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ABSTRACT
The restless bandit problem furnishes a powerful modeling
paradigm for settings involving the optimal dynamic prior-
ity allocation to multiple stochatic projects, given as binary-
action (active/passive) Markov decision processes (MDPs).
Though generally intractable, Whittle (1988) introduced a
tractable priority-index policy, which has been developed
in recent work by the author in an extended framework
based on the unifying concept of marginal productivity in-
dex (MPI). A growing body of empirical evidence shows MPI
policies to be nearly optimal in diverse applications, which
motivates the interest to compute efficiently the MPI. For
such a purpose, we extend to restless bandits the paramet-
ric linear programming (LP) approach deployed in [J. Niño-
Mora. A (2/3)n3 fast-pivoting algorithm for the Gittins in-
dex and optimal stopping of a Markov chain, INFORMS
J. Comp., in press] for classic (nonrestless) bandits. Yet
the extension is not straightforward, as the MPI is only de-
fined for the restricted range of so-called indexable bandits,
which motivates the quest for methods to establish indexa-
bility. This paper furnishes algorithmic and analytical tools
to realize the potential of MPI policies in large-scale applica-
tions, presenting the following contributions: (i) an algorith-
mic characterization of indexability, for which two block im-
plementations are given; and (ii) new analytical conditions
for indexability — termed LP-indexability — that leverage
knowledge on the structure of optimal policies, under which
the MPI is computed faster by the adaptive-greedy algo-
rithm previously introduced by the author under more strin-
gent (PCL-indexability) conditions, for which a new fast-
pivoting block implementation is given. The paper further
reports on a computational study, which measures the run-
time performance of the algorithms and demonstrates the
high prevalence of indexability and PCL-indexability.

Categories and Subject Descriptors
F.2.1 [Numerical Algorithms and Problems]: Com-
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putations on matrices; G.3 [Probability and Statistics]:
Markov processes; G.4 [Mathematical Software]: Algo-
rithm design and analysis
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Algorithms
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1. INTRODUCTION
The multiarmed restless bandit problem (MARBP) fur-

nishes a powerful modeling framework for a variety of prob-
lems where a decision-maker must dynamically prioritize the
allocation of effort to multiple projects. The latter are mod-
eled as restless bandits, i.e., binary-action (active; passive)
semi-Markov decision processes (SMDPs) that can change
state while rested. For a range of applications see, e.g., [17,
16, 6, 8, 7, 13, 11, 15, 4, 12].

While the classic (nonrestless) case where passive projects
do not change state and one project is to be engaged at each
time is efficiently solved by the Gittins index policy (cf. [3]),
which attaches to each project state its Gittins index and
then engages at each time a project with largest index, the
MARBP is generally intractable. Yet, Whittle introduced in
[17] an index for restless bandits under the average criterion,
and proposed to use the resultant index policy as a heuristic
for the MARBP: give higher priority at each time to projects
with larger index values. Such an index has been extended
by the author in recent work, surveyed in [12], through the
unifying concept of marginal productivity index (MPI). A
growing body of empirical evidence shows that MPI policies
are often nearly optimal in a wide variety of applications.
Further, the MPI characterizes optimal policies for problems
modeling the optimal dynamic allocation of effort to a single
project, which have intrinsic interest.

The prime goal of this paper is to announce results on new
algorithmic and analytical tools that will allow researchers to
fully realize the potential of such index policies in large-scale
applications. We will accomplish such a goal by drawing on
parametric linear programming (cf. [2]), extending the ap-
proach developed in [9] to obtain a Gittins-index algorithm
of improved complexity.

The extension is, however, far from straightforward, as
the MPI is only defined for the limited range of so-called in-



dexable bandits, which motivates the quest for useful meth-
ods to establish indexability. For such a purpose, we had
introduced and developed in [5, 6, 8] sufficient conditions
for indexability, termed PCL-indexability as they are based
on satisfaction of partial conservation laws (PCsL), under
which a project’s MPI is computed by an adaptive-greedy
algorithm. Yet, though such work shows that several models
of interest are PCL-indexable, our more recent work has re-
vealed limitations to such an approach. Specifically: (i) one
condition to check was that the index sequence produced
by the aforementioned algorithm be nonincreasing, which
we have found to be hard to verify analytically in models
with a multi-dimensional state; and, (ii) more importantly,
we have encountered in results announced in [11] a relevant
bandit model that is indexable, yet not PCL-indexable.

This paper overcomes such limitations, presenting the fol-
lowing contributions: (i) a complete algorithmic characteri-
zation of indexability, for which two block implementations
are given, the Complete-Pivoting Indexability (CPI) algo-
rithm and the Reduced-Pivoting Indexability (RPI) algorithm,
which, after a common initialization stage involving the solu-
tion of a block linear equation system, perform 2n3 + O(n2)
and n3 + O(n2) arithmetic operations for an n-state ban-
dit, respectively; and (ii) more importantly, new analytical
sufficient conditions for indexability, termed LP-indexability
as they are based on linear programming (LP) analyses,
which leverage knowledge on the structure of optimal poli-
cies in particular models, under which the MPI is computed
faster by the adaptive-greedy algorithm referred to above,
for which a new fast-pivoting block implementation is given
that performs — after the initialization stage — (2/3)n3 +
O(n2) operations; such conditions are also shown to be nec-
essary, in that an indexable bandit is always LP-indexable
relative to a certain family of policies; further, a more an-
alytically tractable reformulation of the PCL-indexability
conditions is presented. For an application where such an
approach is successfully deployed, see [11].

