
Computing an Index Policy for Bandits with Switching
Penalties

(Invited Paper)

José Niño-Mora
Department of Statistics

Universidad Carlos III de Madrid
C/ Madrid 126

28903 Getafe (Madrid), Spain
jnimora@alum.mit.edu

ABSTRACT
We address the multiarmed bandit problem with switch-
ing penalties including both costs and delays. Asawa and
Teneketzis (1996) introduced an index for bandits with switch-
ing penalties that partially characterizes optimal policies,
attaching to each project state a “continuation index” (its
Gittins index) and a“switching index,” yet only proposed an
index algorithm for the case of switching costs. We present
a fast decoupled computation method, which in a first stage
computes the continuation index and then, in a second stage,
computes the switching index an order of magnitude faster
in at most (5/2)n2 + O(n) arithmetic operations for an n-
state project. This extends earlier work where we introduced
a two-stage index algorithm for the case of switching costs
only. We exploit the fact that the Asawa and Teneketzis
index is the marginal productivity index of a classic bandit
with switching penalties in its semi-Markov restless refor-
mulation, by deploying methods introduced by the author.
A computational study demonstrates the dramatic runtime
savings achieved by the new algorithm, the near-optimality
of the index policy, and its substantial gains against the
benchmark Gittins index policy across a wide range of two-
and three-project instances.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Markov processes; G.4
[Mathematical Software]: Algorithm design and analysis

General Terms
Algorithms

Keywords
Markov decision processes, bandits, restless, switching costs,
switching delays, index policies

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SMCtools ’07, October 26, 2007, Nantes, France
Copyright 2007 ICST 978-963-9799-00-4.

1. INTRODUCTION
Imagine a firm owning a portfolio of dynamic and stochas-

tic projects, of which it can engage one at a time. To
(re)start a project, the firm must incur an upfront lump-
sum startup cost, as well as a startup delay, after which it
accrues rewards and operating expenses. The firm can de-
cide, at any time, to abandon the project currently in op-
eration, incurring a lump-sum shutdown cost, as well as a
shutdown delay. It can then switch to another project. Such
a firm faces the problem of designing a dynamic project se-
lection policy that maximizes the expected total discounted
value of its net earnings. This is an example of the multi-
armed bandit problem with switching penalties (MABPSP),
which is extensively surveyed in [4].

In this and many other applications switching delays play
a fundamental role, and should thus be incorporated into
corresponding system models. Thus, startup delays may
represent, e.g., time to lay up the groundwork or to build
up infrastructure, as well as training or learning time for
workers. Similarly, shutdown delays may arise, e.g., when
dismantling installed infrastructure.

The problem is cast as a semi-Markov decision process
(SMDP) by modeling projects as bandits, i.e., binary-action
(active/passive) SMDPs that can only change state while
active. In the no switching penalties case, one thus obtains
the multiarmed bandit problem (MABP), which is optimally
solved by the Gittins index policy. See [3].

The optimal index solution for the MABP prompted in-
vestigation of priority-index policies for the MABPSP. As
discussed in [2], such policies attach an index νm(a−m, im) to
each bandit m, which is a function of its previous action a−m
and current state im, thus decoupling into a “continuation
index” νm(1, im) and a “switching index” νm(0, im). They
observed that “it is obvious that in comparing two other-
wise identical arms, one of which was used in the previous
period, the one which was in use must necessarily be more
attractive than the one which was idle.” To be consistent
which such a hysteretic property, the indices must satisfy

νm(1, im) ≥ νm(0, im). (1)

Though [2] proved that such policies are not generally
optimal under switching costs, [1] introduced an intuitively
appealing index for the MABSP, which we refer to hence-
forth as the AT index, both for the case of only switching
costs and for that of only switching delays, and showed that

it partly characterizes optimal policies. Their continuation
index is the bandit’s Gittins index, while their switching in-
dex is the maximum rate, achievable by stopping rules that
engage an initially passive bandit, of expected discounted
reward earned minus initial startup cost incurred, per unit
of expected discounted time — including the initial delay.

In [1], an index computation method is presented to jointly
compute both indices in the case of only switching costs.
Yet, no algorithm is given there to compute the index under
switching delays. In [12], we have developed a substantially
faster two-stage index computation method for bandits with
switching costs but no switching delays, drawing on restless
bandit indexation. This raises the need to develop an effi-
cient index computation method for bandits with switching
penalties that incorporate delays, which is the prime goal of
this paper, while the second goal is to investigate empirically
the performance of the resulting index policy.

We address such goals in the setting of an extended model
allowing state-dependent startup and shutdown costs and
delays, through a seemingly indirect route: by exploiting
the natural reformulation of a classic bandit with switch-
ing penalties as a semi-Markov restless bandit — one that
can change state while passive — without switching penal-
ties, through which the MABSP is cast as a semi-Markov
multiarmed restless bandit problem (SMARBP).

Such a reformulation allows us to deploy the powerful in-
dexation theory available for restless bandits. This was in-
troduced by Whittle in [14], who introduced an index for
restless bandits under the average criterion, albeit only for
the limited range that satisfy a so-called indexability prop-
erty. He proposed to use the resulting index policy as a
heuristic for the MARBP, which is generally suboptimal.
The theory has been developed by the author in work sur-
veyed in [10], grounded on the unifying concept of marginal
productivity index (MPI).

As mentioned above, such an approach was deployed in
[12] for the special case of the model considered herein where
there are only switching costs. The mode of analysis was
based on establishing that the restless bandits of concern
satisfy the PCL-indexability conditions in the author’s ear-
lier work. Yet, the extension to the present setting in-
cluding switching delays is not straightforward, as we have
found that the resulting restless bandits need not be PCL-
indexable.

We will draw on the more recent results announced in
[9], where the tractable class of LP-indexable bandits — as
they are based on linear programming (LP) analyses — is
introduced, for which the MPI is efficiently computed by an
adaptive-greedy algorithm. The scope of such an algorithm
is thus extended from the class of PCL-indexable bandits to
the larger class of LP-indexable bandits.

We deploy here such a theory, by proving and exploiting
the fact that the AT index of a bandit with switching costs
and delays is precisely the bandit’s MPI in its semi-Markov
restless reformulation. We establish that such restless ban-
dits are LP-indexable, relative to the family of hysteretic
policies consistent with (1), which allows us to compute the
index using the adaptive-greedy algorithm referred to above.
A work-reward analysis then reveals that such an algorithm
decouples into two stages: a first stage that computes the
Gittins index and required extra quantities; and a second
stage, which is fed the first-stage’s output and computes the
switching index.

