “PageRank: Three distributed
algorithms”, Master thesis, Imperial College
(University of London), 2004.

[14] D. de Jager and J.T. Bradley, “Asynchronous iterative
solution for state-based performance metrics”, in
Proceedings of ACM SIGMETRICS 2007.

[15] G. Jeh and J. Widom, “Scaling Personalized Web
Search”, in Proceedings of the 12th International
World Wide Web Conference, 2003.

[16] A. Josang, R. Ismail and C. Boyd, “A survey of trust
and reputation systems for online service provision”,
Decision Support Systems, v.43, no.2, pp.618-644,
2007.

[17] S. Kamvar, T. Haveliwala, C. Manning, and G. Golub.
“Exploiting the block structure of the web for
computing pagerank”. Stanford University Technical
Report, 2003.

[18] S.D. Kamvar, T.H. Haveliwala, C.D. Manning, and
G.H. Golub, “Extrapolation methods for accelerating
PageRank computations”, in Proceedings of the 12th
International World Wide Web Conference, 2003.

[19] S.D. Kamvar, M.T. Schlosser and H. Garcia-Molina,
“The EigenTrust algorithm for reputation
management in P2P networks”, in Proceedings of the
12th International World Wide Web Conference, 2003.

[20] G. Kollias, E. Gallopoulos and D. Szyld,
“Asynchronous iterative computations with Web
information retrieval structures: The PageRank case”,
in Proceedings of the International Conference ParCo
2005. Parallel Computing: Current & Future Issues of
High-End Computing, pp.309-316.

[21] A.N. Langville and C.D. Meyer. “Deeper inside

pagerank”. Internet Mathematics, 1(3):335–380, 2005.

[22] Ch.P.Ch. Lee, G.H. Golub, and S.A. Zenios, “A fast
two-stage algorithms for computing PageRank”,
SCCM Report, 2002.

[23] I. Marek and I. Pultarova. “Two notes on local and
global convergence analysis of iterative
aggregation-disaggregation method” available on the
Web, 2005.

[24] C.D. Meyer and R.J. Plemmons. “Stochastic
complementation, uncoupling Markov chains, and the
theory of nearly reducible systems”. SIAM Rev., 1989.

[25] C.B. Moler. “Numerical Computing with MATLAB”.
SIAM, 2004.

[26] L. Mui, M. Mohtashemi and A. Halberstadt, “A
computational model of trust and reputation”, in
Proccedings of the 35th Hawaii International
Conference on System Sciences, 2002.

[27] D.A. Nemirovsky. “Analysis of iterative method for
PageRank computation based on decomposition of the
Web graph” Master thesis, St.Petersburg State
University, in Russian, 2005.

[28] The Open Directory Project www.dmoz.org

[29] L. Page, S. Brin, R. Motwani and T. Winograd, “The
PageRank citation ranking: Bringing order to the
Web”, Technical Report, Stanford Digital Library
Technologies Project , 1998.

[30] K. Sankaralingam, S. Sethumadhavan and J.C.
Browne, “Distributed pagerank for P2P systems”, in
Proceedings of the 12th IEEE International Symposium
on High Performance Distributed Computing, 2003.

[31] S.M. Shi, J. Yu, G.W. Yang and D.X. Wang,
“Distributed page ranking in structured P2P
networks”, in Proceeding of International Conference
on Parallel Processing, 2003.

[32] W.J. Stewart. “Introduction to the numerical solutions
of Markov chains”. Princeton University Press,
Princeton, 1994.

[33] A. Yamamoto, D. Asahara, T. Itao, S. Tanaka and T.
Suda, “Distributed pagerank: a distributed reputation
model for open peer-to-peer network”, in Proceedings
of the International Symposium on Applications and
the Internet Workshops, 2004.

[34] Y. Zhu and Sh. Ye and X. Li, “Distributed PageRank
computation based on iterative
aggregation-disaggregation methods”, in CIKM ’05:
Proceedings of the 14th ACM international conference
on Information and knowledge management, 2005, an
updated version is available at
http://www.cs.cmu.edu/˜yangboz/cikm05 pagerank.pdf.

[35] C.-N. Ziegler and G. Lausen, “Spreading activation
models for trust propagation”, in Proceedings of IEEE
International Conference on e-Technology,
e-Commerce and e-Service, 2004.

[36] C.-N. Ziegler and G. Lausen, “Propagation models for
trust and distrust in social networks”, Information
Systems Frontiers, v.7, no.4/5, pp.337-358, 2005.