The algorithms presented herein are described in block-
partitioned form, i.e., based on operations on submatrices
(blocks) of a base matrix, which has been advocated in the
scientific-computing literature to partially overcome the ex-
ponentially widening gap between processor speed and memory-
access times in contemporary computers, which often render
traditional complexity measures based on operation counts
poor predictors of runtime performance. See [1].

A computational study was conducted to compare the
runtime performance of the proposed index algorithms, and
to assess the prevalence of indexability and PCL-indexability
among randomly generated restless bandit instances in a
simulation study. The latter experiments reveals that such
prevalences are extremely high, growing steeply as the num-
ber of states increases.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the indexation theory for semi-Markov rest-
less bandits. Section 3 elucidates the parametric simplex
tableaux for the problem’s LP formulation. Section 4 devel-
ops a simplex-based algorithmic characterization of indexa-
bility. Section 5 shows how to exploit special structure by
introducing the new class of LP-indexable bandits, to which
the adaptive-greedy index algorithm introduced in earlier
work for PCL-indexable bandits is shown to extend, and
revises the earlier definition of PCL-indexability; further,
a new fast-pivoting implementation is given of such an al-

gorithm. While previous sections focus on the discounted
criterion, Section 6 discusses the extension to the average
criterion. Section 7 reports on the computational study.

For full proofs of all results presented herein see [10].

2. RESTLESS BANDIT INDEXATION
This section reviews several key concepts of indexation

theory to be used throughout the paper, as it applies to a
finite-state semi-Markov restless bandit.

2.1 Discrete-Stage Reformulation
Consider the problem of operating optimally a single dy-

namic and stochastic project, modeled as a binary-action
(1/active/engage; 0/passive/rest) SMDP, whose natural state
X(t) evolves continually over time t ≥ 0 through the finite
state space N . The controller observes the embedded state
Xk , X(tk) at an increasing sequence of decision epochs
tk, with t0 = 0 and limk→∞ tk ↗ +∞, and takes an ac-
tion ak , a(tk) ∈ {0, 1} that prevails during the ensuing
stage [tk, tk+1). Processes X(t) and a(t) are thus piecewise
constant, right-continuous with left limits. Actions are pre-
scribed through adoption of a policy π, drawn from the class
Π of admissible policies, which base decisions on the history
of embedded states and actions up to the present decision
epoch, and on the state observed at the latter. While the
project occupies state i and action a prevails, rewards accrue
and work is expended at rates Ra

i and Qa
i ≥ 0, respectively,

with Q1
i > 0 and Q1

i ≥ Q0
i ≥ 0.

We complete next the model’s description, by specifying
its dynamics, and discuss its discrete-stage reformulation
along the lines in [14, Ch. 11]), which will be used in the
sequel. If at decision epoch tk the project occupies state
Xk = i and action ak = a is taken, the joint distribution of
the duration tk+1−tk of the ensuing (i, a)-stage and the next
embedded state Xk+1 is given by the transition distribution

F a
ij(t) , P {tk+1 − tk ≤ t, Xk+1 = j | Xk = i, ak = a} ,

having Laplace-Stieltjes transform (LST)

φa
ij(α) ,

∫ ∞

0

e−αt dF a
ij(t),

for α > 0. The corresponding one-stage transition probabil-
ities of the embedded process are

pa
ij , P {Xn+1 = j | Xk = i, ak = a} = lim

t→∞
F a

ij(t) = lim
α↘0

φa
ij(α).

From F a
ij(t) we obtain the distribution of the duration of

an (i, a)-stage,

F a
i (t) , P {tk+1 − tk ≤ t | Xk = i, ak = a} =

∑

j∈N

F a
ij(t),

having LST

φa
i (α) , E

[
e−α(tk+1−tk) | Xk = i, ak = a

]
=

∑

j∈N

φa
ij(α),

(1)
and mean

ma
i , E [tk+1 − tk | Xk = i, ak = a] =

∫ ∞

0

t dF a
i (t).

We can thus represent the expected total discounted work
expended and the reward earned during an (i, a)-stage, re-
spectively, as



qa
i , E

[∫ tk+1

tk

Qan

X(t)e
−α(t−tk) dt | Xk = i, ak = a

]
(2)

and

ra
i , E

[∫ tk+1

tk

Rak

X(t)e
−α(t−tk) dt | Xk = i, ak = a

]
. (3)

In our studies of several applications, we have found that
it is often useful to partition the state space N into the set
of uncontrollable states

N{0}
,

{
i ∈ N : q0

i = q1
i , F 0

ij(t) ≡ F 1
ij(t), j ∈ N

}
,

where both actions result in identical resource consumption
and dynamics, and the remaining set N{0,1} , N \ N{0}

of controllable states. The notation N{0} reflects the con-
vention adopted herein whereby the passive action a = 0
is taken at uncontrollable states. We will denote by n ,

|N{0,1}| and m , |N{0}| the numbers of controllable and of
uncontrollable states, respectively, and assume that n ≥ 1.
As we will see, the indices of concern in this paper, which
are functions of the project’s state, are only defined for con-
trollable states.