To implement such a scheme, one can use for the first
stage any of several O(n3) algorithms introduced in [8]. For
the second stage, we present here a fast switching-index al-
gorithm that performs at most (5/2)n2 + O(n) arithmetic
operations, thus achieving an order-of-magnitude improve-
ment that renders negligible the marginal effort to compute
the switching index. Such an algorithm is the main contribu-
tion of this paper. In the no-switching-delays case addressed
in [12], the complexity count dropped to (at most) n2+O(n).

The paper further reports on a computational study demon-
strating that such an improved complexity translates into
dramatic runtime savings. The study is complemented by a
set of experiments that demonstrate the near-optimality of
the index policy and its substantial gains against the bench-
mark Gittins index policy across an extensive range of two-
and three-bandit instances.

Section 2 describes the model, shows how to reduce it to
the normalized no shutdown penalties case, defines the AT
index, and gives the SMARBP reformulation. Section 3 re-
views the indexation theory to be deployed. Section 4 carries
out a work-reward analysis of reformulated restless bandits.
Section 5 develops the new decoupled index algorithm. Sec-
tion 6 reports the computational study’s results. Section 7
concludes.

Due to space constraints, this extended abstract only states
and briefly discusses results. For a full working paper ver-
sion with proofs of all results and additional material, we
refer the reader to [11].

2. MODEL, AT INDEX AND RESTLESS RE-
FORMULATION

2.1 The MABPSP
Consider a collection of M finite-state bandi projects, one

of which must be engaged (active) at each discrete decision
period τk ∈ Z+, with 0 ≤ τk ↗ ∞ as k → ∞, while the
others are rested (passive). Switching projects is costly, in-
volving startup and shutdown costs and delays. We assume
that a freshly set up project must be worked on for at least
one period, and say that a project is engaged if it is either
being worked on, or undergoing a startup or shutdown delay.

A rested project m occupying state im — belonging in its
state space Nm — accrues no rewards, i.e., R0

m(im) ≡ 0,
and its state remains frozen. When freshly engaged, it in-
curs startup cost cm(im), followed by a discrete random

startup delay ξm(im) ∈ Z+ having z-transform φm(z; im) ,

E
[
zξm(im)

]
, during which no rewards accrue. When the

startup is completed, the project must be worked on, yield-
ing an active reward R1

m(im) = Rm(im) and changing state
at the following period to jm with probability pm(im, jm).
After one or more periods at which the project is worked on,
it may be rested. If this happens in state jm, shutdown cost
dm(jm) is incurred, followed by a random shutdown delay

ηm ∈ Z+ having z-transform ψm(z) , E
[
zηm

]
, during which

no rewards accrue. Then, the project must be rested for at
least one period. We thus allow startup delay distributions
to be state-dependent, while shutdown delay’s are constant
— due to results in Section 2.2. Rewards and costs are time-
discounted with factor 0 < β < 1. We will find it convenient
to write φm(β; im) and ψm(β) as φm(im) and ψm.

Actions are chosen by adoption of a scheduling policy π,
drawn from the class Π of admissible policies, which are

nonanticipative relative to the history of states and actions,
and engage one project at a time. Focus on such a ver-
sion, instead of on that where at most one project can be
engaged, is without loss of generality. The MABPSP is to
find an admissible policy that maximizes the expected total
discounted value of rewards earned minus switching costs
incurred.

We denote by Xm(t) and am(t) ∈ {0, 1} the prevailing
state and action for project m at period t, respectively,
where am(t) = 1 (resp. am(t) = 0) means that the project is
engaged (resp. rested). Since it must be specified whether
each project m is initially set up, we denote such status
by a−m(0). We define the project’s augmented state to be

X̂m(t) , (a−m(t),Xm(t)), which moves over the augmented

state space N̂m , {0, 1} × Nm. The joint augmented state

is thus X̂(t) ,
(
X̂m(t)

)M

m=1
, and the joint action process is

a(t) ,
(
am(t)

)M

m=1
.

2.2 Reduction to No Shutdown Penalties Case
We show in this section that it suffices to restrict attention

to the no shutdown penalties case, without loss of general-
ity. Suppose that, at a certain time, which we take to be
t = 0, a project is freshly engaged for a random duration
given by a stopping-time rule τ . Let us drop the project
label m, and denote by R = (Rj), c = (cj) and d = (dj) the
project’s state-dependent active reward, startup and shut-
down cost vectors. Let us further denote by φ = (φj) the
project’s state-dependent startup z-transform vector, evalu-
ated at z = β, and let ψ denote the corresponding constant
shutdown z-transform value. We can thus write the expected
discounted net reward earned on the project during such a
time span, starting at X(0) = i, as

fτ
i

(
R, c,d,φ, ψ

)
, E

τ
i

[
−ci +

τ−1∑

t=0

RX(t)β
t+ξi −dX(τ)β

ξi+τ

]
,

(2)
where ξi is the startup delay starting at i. The discounted
amount of work expended on the project is

gτ
i

(
φ, ψ

)
, E

τ
i

[
1 − βξi

1 − β
+

τ−1∑

t=0

βt+ξi +
1 − βη

1 − β
βξi+τ

]
, (3)

where, as mentioned above, both the startup and shutdown
delays ξi and η are counted as “work.”

We have the following result, where I is the identity ma-
trix indexed by the state space N , P = (pij)i,j∈N is the
transition probability matrix, and 0 is a vector of zeros. Let

c̃j , cj +φjdj , φ̃j , ψφj , R̃ ,
1

ψ

{
R+(I−βP)d

}
. (4)

Lemma 2.1.

(a) fτ
i

(
R, c,d,φ, ψ

)
= fτ

i

(
R̃, c̃,0, φ̃, 1

)
.

(b) gτ
i

(
φ, ψ

)
= gτ

i

(
φ̃, 1

)
.

Lemma 2.1 shows how to eliminate shutdown penalties:
one incorporates them into modified startup costs and delay
transforms, as well as active rewards, given by the transfor-
mations in (3). Note that, in the case cj ≡ c and dj ≡ d,

one obtains c̃j ≡ c+ dφj and R̃j = {Rj + (1 − β)d}/ψ.
We hence focus our discussion henceforth in the normal-

ized no shutdown penalties case.

2.3 The AT Index
We next define the AT index for a project, whose label m

we drop from the notation, extending the definitions in [1]
to the present setting. The continuation AT index is

νAT
(1,i) , max

τ>0

E
τ
i

[
τ−1∑

t=0

RX(t)β
t

]

E
τ
i

[
τ−1∑

t=0

βt

] , (5)

where τ is a stopping time/rule that engages a project start-
ing at state i needing no setup; hence, νAT

(1,i) is precisely the
project’s Gittins index. The switching AT index is

νAT
(0,i) , max

τ>0

−ci + E
τ
i

[
βξi

τ−1∑

t=0

RX(t)β
t

]

E
τ
i

[
ξi−1∑

t=0

βt + βξi

τ−1∑

t=0

βt

]

= max
τ>0

−ci + φiE
τ
i

[
τ−1∑

t=0

RX(t)β
t

]

1 − φi

1 − β
+ φiE

τ
i

[
τ−1∑

t=0

βt

] ,

(6)

where now τ is a stopping time/rule that engages a project
starting at i which needs to be set up.

