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ABSTRACT
The Stochastic Automata Network (SAN in the following)
methodology is in general associated to exact numerical anal-
ysis taking into account the tensor decomposition of the
chain to improve matrix vector product. Here, we advocate
a completely different approach : use the automata, their
properties and the definition of tensor operations to derive
structural properties of the chain and stochastic bounds to
simplify the SAN. We focus on lumpability and stochastic
bounds. Rather than a complete theory which remains to
establish, we present a real example: the computation of the
loss rate for a multistage ATM switch.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques; Per-
formance attributes; G.3 [Probability and Statistics]:
Markov processes

Keywords
Discrete Time Markov Chain, Stochastic Bounds, Stochastic
Automata Networks, Aggregation

1. INTRODUCTION
The Stochastic Automata Networks (SAN for short) ap-

proach was originally designed by B. Plateau [19] to evaluate
the performance of distributed algorithms. SAN methodol-
ogy consists of a decomposition into modules (automata)
which are connected by synchronized transitions and func-
tional transitions whose rates are functions of the state of
the automata. Theses transitions are denoted as functional
transitions or functional rate transitions. Associated to nu-
merical solvers, SAN have been used for the specification
and the evaluation phases : see [12] to obtain the loss rates
in ATM networks, [2] for the blocking probabilities in mul-
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tistage interconnection networks or [26] for the performance
evaluation of a bandwidth allocation mechanism in Wireless
ATM.

The first method associated to Stochastic Automata Net-
works was a numerical resolution based on the power method
to compute the steady-state distribution of the Markov chain
associated to a SAN [20]. It improves the complexity of the
product vector-matrix taking into account the tensor decom-
position of the transition matrix of a SAN. Since then, sev-
eral numerical methods have been investigated: Arnoldi and
GMRES [24], Gauss-Seidel [22] and some new algorithms
have been proposed to again improve the product of a vec-
tor by the tensor decomposition of the transition matrix [11].
New techniques for SANs associated to Near Completely De-
composable chains have also been considered [9] and several
papers have addressed some sufficient conditions of strong
aggregation (or ordinary lumpability) for SANs [4, 10].

Recently, some analytical results for SAN have been pre-
sented. First B. Plateau et al. [21] have considered SAN
without synchronizations. They proved that a product form
steady-state distribution exists as soon as some local bal-
ances are satisfied. Even without synchronizations, the tran-
sitions of the automata are still dependent because of func-
tional rates. In [3], Boujdaine et al. have also proved prod-
uct form for SAN with a special case of synchronization
where only two automata are active. However, to the best of
our knowledge, these analytical results have not been used
to solve real problems.

In this paper, we propose a new direction to efficiently
solve some performance evaluation problems modelled as a
SAN: we take into account some structural properties to
modify the chain and make it lumpable. Lumpability allows
to reduce the state space but many models are not lumpable
or the lumped chains are still very large. Thus we advocate
a SAN transformation method based on stochastic compar-
ison which provides an upper bounding lumpable SAN. For
the sake of our knowledge it is the first time that an upper
bound is directly computed to obtain a SAN. We have pre-
viously shown in [15] how we can build a lumped transition
probability matrix which is a stochastic upper bound of a
SAN. Here we build an upper bounding SAN directly from
the SAN description of the model.

It must be clear that such a result is not limited to SAN
in discrete time. It is based on the tensor algebra represen-
tation and can be generalized to any formalism which uses
such a description of the transition probability matrix (for



instance PEPA [16]). Note that we use here stochastic com-
parison of Discrete Time Markov Chains. Another approach
based on the polyhedral theory has been recently presented
[7]. Stochastic comparison allows to obtain bounds on the
steady-state and transient distributions but the approaches
based on polyhedral theory provides in general more accu-
rate results.

Here, we show how to prove some structural properties of
the graph using properties of the automata. Rather than a
general theory, which remains to establish, we present a real
example: the computation of the loss rate for a multistage
ATM switch. Remark that all the techniques presented here
are based on the reduction of the state space. Indeed, using
modular decomposition techniques, we are able to specify
and store in memory models that we do not know how to
solve. State reduction for exact results or stochastic bounds
are clearly one way to fill the gap between our specification
ability and our evaluation techniques.