In the sequel we will focus on the discounted criterion
based on measures (4)–(5), deferring to Section 6 discussion
of the long-run average criterion.

2.2 Indexation and the MPI
We consider two measures to evaluate a policy π, relative

to an initial state i and a discount rate α > 0: the reward
measure

fπ
i , E

π
i

[∫ ∞

0

R
a(t)

X(t)e
−αt dt

]
= E

π
i

[
∞∑

k=0

r
ak
Xk

e−αtk

]
, (4)

giving the expected total discounted value of rewards earned;
and the work measure

gπ
i , E

π
i

[∫ ∞

0

Q
a(t)

X(t)
e−αt dt

]
= E

π
i

[
∞∑

k=0

qak
Xk

e−αtk

]
, (5)

giving the expected total discounted amount of work ex-
pended. Notice that the right-hand side identities in (4)–(5)
draw on the discrete-stage reformulation discussed above.

We will find it convenient to use the corresponding av-
eraged measures obtained when the initial state i is drawn
from an arbitrary distribution with positive probability mass
pi > 0 for i ∈ N :

fπ
,

∑

i∈N

pif
π
i and gπ

,
∑

i∈N

pig
π
i .

Introducing a wage rate ν at which work is paid for, leads
us to consider the ν-wage problem

max
π∈Π

fπ − νgπ, (6)

which is to find an admissible policy maximizing the value
of rewards earned minus labor costs incurred.

The theory of finite-state and -action SMDPs ensures ex-
istence of an optimal policy for (6) that is: (i) deterministic
stationary; and (ii) independent of the initial state. We

represent each such policy by its active set S ⊆ N{0,1}, or
subset of controllable states where the policy prescribes to

engage the project at a decision epoch, and will refer to it
as the S-active policy.

It appears reasonable to expect that, in some models, op-
timal active sets should expand monotonically from ∅ to
N{0,1} as the wage ν decreases from +∞ to −∞. Such an
intuitive indexability property was introduced by Whittle in
[17] for Markovian restless bandits with state-independent
work rates qa

i ≡ a under the average criterion.
In dynamic programming (DP) terms, we may formulate

the indexability property as follows. Letting ϑ∗
i (ν) be the

optimal value function starting at i for SMDP (6), the Bell-
man equations are

ϑ∗
i (ν) = max

a∈{0,1}
ra

i − νqa
i +

∑

j∈N

φa
ijϑ

∗
j (ν), i ∈ N, (7)

where we write φa
ij = φa

ij(α). In words, the project is index-
able if, for each controllable state i, it is optimal to engage
the project at i iff ν is small enough; namely, if there exists
an index ν∗

i , for i ∈ N{0,1}, such that it is optimal to engage
the project in state i iff ν ≤ ν∗

i ; or, in formulas,

ϑ∗
i (ν) = r1

i − νq1
i +

∑

j∈N

φ1
ijϑ

∗
j (ν) ⇐⇒ ν ≤ ν∗

i (8)

Yet, in [8] we have formulated the indexability property in
an alternative — though equivalent — form yielding comple-
mentary insights, as reviewed next. Let i1, . . . , in ∈ N{0,1}

be an ordering of the n controllable states, such that the
nested active-set family

F0 , {S0, S1, . . . , Sn}, (9)

where S0 , ∅ and Sk , {i1, . . . , ik} for 1 ≤ k ≤ n, satisfies
the work-regularity condition

gSk−1 < gSk , 1 ≤ k ≤ n. (10)

Consider the index ν∗
i , for i ∈ N{0,1}, defined by

ν∗
ik

,
fSk − fSk−1

gSk − gSk−1
, 1 ≤ k ≤ n. (11)

Definition 2.1 (Indexability; MPI). We say that
the project is indexable if, for some F0 as above:

(i) index ν∗
ik

is nonincreasing in k, i.e., ν∗
ik+1

≥ ν∗
ik

; and

(ii) for ν-wage problem (6), the ∅-active policy is opti-

mal iff ν ≤ ν∗
i1

, the N{0,1}-active policy is optimal iff
ν ≥ ν∗

in
, and the Sk-active policy is optimal for ν-wage

problem (6) iff ν ∈ [ν∗
ik+1

, ν∗
ik

], for 1 ≤ k < n.

We then say that the project is F0-indexable, and that ν∗
i

is its marginal productivity index (MPI).

As noted in [6], the optimal value function of an indexable
project has the representation

ϑ∗
i (ν) = max

S∈F0

fS
i − νgS

i = max
0≤k≤n

fSk
i − νgSk

i .

2.3 Marginal Measures
The analyses and algorithms below will use the marginal

measures discussed next. For an action a ∈ {0, 1} and an

active set S ⊆ N{0,1}, denote by 〈a, S〉 the policy that takes
action a in the initial stage and adopts the S-active policy



(having active set S) thereafter. Now, for a state i and an
active set S, define the marginal work measure

wS
i , g

〈1,S〉
i − g

〈0,S〉
i , (12)

giving the marginal increase in work expended that results
from taking initially the active instead of the passive action
at i, given that the S-active policy is adopted thereafter.