Notice that, writing fτ
i = E

τ
i

[∑τ−1
t=0 RX(t)β

t
]

and gτ
i =

E
τ
i

[∑τ−1
t=0 β

t
]
, we have

fτ
i

gτ
i

−
−ci + φif

τ
i

1 − φi

1 − β
+ φig

τ
i

=
1

gτ
i

(1 − β)cig
τ
i + (1 − φi)f

τ
i

1 − φi + (1 − β)φigτ
i

≥ 0,

provided that cj ≥ 0 and Rj ≥ 0 for j ∈ N . In such a case,
on which we focus our analyses, it follows from the above
that νAT

(1,i) ≥ νAT
(0,i), consistently with (1).

2.4 Semi-Markov Restless Reformulation
Taking X̂m(t) as the state of each project m yields a refor-

mulation of the MABPSP as a SMARBP without switching
penalties, having joint state and action processes X̂(t) and
a(t), where actions can only be taken at the sequence τk of
decision periods discussed above. The rewards and dynamics
for restless project m in such a reformulation are as follows.
If at period τk the project occupies (augmented) state (1, im)

and is engaged, the active reward R̂1
m(1, im) , Rm(im) is

earned, and the state moves at the next decision period
τk+1 = τk + 1 to (1, jm) with active transition probability

p̂1
m

(
(1, im), (1, jm)

)
, pm(im, jm). If the project is instead

rested, no passive reward is earned, i.e., R̂0
m(1, im) ≡ 0, and

the state moves at the next decision period τk+1 = τk + 1
to (0, im) with a unity passive transition probability, i.e.,
p̂0

m

(
(1, im), (0, im)

)
≡ 1.

If the restless project occupies at τk state (0, im) and is
engaged, the expected active reward

R̂1
m(0, im) , E[−cm(im) + βξm(im)Rm(im)]

= −cm(im) + φm(im)Rm(im)
(7)

accrues up to the next decision period τk+1 = τk + ξm(im)+
1, at which its state moves to (1, jm) with active transi-

tion probability p̂1
m

(
(0, im), (1, jm)

)
, pm(im, jm). If the

project is instead rested, no passive reward accrues, i.e.,
R̂0

m(0, im) ≡ 0, and the state remains frozen at the next
decision period τk+1 = τk + 1, i.e., p̂0

m

(
(0, im), (0, im)

)
≡ 1.

We can thus formulate the MABPSP as the SMARBP

max
π∈Π

E
π

ı̂

[
∞∑

k=0

M∑

m=1

R̂am(τk)
m

(
X̂m(τk)

)
βτk

]
, (8)

where E
π

ı̂
[·] denotes expectation under policy π conditional

on the initial joint state X̂(0) = ı̂.

3. RESTLESS PROJECT INDEXATION
We discuss in this section the indexation theory referred to

in Section 1, as it applies to a single project m as above — in
its restless reformulation. We hence drop again the project
label m henceforth, so that, e.g., N and N̂ , {0, 1} × N
denote the project’s original and augmented state spaces.
We denote by Π the space of admissible project operating
policies π. We assume that (normalized) startup costs and
active rewards are nonnegative.

Assumption 3.1. For i ∈ N :

(i) ci ≥ 0; and

(ii) Ri ≥ 0.

3.1 Indexability and the MPI
We use two criteria to evaluate a policy π, relative to an

initial state (a−0 , i0): the reward measure

fπ

(a−

0 ,i0)
, E

π

(a−

0 ,i0)

[
∞∑

k=0

R̂
(
X̂(τk)

)
βτk

]
,

which gives the expected total discounted value of net re-
wards — net of switching costs — that accrue on the project;
and the work measure

gπ

(a−

0 ,i0)
, E

π

(a−

0 ,i0)

[
∞∑

t=0

a(t)βt

]
,

which gives the expected total discounted work expended.
We will actually consider the average measures fπ and gπ

obtained by drawing the initial state from an arbitrary pos-
itive probability mass function p(a−,i) > 0 for (a−, i) ∈ N̂ .

Imagining that work is paid for at wage rate ν leads us to
consider the ν-wage problem

max
π∈Π

fπ − νgπ, (9)

which is to find an admissible project operating policy achiev-
ing the maximum value of net rewards earned minus labor
costs incurred. We use (9) to calibrate the marginal value
of work at each state, by analyzing the structure of optimal
policies as ν varies.

MDP theory ensures that for every wage ν ∈ R there exists
an optimal policy that is stationary deterministic and inde-
pendent of the initial state. Any such policy is characterized
by its active set, or subset of states where it prescribes to
engage the project. We write active sets as

S0 ⊕ S1 , {0} × S0 ∪ {1} × S1, S0, S1 ⊆ N.

Thus, the policy that we denote by S0 ⊕ S1 engages the
project when it was previously rested (resp. engaged) if the
original state X(t) lies in S0 (resp. in S1).

Hence, to any wage ν there corresponds a unique minimal
optimal active set S∗

0 (ν) ⊕ S∗
1 (ν) ⊆ N̂ , which consists of

all augmented states where engaging the project is the only
optimal action. We say that the project is indexable if there
exists an index ν∗(a−,i) for (a−, i) ∈ N̂ such that, for ν ∈ R,

S∗
0 (ν) =

{
(0, i) : ν∗(0,i) > ν

}
and S∗

1 (ν) =
{
(1, i) : ν∗(1,i) > ν

}
.

We then say that ν∗(a−,i) is the project’s marginal productiv-

ity index (MPI), terming ν∗(1,i) the continuation MPI, and
ν∗(0,i) the switching MPI.

Thus, the project is indexable with MPI ν∗(a−,i) if it is

optimal in (9), to engage (resp. rest) the project when it
occupies state (a−, i) iff ν∗(a−,i) ≥ ν (resp. ν∗(a−,i) ≤ ν). Note

that [14]’s original definition of indexability was stated in an
equivalent form in terms of optimal passive sets.