The rest of the paper is organized as follows: in section
2, we describe discrete-time SAN. Note that we restrict our-
selves to SAN without functional rates. Section 3 is devoted
to stochastic comparison and strong aggregation. In section
4 we present the evaluation of the loss rates for the second
stage of an ATM switch. This example was developed in [13]
using evolution equations and analytical methods. Here, we
show how our results about structure may be applied very
easily to obtain these bounds. It is even possible to check
the property and derive some bounds algorithmically.

2. DISCRETE-TIME SAN
For the sake of simplicity, we restrict ourselves to discrete-

time SAN. Indeed our example is a discrete time model of an
ATM switch. An automaton consists of states and transi-
tions which represent the effects of events. These events are
classified into two categories: local events or synchronizing
events. A local event affects a single automaton and is mod-
eled by a local transition. On the opposite, a synchronizing
event modifies the state of more than one module (but loops
are considered as valid transitions).

In this paper, we consider that the transition rates are
fixed. The SAN methodology allows functional rates to
model dependence between automata. However it is pos-
sible to replace functional rates by synchronizations with
loops. Each value of the function is replaced by a synchro-
nization with a fixed transition rate (i.e. the value of the
function). Functions have been added in the SAN method-
ology to make more compact the representation, using less
synchronizations. Furthermore, in discrete-time, as local
events are independent, their global behavior is represented
as their product. This is equivalent to a synchronization.

The state space of the system is the cartesian product of
the states of the automata which are combined in the net-
work. The effective state space is in general only a subset
of this product. Because of synchronizations, an automa-
ton by itself is not Markovian. To obtain a multidimen-
sional Markov chain for the whole network, we assume inde-
pendence and geometrically distributed transition durations.
The fundamental results allows a compact representation of
the transition matrix of the chain [19]. Assume a lexico-
graphic ordering for the states, the matrix description of a

SAN Markov chain (P ) is :

P =

nO
i=1

Qi +

cX
j=1

(

nO
i=1

Si,j) + N (1)

where n is the total number of automata in the network, c is
the number of synchronizations, Qi is the description of the
local events, Si,j is the contribution matrix of automaton i
to synchronization j and N is the normalization to obtain
a stochastic matrix.

N
denotes tensor product. Remember

that if S1,1 =

»
a b
c d

–
and S2,1 =

»
α β
γ δ

–
then:

S1,1

O
S2,1 =

2664
aα aβ bα bβ
aγ aδ bγ bδ
cα cβ dα dβ
cγ cδ dγ dδ

3775
Here we only consider the following matrix:

cX
j=1

(

nO
i=1

Si,j) (2)

This equation is a little bit simpler than the usual one be-
cause we do not consider normalization and we represent
local transitions as a new synchronization. Remember that
we restrict ourselves to discrete-time SAN without functions.
Note that in discrete-time, the matrix contains the tensor
product of local events while in continuous-time we use the
tensor sum of these events. As we focus on structural prop-
erties, we do not need the normalization. The theory for
Discrete Time SAN allows to consider global synchroniza-
tions which acts upon every automaton (but the action may
be a loop) and semi-global synchronization to allow a more
efficient representation of synchronizations which are only
loops. However to avoid some difficult problems due to su-
perposition of semi-global synchronizations, it is easier to
model the system with global synchronizations only. Note
that this is not a restrictive assumption as it is possible that
Si,j is a positive diagonal matrix (i.e. synchronization j has
no effect on automaton i). The only consequence of this
restriction is that we must consider a larger set of synchro-
nizations. Indeed if some synchronizations are independent
we must build and use the cartesian product of these inde-
pendent events.

The main idea is to find properties on Si,j which are kept
unchanged during a tensor product or a sum of matrices.
In the following, we present some structural or numerical
properties and the way they imply a simpler resolution of
the SAN. We use the following method. First check if the
exact aggregation results hold. If they do not, change the
automata and the synchronizations following the two con-
straints for the stochastic ordering (monotonicity and com-
parison). And design a new SAN which gives a stochas-
tic bound and which can be analyzed by exact aggregation
methods. Let us first introduce the stochastic comparison of
Markov chain and necessary condition for SAN lumpability.