Define also the marginal reward measure

dS
i , f

〈1,S〉
i − f

〈0,S〉
i , (13)

giving the corresponding marginal increase in the value of
rewards earned. Notice that marginal work measures vanish
at uncontrollable states:

wS
i = 0, i ∈ N{0}. (14)

Finally, for wS
i 6= 0, define the marginal productivity measure

νS
i ,

dS
i

wS
i

. (15)

2.4 Reduction to No Uncontrollable States Case
While we have found the distinction between controllable

and uncontrollable states to be relevant in some applications,
it would considerably complicate the notation in the sequel.
In the full version of this paper [10] it is shown that it suffices
to restrict attention to bandits with no uncontrollable states,
as these can be eliminated through suitable transformations.
We will hence assume henceforth that such transformations
have been carried out, if required, focusing attention on the
normalized case where all states are controllable.

3. PARAMETRIC SIMPLEX TABLEAUX
We set out in this section to formulate the ν-wage prob-

lem (6) as a parametric LP problem, and to elucidate the
structure of its simplex tableaux.

3.1 Parametric LP Formulation
The LP formulation of concern is well-known in SMDP

theory (cf. [14]) to be

ϑ∗(ν) =max (r0 − νq0)x0 + (r1 − νq1)x1

subject to

[(
I− Φ0

)
T

(
I− Φ1

)
T
] [

x0

x1

]
= p

x0,x1 ≥ 0,

(16)

where xa = (xa
j ) is a column vector, ra = (ra

j ) and qa = (qa
j )

are row vectors, and T is the transposition operator .
Dual variables xa

j correspond to the project’s discounted
state-action occupancy measures. For an admissible policy
π, initial state i, action a and state j, let

xa,π
ij , E

π
i

[
∞∑

k=0

1{a(tk)=a,X(tk)=j}e
−αtk

]

be the expected total discounted number of (j, a)-stages un-
der policy π, starting at i. Thus, under initial state distribu-
tion p, dual variable xa

j corresponds to occupancy measure

xa,π
j ,

∑
i pix

a,π
ij . Notice that reward and work measures

Table 1: Simplex Tableau for S-Active BFS.(
x0

S

)
T

x1
j

(
x1

Sc\{j}

)
T

x1
S AS

SS AS
Sj AS

S,Sc\{j}

x0
j AS

jS aS
jj Aj,Sc\{j}

x0
Sc\{j} AS

Sc\{j},S AS
Sc\{j},j AS

Sc\{j},Sc\{j}

wS
S −wS

j −wS
Sc\{j}

dS
S −dS

j −rS
Sc\{j}

are linear functions of occupancies: writing xa,π = (xa,π
j ),

fπ =
∑

(j,a)∈{0,1}×N

ra
j xa,π

j = r0x0,π + r1x1,π

gπ =
∑

(j,a)∈{0,1}×N

qa
j xa,π

j = q0x0,π + q1x1,π.
(17)

3.2 Basic Feasible Solutions and Reduced Costs
We set out next to analyze parametric LP (16), start-

ing with an elucidation of its basic feasible solutions (BFS).

Clearly, these correspond to active sets S ⊆ N{0,1}, and
hence we will refer to the S-active BFS. For each such S, we
decompose the above vectors and matrices as

xa =

[
xa

S

xa
Sc

]
,p =

[
pS

pSc

]
,Φa =

[
Φa

SS Φa
SSc

Φa
ScS Φa

ScSc

]
,

where we write Sc , N \ S, and introduce the matrices

ΦS
,

[
Φ1

SS Φ1
S,N\S

Φ0
ScS Φ0

ScSc

]
,ΦSc

,

[
Φ0

SS Φ0
SSc

Φ1
ScS Φ1

ScSc

]
,

BS
,

(
I −ΦS

)T

,NS
,

(
I − ΦSc)T

,HS
,

(
BS

)−1
,

(18)

and AS , HSNS. Notice that ΦS is the transition trans-
form matrix under the S-active policy. Further, BS is the
basis matrix in LP (16) for the S-active BFS, whose basic
variables are

[
x1

S

x0
Sc

]
;

and NS is the matrix of non-basic columns in LP (16), whose
associated non-basic variables are

[
x0

S

x1
Sc

]
.

The next result gives the reduced costs of LP (16).

Lemma 3.1. The reduced costs for non-basic variables in
the S-active BFS for LP (16) are given by

[
dS

S − νwS
S −dS

Sc + νwS
Sc

]
. (19)

3.3 Parametric Simplex Tableau and Pivoting
We can now formulate the parametric simplex tableau un-

der the S-active BFS, as shown in Table 1. The tableau is
indexed by basic variables x1

S and x0
Sc in rows, and by non-

basic variables x0
S and x1

Sc in columns, and includes two
rows of reduced costs for non-basic variables. It includes
neither the conventional right-hand side nor the objective
value, as they are not needed for our purposes.

The tableau is shown in a form that highlights its struc-
ture as it is ready for pivoting on element aS

jj , with j ∈ Sc.



Namely, for taking variable x0
j out of the basis, and putting

x1
j into the basis, which corresponds to moving from the S-

active to the S ∪ {j}-active BFS. After such a pivot step is
carried out, one obtains the updated tableau in Table 2.

3.4 Computing the Initial Tableau
In [10], we discuss how to compute the initial tableau,

corresponding to the ∅-active BFS, in a numerically-stable
form that applies both to the discounted criterion of con-
cern heretofore, and to the long-run average criterion to be
addressed in Section 6 below. Such a result is incorporated
in the initialization stage of the algorithms presented below.