To establish indexability and compute the MPI, we have
developed in [5, 6, 7, 9] an approach based on positing and
then establishing the structure of optimal active sets, as an

active-set family F̂ ⊆ 2N̂ that contains all sets S∗
0 (ν)⊕S∗

1 (ν)
as ν varies, under a possibly restricted range of reward/cost
parameters. The intuition that, if startup costs satisfy As-
sumption 3.1, optimal policies should have the hysteretic
property that, if it is optimal to engage a project when it was
previously rested, then, other things being equal, it should
be optimal to engage it when it was previously active, leads
us to guess that the right choice of F̂ should be

F̂ ,
{
S0 ⊕ S1 : S0 ⊆ S1 ⊆ N

}
. (10)

Notice that F̂ represents a family of policies consistent
with (1), which we posit to contain the optimal policies for
(9). When S0 6= S1, such policies present the hysteresis
region S1 \ S0, on which project dynamics depend on the
previous action. We thus aim to establish indexability rela-
tive to such a family, meaning that the project is indexable
and S∗

0 (ν) ⊕ S∗
1 (ν) ∈ F̂ for ν ∈ R.

3.2 LP-Indexability and Index Algorithm
We next discuss the approach we will deploy to establish

indexability and compute the MPI of the restless projects of
concern herein, based on showing that they are LP-indexable
relative to F̂ , and using the adaptive-greedy index algo-
rithm that is valid for such projects.

Given an action a ∈ {0, 1} and an active set S0 ⊕S1 ∈ F̂ ,
denote by 〈a,S0 ⊕ S1〉 the policy that initially takes action
a and adopts the S0 ⊕ S1-active policy thereafter. Now, for
an augmented state (a−, i) and an active set S0 ⊕ S1 ∈ F̂ ,
define the marginal work measure

wS0⊕S1

(a−,i)
, g

〈1,S0⊕S1〉

(a−,i)
− g

〈0,S0⊕S1〉

(a−,i)
, (11)

along with the marginal reward measure

rS0⊕S1

(a−,i)
, f

〈1,S0⊕S1〉

(a−,i)
− f

〈0,S0⊕S1〉

(a−,i)
, (12)

and, when wS0⊕S1

(a−,i)
6= 0, the marginal productivity measure

νS0⊕S1

(a−,i)
,

rS0⊕S1

(a−,i)

wS0⊕S1

(a−,i)

. (13)

We deploy the LP-indexability approach to indexation in-
troduced in [9], which extends the earlier PCL-indexability
approach introduced and developed in [5, 6, 7]. For an active

set Ŝ = S0 ⊕ S1 ∈ F̂ , let

∂out
F̂
Ŝ ,

{
(a−, i) ∈ Ŝc : Ŝ ∪ {(a−, i)} ∈ F̂

}

=
{
(0, i) : i ∈ S1 \ S0} ∪ {(1, i) : i ∈ Sc

1

}
,

(14)

where Ŝc , N̂ \ Ŝ and Sc
1 , N \ S1, be the outer boundary

of Ŝ relative to F̂ ; and let

∂in
F̂
Ŝ ,

{
(a−, i) ∈ Ŝ : Ŝ \ {(a−, i)} ∈ F̂

}

=
{
(1, i) : i ∈ S1 \ S0} ∪ {(0, i) : i ∈ S0

} (15)

be the corresponding inner boundary. Note that the right-
most identities in (14)–(15) follow from (10). Now, we re-

quire that set system (N̂ , F̂) be monotonically connected,
which in the present setting means that:

(i) ∅, N̂ ∈ F̂ ;

(ii) for Ŝ, Ŝ′ ∈ F̂ with Ŝ ⊂ Ŝ′, Ŝ′ ∩ ∂out
F̂
Ŝ 6= ∅ and Ŝc ∩

∂in
F̂
Ŝ′ 6= ∅; and

(iii) for Ŝ, Ŝ′ ∈ F̂ , Ŝ ∩ Ŝ′ ∈ F̂ and Ŝ ∪ Ŝ′ ∈ F̂ .

As the reader can immediately verify, the F̂ defined in (10)
satisfies indeed such conditions.

We further write below

rŜ
, max

(a−,j)∈Ŝc,wŜ

(a−,j)
=0

rŜ
(a−,j)

rŜ
, min

(a−,j)∈Ŝ,wŜ

(a−,j)
=0

rŜ
(a−,j),

adopting the convention that the maximum (resp. mini-
mum) over an empty set is −∞ (resp. +∞).

Now, we say that the project is LP-indexable relative to
F̂ , or LP(F̂)-indexable, if:

(i) w∅
(a−,i)

, wN̂
(a−,i) ≥ 0 for (a−, i) ∈ N̂ , and r∅ ≤ 0 ≤ rN̂ ;

(ii) for each active set Ŝ ∈ F̂ , wŜ
(a−,i) > 0 for (a−, i) ∈

∂in
F̂
Ŝ ∪ ∂out

F̂
Ŝ; and

(iii) for every wage ν ∈ R there exists an optimal policy for

(9) with active set Ŝ ∈ F̂ .

We further refer to the adaptive-greedy algorithmic scheme
AG

F̂
shown in Table 1, where n , |N | denotes the num-

ber of project states in the original (nonrestless) formula-
tion. The algorithm produces an output consisting of a
string {(a−k , ik)}2n

k=1 of distinct augmented states spanning

N̂ , with Ŝk , {(a−1 , i1), . . . , (a
−
k , ik)} ∈ F̂ , for 1 ≤ k ≤ 2n,

along with corresponding index values {ν∗
(a−

k
,ik)

}2n
k=1. Ties

for picking the (a−k , ik)’s are broken arbitrarily. We use the
term algorithmic scheme as it is not yet specified how to
compute the required marginal productivity rates.

We will later invoke the following key result, introduced in
[9], which refers to a generic restless project and active-set
family F .

Theorem 3.2. An LP(F)-indexable project is indexable
and algorithm AGF computes its MPI.

Table 1: Version 1 of Algorithmic Scheme AG
F̂

.

ALGORITHM AG
F̂

:

Output:
{
(a−k , ik), ν∗

(a−

k
,ik)

}2n

k=1

Ŝ0 := ∅ ⊕ ∅
for k := 1 to 2n do

pick (a−k , ik) ∈ arg max
{
νŜk−1

(a−,i) : (a−, i) ∈ ∂out
F̂
Ŝk−1

}

ν∗
(a−

k
,ik)

:= νŜk−1

(a−

k
,ik)

; Ŝk := Ŝk−1 ∪ {(a−k , ik)}

end { for }

Using the definition of F̂ in (10) yields the more explicit
Version 2 of the algorithm shown in Table 2, where the out-
put is decoupled. We use in this and later versions a less un-

wieldy algorithm-like notation, writing, e.g., ν
S

k0−1
0 ⊕S

k1−1
1

(0,j)

as ν
(k0−1,k1−1)
(0,j) . Notice that the active sets constructed in

both versions are related by Ŝk−1 , Sk0−1
0 ⊕ Sk1−1

1 , with
k = k0 + k1 − 1 and k0 ≤ k1. Version 2 draws on the fact
that, at each step, the algorithm augments the current ac-
tive set by a state that can be of the form (1, i) or (0, i).

Sets Sk0
0 and Sk1

1 in the algorithm are Sk0
0 = {i10, . . . , i

k0
0 }

and Sk1
1 = {i11, . . . , i

k1
1 }, and satisfy Sk0

0 ⊂ Sk1
1 for 1 ≤ k0 <

k1 ≤ n, consistently with (10).

3.3 Optimality of Hysteretic F̂ -Policies
The following result states that LP(F̂)-indexability con-

dition (ii) above holds for the model of concern, namely that

F̂ -policies, i.e., those with active sets Ŝ ∈ F̂ , solve (9).

Proposition 3.3. For every wage ν ∈ R there exists an
optimal active set Ŝ ∈ F̂ for (9), i.e., if it is optimal to rest
the project in state (1, i) then it is optimal to rest it in (0, i).

In order to further establish the remaining conditions (i,
ii) and to simplify the index algorithm we will have to draw
on the work-reward analysis carried out in the next section.

4. WORK-REWARD ANALYSIS
We set out in this section to carry out a work-reward anal-

ysis of a single project with startup penalties as above, in its
semi-Markov restless project reformulation, and to establish
its LP-indexability.

4.1 Work and Marginal Work Measures
We start by addressing calculation of marginal work mea-

sures wS0⊕S1

(a−,i)
. We show that they are closely related to

their counterparts wS
i for the underlying nonrestless project,

where stationary deterministic policies are represented by
their active sets S ⊆ N . See [8].

Lemma 4.1. For a− ∈ {0, 1}, S0 ⊕ S1 ∈ F̂ :

(a) wS0⊕S1
(1,i) = wS1

i , for i ∈ Sc
1.

(b) wS0⊕S1
(0,i) =

1 − φi

1 − β
+ wS1

i , for i ∈ Sc
1.

(c) wS0⊕S1
(1,i) =

1 − βφi

1 − β

{
wS1

i − β
1 − φi

1 − βφi

}
, for i ∈ S0.

Table 2: Version 2 of Algorithmic Scheme AG
F̂

.

ALGORITHM AG
F̂

:
Output:

{
(0, ik0

0), ν∗
(0,i

k0
0)

}n

k0=1
,
{
(1, ik1

1), ν∗
(1,i

k1
1)

}n

k1=1

S0
0 := ∅; S0

1 := ∅; k0 := 1; k1 := 1
while k0 + k1 ≤ 2n+ 1 do

if k1 ≤ n pick jmax
1 ∈ arg max

{
ν

(k0−1,k1−1)
(1,j) : j ∈ N \ Sk1−1

1

}

if k0 < k1 pick jmax
0 ∈ arg max

{
ν

(k0−1,k1−1)
(0,j) : j ∈ Sk1−1

1 \ Sk0−1
0

}

if k1 = n+ 1 or
{
k0 < k1 ≤ n and ν

(k0−1,k1−1)

(1,jmax
1)

< ν
(k0−1,k1−1)

(0,jmax
0)

}

ik0
0 := jmax

0 ; ν∗
(0,i

k0
1)

:= ν
(k0−1,k1−1)

(0,i
k0
1)

; Sk0
0 := Sk0−1

0 ∪ {ik0
0 }; k0 := k0 + 1

else

ik1
1 := jmax

1 ; ν∗
(1,i

k1
1)

:= ν
(k0−1,k1−1)

(1,i
k1
1)

; Sk1
1 := Sk1−1

1 ∪ {ik1
1 }; k1 := k1 + 1

end { if }
end { while }

(d) wS0⊕S1
(0,i) = 1 − φi + φiw

S1
i , for i ∈ S0.

(e) wS0⊕S1
(1,i) =

wS1
i

1 − β
, for i ∈ S1 \ S0.

(f) wS0⊕S1
(0,i) =

1 − φi

1 − β
+

φi

1 − β
wS1

i , for i ∈ S1 \ S0.

Note that, at this point in the corresponding analysis in
[12] — for the no startup delay case φi ≡ 1 — we could im-

mediately prove positivity of marginal workloads, i.e., wŜ
(a−,i) >

0, for (a−, i) ∈ N̂, Ŝ ∈ F̂ , which is a prerequisite for PCL-
indexability. In the present setting, however, it is clear from
Lemma 4.1(c) that wS0⊕S1

(1,i)
, for i ∈ S0, can become neg-

ative if wS1
i < β and φi is close enough to zero. This is

why we cannot use here the same argument in that paper to
prove indexability, and use instead the more powerful LP-
indexability conditions.

4.2 Marginal Reward Measures
We continue by addressing calculation of required marginal

reward measures rS0⊕S1

(a−,i)
. Again, we show that they are

closely related to their counterparts rS
i for the underlying

nonrestless project wit no startup costs. See [8].

Lemma 4.2. For S0 ⊕ S1 ∈ F̂ :

(a) rS0⊕S1
(1,i) = rS1

i , for i ∈ Sc
1.

(b) rS0⊕S1
(0,i) = −ci + rS1

i , for i ∈ Sc
1.

(c) rS0⊕S1
(1,i) = βci +

1 − βφi

1 − β
rS1

i , for i ∈ S0.

(d) rS0⊕S1
(0,i) = −(1 − β)ci + φir

S1
i , for i ∈ S0.

(e) rS0⊕S1
(1,i) =

rS1
i

1 − β
, for i ∈ S1 \ S0.

(f) rS0⊕S1
(0,i) = −ci + φi

rS1
i

1 − β
, for i ∈ S1 \ S0.

4.3 Marginal Productivity Measures
We next address calculation of the marginal productivity

measures νS0⊕S1

(a−,i)
in (13). Again, we show that they are

closely related to their counterparts νS
i for the underlying

nonrestless project without startup costs, given by

νS
i ,

rS
i

wS
i

, i ∈ N,S ⊆ N. (16)

The next result represents νS0⊕S1

(a−,i)
in terms of the νS

i ’s.

Lemma 4.3. For S0 ⊕ S1 ∈ F̂ :

(a) νS0⊕S1
(1,i) = νS1

i , for i ∈ Sc
1.

(b) νS0⊕S1
(0,i) =

−ci + rS1
i

1−φi

1−β
+ wS1

i

=
wS1

i

1−φi

1−β
+wS1

i

{
νS1

i −
ci

wS1
i

}
,

for i ∈ Sc
1.