4. INDEXABILITY CHARACTERIZATION
This section draws on the above results, and on the classic

parametric-objective LP algorithm in [2], adapted to the
present setting, to develop a characterization of indexability.
In what follows, S denotes an arbitrary active set.

4.1 Characteristic Interval of a BFS
We start by addressing the following question: For which

range of values of the wage ν is the S-active BFS optimal
for parametric LP (16)? Parametric LP theory furnishes the
answer in the form of the so-called characteristic interval of
such a BFS, which we next elucidate in the present context.

In the following result we assume that p > 0 in (16).
Note that its part (a) gives the characteristic interval for
the S-active BFS, having lower and upper breakpoints

νS
, max

j∈Sc,wS
j

>0 or j∈S,wS
j

<0
νS

j , νS
, min

j∈S,wS
j

>0 or j∈Sc,wS
j

<0
νS

j ,

(20)
respectively, while part (b) refers to concepts discussed at
the end of Section 2.2. We further write

dS
, max

j∈Sc,wS
j

=0
dS

j and d
S

, min
j∈S,wS

j
=0

dS
j . (21)

We adopt the convention that the maximum (resp. mini-
mum) over an empty set has the value −∞ (resp. +∞).

Lemma 4.1. The S-active BFS is optimal for (16) iff

νS ≤ ν ≤ νS , (22)

and

dS ≤ 0 ≤ d
S
. (23)

Further, it is the unique optimal solution iff the inequalities
in (22)–(23) hold strictly.

4.2 The CPI Algorithm
We next proceed to put together the above elements to

give a complete characterization of indexability, both in com-
binatorial and algorithmic terms. We will use the Complete-
Pivoting Indexability (CPI) algorithm described in Table 3,
where we have adopted a less unwieldy notation, replacing

superscript sets by numeric superscripts, e.g., writing a
(k)
ij

instead of a
Sk
ij . The algorithm seeks to construct a state

ordering i1, . . . , in relative to which the project is index-
able (cf. Definition 2.1), with MPI values ν∗

ik
and active

sets Sk as in Section 2.2, in which case the Boolean vari-
able INDEXABLE returns the value true. It adapts to the
present setting the parametric-objective simplex algorithm in
[2], letting the wage ν decrease from +∞ to −∞, and draws

Table 4: Reduced Tableau for S-Active BFS.(
x0

S

)
T

x1
j

(
x1

Sc\{j}

)
T

x0
j AS

jS aS
jj AS

j,Sc\{j}

x0
Sc\{j} AS

Sc\{j},S AS
Sc\{j},j AS

Sc\{j},Sc\{j}

wS
S −wS

j −wS
Sc\{j}

dS
S −dS

j −dS
Sc\{j}

on Lemma 4.1 to test for the structure of successive optimal
bases that ensures indexability. For moving from one basis
to the next, the algorithm updates the tableau performing
a complete simplex pivot step (cf. Table 2), hence its name.

The following result gives a complete characterization of
indexability in terms of properties of active sets S.

Theorem 4.2. The project is indexable iff d∅ ≤ 0 ≤ d
N

and, for any active set S ⊆ N satisfying (23) and νS ≤ νS,

νN = −∞, ν∅ = +∞

νS = max
j∈Sc : wS

j
>0

νS
j > −∞, if S 6= N

νS = min
j∈S : wS

j
>0

νS
j < +∞, if S 6= ∅.

(24)

Theorem 4.2 immediately yields the following algorithmic
characterization of indexability.

Proposition 4.3. The project is indexable iff algorithm
CPI terminates in n steps, in which case the computed index
ν∗

j is the MPI.

We next assess the computational complexity of the CPI
algorithm’s loop, i.e., excluding the initialization stage.

Proposition 4.4. The CPI algorithm’s loop performs at
most 2n3 + O(n2) arithmetic operations.

4.3 Reduced Tableaux and the RPI Algorithm
We seek next to eliminate unnecessary operations from

the CPI algorithm. The key observation is that the tableau’s
rows corresponding to basic variables x1

S are not used to up-
date reduced costs in the CPI algorithm. Hence, it suffices to
store and update only reduced tableaux, such as that shown
in Table 4, which is set up for pivoting on element aS

jj , for
j ∈ Sc. Observation of Table 2 shows that a reduced tableau
can be updated without using the deleted rows. Simplifying
the CPI algorithm accordingly yields the Reduced-Pivoting
Indexability (RPI) algorithm. For a description see [10].

As shown next, the RPI improves the operation count of
the CPI algorithm by a factor of two.

Proposition 4.5. The RPI algorithm’s loop performs at
most n3 + O(n2) arithmetic operations.

5. EXPLOITING SPECIAL STRUCTURE
We proceed to discuss how one can leverage structural

knowledge on a particular model to obtain substantially sim-
pler indexability conditions and a faster index algorithm.
While we had addressed such an issue in [5, 6, 8], by intro-
ducing and deploying the PCL-indexability conditions, the
approach and results herein are both new, as they draw on
the above simplex-based analyses, and of wider applicabil-
ity. We were motivated to develop them by the difficulties



Table 2: Tableau for S ∪ {j}-Active BFS, Obtained by Pivoting on aS
jj.(
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−
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SjA
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x1
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1
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j,Sc\{j}
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−
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j,Sc\{j}

aS
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wS
S +
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aS
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jS

wS
j

aS
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−wS
Sc\{j} +

wS
j

aS
jj

AS
j,Sc\{j}

dS
S +

dS
j

aS
jj

AS
jS

dS
j

aS
jj

−dS
Sc\{j} +

dS
j

aS
jj

AS
j,Sc\{j}

encountered when trying to deploy the PCL-indexability ap-
proach in the analysis of several complex models. The new
approach below was useful in such cases. See, e.g., [11].