(c) νS0⊕S1
(1,i) =

βci + 1−βφi

1−β
rS1

i

1−βφi

1−β

{
wS1

i − β 1−φi

1−βφi

} =
wS1

i

wS1
i − β 1−φi

1−βφi

{
νS1

i +

β(1 − β)

1 − βφi

ci

wS1
i

}
, for i ∈ S0 such that wS1

i 6= β 1−φi

1−βφi
.

(d) νS0⊕S1
(0,i) =

−(1 − β)ci + φir
S1
i

1 − φi + φiw
S1
i

=
−(1 − β)ci + φiw

S1
i νS1

i

1 − φi + φiw
S1
i

,

for i ∈ S0.

(e) νS0⊕S1
(1,i) = νS1

i , for i ∈ S1 \ S0.

(f) νS0⊕S1
(0,i) = νS1

i −

(
1 − β

)
ci +

(
1 − φi

)
νS1

i

1 − φi + φiw
S1
i

, i ∈ S1 \ S0.

4.4 LP(F̂)-Indexability
We can use the above results to establish (cf. [11]) that the

restless projects of concern are LP(F̂)-indexable, ensuring
the validity of index algorithm AG

F̂
via Theorem 3.2.

Theorem 4.4. Under Assumption 3.1, the restless refor-
mulation of a project with switching penalties is LP(F̂)-
indexable.

4.5 The MPI is the AT Index
The next result ensures the identity between the MPI and

the AT index for the projects of concern in this paper. We
find it convenient to reformulate the expressions for the AT
index, given in (5)–(6) in terms of stopping times, using
instead active sets S ⊆ N to represent the latter — as it
suffices to consider stationary deterministic policies. We for-
mulate the continuation and switching AT indices as

νAT
(1,i) , max

i∈S⊆N

fS
i

gS
i

, (17)

and

νAT
(0,i) , max

i∈S⊆N

−ci + φif
S
i

1 − φi

1 − β
+ φig

S
i

. (18)

Recall that we denote the MPI by ν∗(a−,i).

Proposition 4.5. Under Assumption 3.1, ν∗(1,i) = νAT
(1,i)

and ν∗(0,i) = νAT
(0,i), for i ∈ N .

5. TWO-STAGE INDEX COMPUTATION
In this section we further simplify the index algorithm, by

decoupling computation of the continuation and the switch-
ing index into a two-stage scheme.

5.1 First Stage: Continuation Index
We start with continuation index ν∗(1,i), which is the Git-

tins index ν∗i of the project. We need further quantities as
input for the second-stage algorithm to be discussed later.

Table 3: Gittins-Index Algorithmic Scheme AG1.

ALGORITHM AG1:
Output: {ik1

1 }n
k1=1, {ν∗j : j ∈ N}, {(w(k1)

j , ν
(k1)
j) : j ∈

Sk1
1 }n

k1=1

set S0
1 := ∅; compute {(w(0)

i , ν
(0)
i) : i ∈ N}

for k1 := 1 to n do

pick ik1
1 ∈ arg max

{
ν

(k1−1)
i : i ∈ N \ Sk1−1

1

}

ν∗
i
k1
1

:= ν
(k1−1)

i
k1
1

; Sk1
1 := Sk1−1

1 ∪ {ik1
1 }

compute {(w(k1)
i , ν

(k1)
i) : i ∈ N}

end

To compute such an index and extra quantities, we re-
fer to the algorithmic scheme AG1 in Table 3. This is a
variant of the algorithm of [13], reformulated as in [8]. For
actual implementations, one can use several algorithms in
the latter paper, such as the Fast-Pivoting algorithm with
extended output FP(1), performing (4/3)n3 + O(n2) arith-
metic operations; or the Complete-Pivoting (CP) algorithm,
performing 2n3 +O(n2) operations.

5.2 Second Stage: Switching Index
We next address computation of the switching index, af-

ter having computed the Gittins index and required extra
quantities. Consider the algorithm AG0 in Table 4, which
is fed as input the output of AG1, and produces a sequence

of states ik0
0 spanning N , along with corresponding index

values ν∗
(0,i

k0
0)

, computed in a top down fashion, i.e., from

highest to lowest. Notice that we have formulated such algo-
rithms in a form that applies to the case where the startup
delay is positive at every state j, so that φj < 1.

The following is the main result of this paper.

Theorem 5.1. Algorithm AG0 computes index ν∗(0,i).

We next assess the arithmetic operation count of the switch-
ing index algorithm.

Proposition 5.2. Algorithm AG0 performs at most (5/2)n2+
O(n) operations.

6. COMPUTATIONAL EXPERIMENTS
This section reports the results of a computational study,

based on the author’s MATLAB implementations of the al-
gorithms described herein.

The first experiment investigated the runtime performance
of the decoupled index computation method. We made
MATLAB generate a random project instance with startup
costs for each of the state-space sizes n = 500, 1000, . . . , 5000.
For each n, MATLAB recorded the time to compute the con-
tinuation index and required extra quantities with algorithm
FP(1) in [8], the time to compute the switching MPI by the
top-down (index computed from largest to smallest) and
bottom-up (index computed from smallest to largest) ver-
sions of the switching-index algorithm, in which we denote
by AG0

TD and AG0
BU, respectively, and the time to jointly

compute both indices using algorithm FPAG in [8, Sec. 6.3],
which is a fast-pivoting implementation of the algorithmic
scheme AG

F̂
discussed herein. Note that the switching-

index algorithm AG0 shown above is the top-down version
AG0

TD. This experiment was run under MATLAB R2006b
64-bit on Windows XP x64, on an HP xw9300 254 (2.8 GHz)
AMD Opteron workstation.

The results are displayed in Figure 1. The left pane shows
total runtimes, in hours, for computing both indices vs.
n, along with curves obtained by cubic least-squares fit,
which are consistent with the theoretical O(n3) complex-
ity. Squares correspond to the AG

F̂
scheme, while circles

correspond to our two-stage scheme. The results show that
the two-stage method consistently achieved about a 4-fold
speedup over the single-stage method.

The right pane shows runtimes, in seconds, for the switch-
ing index algorithm vs. n, along with curves obtained by
quadratic least-squares fit, which are consistent with the
theoretical O(n2) complexity. Now, squares (resp. circles)
correspond to the top-down (resp. bottom-up) algorithm
AG0

TD (resp. AG0
BU). The change of timescale from hours

to seconds demonstrates the order-of-magnitude runtime im-
provement achieved. Further, the bottom-up algorithm con-
sistently outperformed the top-down one, though the differ-
ence is negligible, given the small runtimes.

The following experiments assess the average relative per-
formance of the MPI policy in random samples of two- and
three-project instances, both against the optimal policy, and
against the benchmark Gittins index policy. For each in-
stance, the optimal performance was computed by solving
the LP formulation of the Bellman equations using the CPLEX
LP solver, interfaced with MATLAB via TOMLAB. The
MPI and benchmark policies were evaluated by solving with
MATLAB the corresponding linear evaluation equations.