5.1 LP-Indexability and a Fast-Pivoting Index
Algorithm

When investigating a restless bandit model, one is con-
cerned with identifying analytically a range of model pa-
rameters for which the model is indexable. Similarly as in
the earlier work mentioned, our proposed approach is based
on identifying the structure of optimal active sets for (6), in
the form of an active-set family F ⊆ 2N that contains an
optimal active set S ∈ F for every wage value ν ∈ R. While
such an F need not be a nested family, it must contain the
nested families F0 discussed in Section 2.2 that can arise as
the model’s parameters are varied over the range of concern.

Hence, (N, F ) is a set system on ground set N having
F as its family of feasible sets. Algorithmic considerations
lead us to impose strong structural properties on (N, F ),
which refer to the inner and outer boundaries of an active
set S ∈ F , defined respectively by

∂in
FS ,

{
j ∈ S : S \ {j} ∈ F

}
,

∂out
F S ,

{
j ∈ Sc : S ∪ {j} ∈ F

}
.

(25)

We will further say that two active sets that differ by onen
state, i.e., of the form S and S∪{j} with j ∈ Sc, are adjacent.

Definition 5.1. We say that (N, F ) is a monotonically
connected set system if:

(i) ∅, N ∈ F ;

(ii) for S, S′ ∈ F with S ⊂ S′, S′ ∩ ∂out
F S 6= ∅ and Sc ∩

∂in
FS′ 6= ∅; and

(iii) for S, S′ ∈ F , S ∩ S′ ∈ F and S ∪ S′ ∈ F .

Note that property (iii) above says that F is a lattice.
While various types of set system have been investigated,
e.g., matroids or greedoids, to the best of our knowledge the
concept of monotonically connected set system in Definition
5.1 is first introduced herein. Such a term is motivated by
the fact that, in such a set system, one can always connect
two feasible sets S ⊂ S′ by a monotone increasing sequence
S1 ⊂ · · · ⊂ Sm of adjacent sets in F , with S1 = S, Sm =
S′. One can also connect two distinct feasible sets S 6= S′

Table 5: Minimal Tableau for S-Active BFS.(
x1

Sc

)
T

x0
Sc AS

ScSc

wS
Sc

dS
Sc

Table 6: Minimal Tableau for S ∪ {j}-Active BFS.(
x1

Sc\{j}

)
T

x0
Sc\{j} AS

Sc\{j},Sc\{j} −
AS

Sc\{j},jA
S
j,Sc\{j}

aS
jj

wS
Sc\{j} −

wS
j

aS
jj

AS
Sc\{j},j

dS
Sc\{j} −

dS
j

aS
jj

AS
Sc\{j},j

through two successive monotone sequences of adjacent sets
in F , the first of which is monotone increasing and connects
S to S ∪ S′, while the second is monotone decreasing and
connects S ∪ S′ to S′.

Assumption 5.2. (N, F ) is monotonically connected.

We will further refer to the Fast-Pivoting Adaptive-Greedy
index algorithm FPAG(F ) described in Table 7. This is a
simplex-based implementation of the adaptive-greedy index
algorithm for PCL-indexable bandits introduced in [5, 6],
whose scope we extend herein to the present broader setting.
The FPAG(F ) algorithm is obtained by simplifying the CPI
and RPI algorithms above by (i) storing and updating only
minimal tableaux as shown in Table 5; and (ii) eliminating
the indexability test at each step. Note that the minimal
tableau for the S∪{j}-active BFS is readily computed from
that for the S-active BFS in Table 5, as shown in Table 6.

The results in Section 4 motivate us to introduce the fol-
lowing class of projects, which we term LP(F )-indexable as
their are based on LP analyses.

Definition 5.3 (LP(F )-indexability). We say that
a project is LP(F )-indexable if:

(i) w∅
i , wN

i ≥ 0 for i ∈ N , and d∅ ≤ 0 ≤ d
N

;



Table 3: The Complete-Pivoting Indexability (CPI) Algorithm.

solve
[
IN,N\{j∗} − Φ0

N,N\{j∗} m̃0
N

]
T

A(0) =
[
IN,N\{j∗} − Φ1

N,N\{j∗} m̃1
]

T

[
w(0)

d(0)

]
:=

[
q1

r1

]
−

[
q0

r0

]
A(0); S0 := ∅; k := 1; INDEXABLE := true

if max
j∈N

w
(0)
j ≤ 0 or min

j∈N
w

(0)
j < 0 or max

j∈N : w
(0)
j

=0

d
(0)
j > 0, INDEXABLE := false

while INDEXABLE and k ≤ n do

ν
(k−1)
j := d

(k−1)
j /w

(k−1)
j , for j ∈ Sc

k−1, w
(k−1)
j > 0 and j ∈ Sk−1, w

(k−1)
j < 0

pick ik ∈ arg max
j∈Sc

k−1
,w

(k−1)
j

>0

ν
(k−1)
j ; ν∗

ik
:= ν

(k−1)
ik

; Sk := Sk−1 ∪ {ik}

if max
j∈Sk−1,w

(k−1)
j

<0

ν
(k−1)
j > ν∗

ik
, INDEXABLE := false

else if k < n

p(k−1) = 1/a
(k−1)
ikik

; y(k−1) := p(k−1)A
(k−1)
Nik

; z(k−1) := A
(k−1)
ikN

[
w

(k)
Sk

−w
(k)
Sc

k

d
(k)
Sk

−d
(k)
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w

(k−1)
Sk−1

−w
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Sc

k−1

d
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−d
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Sc

k−1


 + p(k−1)

[
w

(k−1)
ik

d
(k−1)
ik

]
{
A

(k−1)
ikN + eT

ik

}

A(k) := A(k−1) − y(k−1)z(k−1)

A
(k)
Nik

:= −y(k−1); A
(k)
ikN := p(k−1)z(k−1); a

(k)
ikik

:= p(k−1)

A(k) := A(k−1) − p(k−1)
{
A

(k−1)
Nik

A
(k−1)
ikN + A

(k−1)
Nik

eT

ik
− eik

A
(k−1)
ikN − eik

eT

ik

}

if max
j∈Sc

k

w
(k)
j ≤ 0, INDEXABLE := false

end { if }
k := k + 1

end { while }

if k = n + 1 and {max
j∈N

w
(n)
j ≤ 0 or min

j∈N
w

(n)
j < 0}, INDEXABLE := false

(ii) for each S ∈ F , wS
i > 0 for i ∈ ∂in

FS ∪ ∂out
F S; and

(iii) for every wage ν ∈ R there exists an optimal active set
S ∈ F for (6).

Conditions (i, ii) are meant to be established through an
ad hoc work-reward analysis, while (iii) will be typically es-
tablished by DP arguments. See [11].

We are now ready to present what we consider the main
result of this paper. While its part (a) says that LP(F )-
indexability is a sufficient condition for indexability, with
the MPI being computed by algorithm FPAG(F ), its part
(b) says that such a condition is also necessary, in that an
indexable project is always LP-indexable, relative to some
nested active-set family.

Theorem 5.4. The following holds:

(a) An LP(F )-indexable project is indexable, and its MPI
is computed nondecreasingly by algorithm FPAG(F ).

(b) An indexable project is LP(F0)-indexable relative to
some nested active-set family F0.

The following result assesses the computational complex-
ity of algorithm FPAG(F ), showing that it improves sig-
nificantly upon that of algorithm RPI. In particular, the
complexity of its “for” loop matches that of solving an n×n
linear equation system by Gaussian elimination.

Proposition 5.5. The FPAG(F ) algorithm’s loop per-
forms (2/3)n3 + O(n2) operations.

In the special case of nonrestless semi-Markov bandits, us-
ing algorithm FPAG(F ) with F = 2N yields a (2/3)n3 +
O(n2) method to compute the Gittins index, as the initial-
ization step becomes trivial, thus matching the complexity
result in [9] for classic Markov bandits.

5.2 PCL-Indexability Revised
We next revise the concept of PCL(F )-indexability, in-

troduced and developed in [5, 6, 8], in light of the above
developments.

Definition 5.6. A project is PCL(F )-indexable if:

(i) for each active set S ∈ F , wS
i > 0 for i ∈ N ; and



Table 7: The Fast-Pivoting Adaptive-Greedy Index Algorithm FPAG(F).
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−
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]
A(0); S0 := ∅
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ν
(k−1)
i := d

(k−1)
i /w

(k−1)
i , i ∈ ∂out

F Sk−1
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}
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end { if }

w
(k)
Sc

k
:= w

(k−1)
Sc

k
− w

(k−1)
ik

A
(k)
Sc

k
ik

; d
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k
:= d
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k
− d
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ik

A
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end { for }

(ii) for every wage ν ∈ R there exists an optimal active set
S ∈ F for (6); or

(ii’) algorithm FPAG(F ) produces a nonincreasing index
sequence: ν∗

i1
≥ ν∗

i2
≥ · · · ≥ ν∗

in
.

Thus, a PCL(F )-indexable project is one that is LP(F )-
indexable an further has positive marginal work for active
sets S ∈ F . Definition 5.6 differs slightly from those given in
the earlier work mentioned, which only required satisfaction
of conditions (i, ii’), and imposed less stringent requirements
on set system (N, F ). Our motivation for introducing the
above revision is applied: we have found that, in the analysis
of bandit models with complex state spaces, condition (ii’)
can be much harder to establish than condition (ii).

Proposition 5.7. In Definition 5.6, conditions (i, ii) and
(i, ii’) are equivalent.

6. THE AVERAGE CRITERION
In applications of indexation to problems under the (long-

run) average criterion, one must address the version of ν-
wage problem (6) based on reward and work measures

fπ
i , lim inf

T↗∞

1

T
E

π
i

[∫ T

0

R
a(t)

X(t)
dt

]
, (26)

and

gπ
i , lim sup

T↗∞

1

T
E

π
i

[∫ T

0

Q
a(t)

X(t)e
−αt dt

]
. (27)

As in [6, Sec. 6.5], we now assume that the embedded
process Xn is communicating, so that every state can be
reached from every other state under some stationary pol-
icy. This ensures that the above measures do not depend
on the initial state under a stationary deterministic policy,
and hence one can write fS and gS for active sets S ⊆ N .
Hence, the corresponding ν-wage problem (6) can be solved
by a stationary deterministic policy independent of i, which
allows one to readily extend the indexability theory above
to the average criterion.