Table 4: Switching-Index Algorithm AG0.

ALGORITHM AG0:

Input: {ik1
1 }n

k1=1, {ν
∗
j : j ∈ N}, {(w(k1)

j , ν
(k1)
j) : j ∈ Sk1

1 }n
k1=1

Output: {ik0
0 }n

k0=1, {ν
∗
(0,j) : j ∈ N}

ĉj :=
1 − β

1 − φj

cj , j ∈ N ; zj = φj/(1 − φj); S0
0 := ∅; S0

1 := ∅; k0 := 0

for k1 := 1 to n do

Sk1
1 := Sk1−1

1 ∪ {ik1
1 }; AUGMENT1 := false

ν
(0,k1)

(0,j) := ν
(k1−1)
j −

ĉj + ν
(k1−1)
j

1 + zjw
(k1−1)
j

, j ∈ Sk1
1 \ Sk0

0

while k0 < k1 and not(AUGMENT1) do

pick jmax
0 ∈ arg max

{
ν

(0,k1)
(0,j) : j ∈ Sk1

1 \ Sk0
0

}

if k1 = n or ν∗
i
k1
1

< ν
(0,k1)
(0,jmax

0)

ik0+1
0 := jmax

0 ; ν∗
(0,i

k0+1
0)

:= ν
(0,k1)

(0,i
k0+1
0)

Sk0+1
0 := Sk0

0 ∪ {ik0+1
0 }; k0 := k0 + 1

else
AUGMENT1 := true

end { if }
end { while }

end { for }

500 5000
0

5
index algorithms

n

ru
nt

im
e

(h
ou

rs
) AG1

AG

500 5000

7
switching−index algorithms

n

ru
nt

im
e

(s
ec

s.
) AG

0

BU

AG
0

T D

Figure 1: Exp. 1(a):Runtimes of Index Algorithms.

The second experiment assessed how the relative perfor-
mance of the MPI policy on two-project instances depends
on a common constant startup-delay transform’s value φ and
discount factor — there are no shutdown penalties. A sam-
ple of 100 instances (with 10-state projects) was randomly
generated with MATLAB. In every instance, parameter val-
ues for each project were independently generated: tran-
sition probabilities (obtained by scaling a matrix with Uni-
form[0, 1] entries — dividing each row by its sum) and active
rewards (Uniform[0, 1]). For each instance k = 1, . . . , 100
and startup cost-discount factor combination in the range
(φ, β) ∈ [0.5, 0.99] × [0.5, 0.95] — using a 0.1 grid — the

optimal objective value ϑ(k),opt and the objective values of
the MPI (ϑ(k),MPI) and the benchmark (ϑ(k),bench) policies

were computed, along with the corresponding relative sub-
optimality gap of the MPI policy ∆(k),MPI , 100(ϑ(k),opt −

ϑ(k),MPI)/|ϑ(k),opt|, and the suboptimality-gap ratio of the

MPI over the benchmark policy ρ(k),MPI,bench , 100(ϑ(k),MPI−

ϑ(k),opt)/(ϑ(k),bench−ϑ(k),opt) — scaled as percentages. The
latter were then averaged over the 100 instances for each
(c, β) pair, to obtain the average values ∆MPI and ρMPI,bench.

Ojective values ϑ(k),opt, ϑ(k),MPI and ϑ(k),bench were eval-
uated as follows. First, the corresponding value functions

ϑ
(k),opt

((a−

1 ,i1),(a−

2 ,i2))
, ϑ

(k),MPI

((a−

1 ,i1),(a−

2 ,i2))
and ϑ

(k),bench

((a−

1 ,i1),(a−

2 ,i2))
were

computed as mentioned above. Then, the objective values
were evaluated as

ϑ(k),π
,

1

n2

∑

i1,i2∈N

ϑ
(k),π
((0,i1),(0,i2)), π ∈ {opt,MPI,bench},

(19)
where each project has state space N = {1, . . . , n}, with
n = 10. Notice that (19) corresponds to assuming that both
projects are initially passive.

Figure 2 plots ∆MPI vs. the φ — notice the inverted φ-axis
we use throughout — for multiple discount factors β, using
cubic interpolation. Such a gap starts at 0 as φ approaches
1 (as the optimal policy is then recovered), then increases
up to a maximum value, which is less than 0.18%, and then
decreases to 0 as φ gets smaller. Such a pattern is consistent
with intuition: for small enough φ, both the optimal and the
MPI policies initially pick a project and stay on it thereafter.
Since the best project can be determined through single-
project evaluations, the MPI policy identifies it.

Figure 3 shows corresponding plots for the suboptimality-
gap ratio ρMPI,bench of the MPI over the benchmark policy.
They show that the average suboptimality gap for the MPI
policy is in each case less than 45% of that for the benchmark
policy. Such a ratio increases with β, and takes the value 0
for φ small enough, as the MPI policy is then optimal.

φ

∆
M

P
I

Dep. on φ for Multiple β

β

∆
M

P
I

Dep. on β for φ = 0.95

0.5 0.950.99 0.5
0%

0.18%

0%

0.18%

Figure 2: Exp. 2: Average Relative Suboptimality
Gap of MPI Policy.

φ

ρ
M

P
I,
b
e
n
c
h

Dep. on φ for Multiple β

β

ρ
M

P
I,
b
e
n
c
h

Dep. on β for φ = 0.99

0.5 0.950.99 0.5
0%

45%

0%

45%

Figure 3: Exp. 2: Average Suboptimality-Gap Ratio
of MPI over Benchmark Policy.

The third experiment was setup as the previous one, but
considering a constant startup delay T for each project, so
that φ = βT . Figures 4 and 5 display the results, showing
that the MPI policy was optimal for T ≥ 2, had a relative
suboptimality gap of no more than 0.06%, and improved
substantially on the benchmark Gittins-index policy, as the
suboptimality-gap ratio remains below 2%.

The fourth experiment investigated the effect of asym-
metric constant startup delay transform values, as these
vary over the range (φ1, φ2) ∈ [0.8, 0.99]2, in two-project
instances with β = 0.9. The left contour plot in Figure
6 shows that the average relative suboptimality gap of the
MPI policy, ∆MPI, reaches a maximum value of about 0.14%,
vanishing as both φ1 and φ2 approach unity, and as either
gets small enough. The right contour plot shows that the
suboptimality-gap ratio ρMPI reaches maximum values of
about 50%, vanishing as either φ1 or φ2 gets small enough.

The fifth experiment evaluated the effect of state-dependent

T

∆
M

P
I

Dep. on T for Multiple β’s

β

∆
M

P
I

Dep. on β for T = 1

0.5 0.951 2 3
0%

0.06%

0%

0.06%

Figure 4: Exp. 3: Average Suboptimality Gap of
MPI Policy.

T

ρ
M

P
I,
b
e
n
c
h

Dep. on T for Multiple β

β

ρ
M

P
I,
b
e
n
c
h

Dep. on β for T = 1

0.5 0.951 2 3
0%

2%

0%

2%

Figure 5: Exp. 3: Average Suboptimality-Gap Ratio
of MPI over Benchmark Policy.

φ1

φ
2

∆MPI

φ1

φ
2

ρMPI,bench

0.80.990.80.99
0%

50%
0.8

0.990%

0.14%0.8

0.99

Figure 6: Exp. 4: Average Relative Performance of
MPI Policy vs. (φ1, φ2), for β = 0.9.

startup delay parameters φi, as the discount factor varies.
Uniform[0.9, 1] i.i.d. state-dependent startup costs were ran-
domly generated for each instance. The left pane in Figure 7
plots the average relative suboptimality gap vs. the discount
factor, which shows that such a gap remains below 0.14%.
The right pane shows that the average suboptimality-gap
ratio ρMPI,bench remains below 20%.

β

∆
M

P
I

β

ρ
M

P
I,
b
e
n
c
h

0.5 0.6 0.7 0.8 0.90.5 0.95
2%

20%

0%

0.14%

Figure 7: Exp. 5: Average Performance of MPI Pol-
icy for State-Dependent Startup Delays.

The sixth and last experiment evaluated the relative per-
formance of the MPI policy on three-project instances as a
function of a common startup delay parameter φ and dis-
count factor, based on a random sample of 100 instances of
three 8-state projects each. For each instance, the startup
cost-discount factor combination was varied over the range
(φ, β) ∈ [0.5, 0.99] × [0.5, 0.95]. The results are shown in
Figures 8 and 9, which are the counterparts of experiment
2’s Figures 2 and 3. Comparison of Figures 2 and 8 reveals
a slight performance degradation of the MPI policy’s perfor-
mance in the latter, though the average gap ∆MPI remains
quite small, below 0.25%. Comparison of Figures 3 and 9

φ

∆
M

P
I

Dep. on φ for Multiple β’s

β

∆
M

P
I

Dep. on β for φ = 0.95

0.50.99 0.5
0%

0.25%

0%

0.25%

Figure 8: Exp. 6: Counterpart of Figure 2 for Three-
Project Instances.

reveals similar values for the ratio ρMPI,bench.

φ

ρ
M

P
I,
b
e
n
c
h

Dep. on φ for Multiple β

β

ρ
M

P
I,
b
e
n
c
h

Dep. on β for φ = 0.99

0.5 0.950.99 0.5
0%

45%

0%

45%

Figure 9: Exp. 6: Counterpart of Figure 3 for Three-
Project Instances.

7. CONCLUDING REMARKS
We have addressed the important extension of the clas-

sic multiarmed bandit problem that incorporates both costs
and delays for switching projects. The paper has demon-
strated the practical applicability of the index policy based
on the index introduced in [1], by introducing an efficient
index algorithm and providing experimental evidence of the
near optimality of such a policy. The mode of analysis has
been based on deploying the powerful indexation theory for
restless projects introduced in [14] and developed by the au-
thor in recent work surveyed in [10]. Thus, the AT index
has been shown to be precisely the MPI of the projects of
concern in their natural restless reformulation. To establish
indexability and compute the index we have deployed the
LP-indexability approach recently introduced in [9], which
extends the earlier PCL-indexability approach in the au-
thor’s earlier work. This paper demonstrates the relevance
of such an extension, since the restless projects analyzed
herein are LP-indexable, yet not necessarily PCL-indexable.

Acknowledgments
The author’s work has been supported in part by the Spanish
Ministry of Education & Science under project MTM2004-
02334 and an I3 faculty endowment grant, by the European
Union’s Networks of Excellence EuroNGI and EuroFGI, and
by the Autonomous Community of Madrid under grants
UC3M-MTM-05-075 and CCG06-UC3M/ESP-0767.

8. REFERENCES

[1] M. Asawa and D. Teneketzis. Multi-armed bandits
with switching penalties. IEEE Trans. Automat.
Control, 41:328–348, 1996.

[2] J. S. Banks and R. K. Sundaram. Switching costs and
the Gittins index. Econometrica, 62:687–694, 1994.

[3] J. C. Gittins. Bandit processes and dynamic allocation
indices (with discussion). J. Roy. Statist. Soc. Ser. B,
41:148–177, 1979.

[4] T. Jun. A survey on the bandit problem with
switching costs. De Economist, 152:513–541, 2004.

[5] J. Niño-Mora. Restless bandits, partial conservation
laws and indexability. Adv. Appl. Probab., 33:76–98,
2001.

[6] J. Niño-Mora. Dynamic allocation indices for restless
projects and queueing admission control: a polyhedral
approach. Math. Program., 93:361–413, 2002.

[7] J. Niño-Mora. Restless bandit marginal productivity
indices, diminishing returns and optimal control of
make-to-order/make-to-stock M/G/1 queues. Math.
Oper. Res., 31:50–84, 2006.

[8] J. Niño-Mora. A (2/3)n3 fast-pivoting algorithm for
the Gittins index and optimal stopping of a Markov
chain. INFORMS J. Comput., 19:pp. to be assigned,
2007.

[9] J. Niño-Mora. Characterization and computation of
restless bandit marginal productivity indices. In
SMCtools ’07: Proceedings from the 2007 Workshop
on Tools for Solving Structured Markov Chains. ACM,
New York, NY, 2007.

[10] J. Niño-Mora. Dynamic priority allocation via restless
bandit marginal productivity indices (with discussion).
Top, 15, 2007. In press.

[11] J. Niño-Mora. Two-stage index computation for
bandits with switching penalties II: switching delays.
Working Paper 07-42, Statistics and Econometrics
Series 10, Univ. Carlos III de Madrid, Spain, 2007.

[12] J. Niño-Mora. Faster index computation and a
computational study for bandits with switching costs.
INFORMS J. Comput., 2008. In press.

[13] P. P. Varaiya, J. C. Walrand, and C. Buyukkoc.
Extensions of the multiarmed bandit problem: the
discounted case. IEEE Trans. Automat. Control,
30:426–439, 1985.

[14] P. Whittle. Restless bandits: Activity allocation in a
changing world. In J. Gani, editor, A Celebration of
Applied Probability, volume 25A of J. Appl. Probab.,
pages 287–298. Applied Probability Trust, Sheffield,
UK, 1988.