Regarding the above algorithms, they apply without mod-
ification to the average criterion, as the results in Section 3.4
show that the required tableaux emerge as limits of their
discounted counterparts as the discount rate vanishes, and
also shows how to compute the initial tableau. To extend

the results in Section 5 one must further assume that the
active-set family F of concern has the property that, for
every S ∈ F , the S-active policy is unichain, i.e., it induces
on the embedded process Xn a single recurrent class plus a
(possibly empty) set of transient states.

7. COMPUTATIONAL EXPERIMENTS
This section reports the results of several computational

experiments, based on the author’s MATLAB implementa-
tions of the algorithms discussed above.

7.1 Prevalence of (PCL-)Indexability
We start by assessing the prevalence of the indexability

and PCL-indexability properties, in a class of randomly gen-
erated restless bandit instances.

We considered discrete-time projects, and conducted a
simulation study based on generating a random i.i.d. sample
of 107 instances with qa

i = a and dense transition probabil-
ity matrices — obtained by appropriately scaling a matrix
with Uniform[0, 1] entries — for each of the state-space sizes
n = 3, . . . , 7. For each instance, we used the above algo-
rithms to test for indexability and PCL-indexability (rela-
tive to any F ), as the discount factor β varies. Note that
the value β = 1 refers to the average criterion discussed in
Section 6.

Table 8 reports the results, which show that the preva-
lences of indexable and of PCL-indexable projects grow steeply
both as the discount factor gets smaller and as the state
space gets larger.

Such results suggest that, for projects with dense transi-
tion probability matrices, both indexability and PCL-indexability
are highly prevalent properties. Figure 1 shows a modified
version of the classification of restless bandits introduced
in [5], updated to better reflect relative class sizes. Note
that the figure refers to the class of GCL-indexable bandits,
named after their satisfaction of generalized conservation
laws (GCL), which are PCL-indexable relative to F = 2N .

7.2 Runtime Comparison of Index Algorithms
In contemporary computers, the runtime performance of

an algorithm depends both on its arithmetic operation count
and on its memory-access patterns, the latter being often the
dominant factor. To compare the performance of the algo-
rithms discussed in this paper, we have thus conducted a



Table 8: Counts on Samples of 107 Project Instances.

Nonindexable Indexable non-PCL
number of states number of states

β 3 4 5 6 7 3 4 5 6 7
0.1 0 0 0 0 0 0 0 0 0 0
0.2 0 0 0 0 0 0 0 0 0 0
0.3 0 0 0 0 0 0 0 0 0 0
0.4 0 0 0 0 0 0 0 0 0 0
0.5 0 0 0 0 0 0 0 0 0 0
0.6 0 0 0 0 0 0 0 0 0 0
0.7 0 0 0 0 0 30 0 0 0 0
0.8 16 1 0 0 0 574 32 1 0 0
0.9 135 7 0 0 0 4460 509 36 5 0
1.0 818 66 4 0 0 18631 3640 425 50 3

Non-indexable

Indexable

PCL-indexable

GCL-indexable

Figure 1: Classification of Restless Bandits.

computational study, using MATLAB implementations de-
veloped by the author. The experiments were performed
on an HP xw9300 254 (2.8 GHz) Opteron workstation run-
ning MATLAB 2006b under Windows XP x64. For each
of the state space sizes n = 1000 to 6000 (in 500 incre-
ments) a random bandit instance was generated. Transi-
tion matrices were obtained by scaling random matrices with
Uniform[0, 1] entries, dividing each row by its sum. Active
rewards were generated with Uniform[0, 1] entries, while pas-
sive rewards were zero. The discrete-time discount factor
used was β = 0.8.

For each instance, the CPI algorithm was used to test for
indexability and for PCL-indexability (by checking the signs
of marginal work measures for the generated nested active-
active set family). Since such tests turned out positive in
each case, the MPI values were computed using the CPI,
RPI and FPAG(F ) algorithms, with F = 2N .

Figure 2 displays the recorded runtimes for each algo-
rithm, where where the lines shown are obtained by cubic
least-squares fits. The results show that the FPAG algo-
rithm, having an operation count of (2/3)n3, is indeed the
fastest of the three, consistently achieving speedup factors
of about 1.3 over the CPI and RPI algorithms, which ex-
hibit similar runtimes, though the RPI algorithm was the
slowest. Recall that the operation counts are 2n3 and n3

for the CPI and the RPI algorithms, respectively. Such
discrepancies between theoretical and actual speedup fac-
tors are accounted for by noticing the algorithm’s memory-
access patterns. Thus, algorithm CPI, being based on com-
plete pivoting steps, has efficient memory-access patterns, as
the coefficient matrix A is always updated as a contiguous
memory block. In contrast, both the RPI and the FPAG
algorithms reduce the operation count at the expense of us-
ing and updating submatrices of A, which results in costly
strided memory-access patterns. Yet, the large reduction in
arithmetic operations in the FPAG algorithm compensates
such inefficiencies, rendering it the fastest algorithm.
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