3. STOCHASTIC BOUNDS FOR DTMC
Most of the result already published deal with DTMC

where the state space is endowed with a total order (see [14]
for a survey on the algorithmic aspects of strong stochastic
bounds on a totally ordered states space). Here we must
consider a partial ordering on the state space. Indeed most



of the models we consider are associated to a natural partial
order. For instance in a network of queues, we use the prod-
uct order and the states of a queue are naturally ordered
using their size. If we only have a partial order, it is very
simple to build a consistent total order and we can easily
obtain a bound. However the bound accuracy will be very
bad. Thus, to obtain accurate bounds, we have to find new
techniques which only need a partial order. Note that SAN
are naturally associated to product orders.

Let ε be a discrete denumerable state space, and � be
at least a preorder (reflexive, transitive but not necessarily
anti-symmetric) on ε. We give in the following the definition
of the strong stochastic ordering associated to the preorder
�, first as an integral ordering and then as a set stochastic
ordering [25], [18].

Definition 1. Let λ and µ be probability measures on ε,

λ �st µ ⇔
Z

ε

fdλ ≤
Z

ε

fdµ

for all f : ε → R increasing according to the �, i.e., ∀(x, y) ∈
ε× ε x � y ⇒ f(x) ≤ f(y);

Definition 2. Any subset Γ of ε is called an increasing
set if and only if x � y and x ∈ Γ =⇒ y ∈ Γ.

Definition 3. X �st Y if and only if P (X ∈ U) ≤
P (Y ∈ U), for all increasing sets U ⊂ S.

For example, let us consider the space ε = {1, 2, 3, 4} with
the partial order defined by 1 � 2 � 4 and 1 � 3 � 4.
Then ∅, {4}, {2, 4}, {3, 4}, {2, 3, 4}, ε are all increasing sub-
sets of ε. If we consider the random variables X, Y and
Z with the following distribution vectors (0.3, 0.4, 0.1, 0.2),
(0.3, 0.1, 0.3, 0.3) and (0.1, 0.2, 0.3, 0.4), then we have X �st

Z and Y �st Z, but X and Y are not comparable in the
�st-sense since P (X = 4) = 0.2 < P (Y = 4) = 0.3 but
P (X ∈ {2, 4}) = 0.6 > P (Y ∈ {2, 4}) = 0.4.

The strong stochastic ordering is a sample path ordering,
so we may use Strassen’s theorem and the coupling method
(see [25] for further information). The stochastic ordering
on Markov chains is then simply defined as the preserva-
tion of stochastic ordering which is satisfied on the initial
distribution.

Definition 4. Let X(i), Y (i) two discrete-time Markov
chains. X(i) �st Y (i) iff

X(0) �st Y (0) ⇒ X(i) �st Y (i) ∀i > 0

Now we introduce the monotonicity property for transi-
tion matrices of homogenous discrete time Markov chains
(DTMC). The monotonicity property together with the tran-
sition matrix comparison are sufficient conditions for stochas-
tic comparison of two DTMC (Theorem 1).

Definition 5. A transition matrix P of a DTMC {Xt}t≥0

is monotone if for all probability vectors x and y, x �st y
implies xP ≤ yP .

We have the following characterization of�st-monotonicity.
If the chains are homogeneous, the stochastic comparison
and the structural properties may be expressed using the
transition matrices.

Lemma 1. Let {Xt}t≥0 be a DTMC with a partially or-
dered state space (S,�). A transition matrix P is �st-
monotone if for all i, j ∈ S such that i � j, Pi,∗ �st Pj,∗.

Definition 6. For transition matrices P and Q we say
that P �st Q if Pi,∗ �st Qi,∗ for all i ∈ S.

The definition can be clearly generalized to substochastic
matrices.

Theorem 1. Let S be a Polish space with a closed partial
order � and let {Xt} and {Xt} be two DTMC and P and
Q be their respective stochastic matrices. If

• X0 �st Y0,

• at least one transition matrix P or Q is �st-monotone,

• P �st Q,

then X(t) �st Y (t), for all t > 0. If X and Y have steady-
state distributions πX and πY , then πX �st πY .

The two following lemmas are quite easy. But they are
the key properties to propagate bounds on the chain from
the bounds on the automata.

Lemma 2. Let P and Q be two monotone substochastic
matrices on the same state space endowed with a partial (or
total) ordering such that P +Q is stochastic or substochastic,
then P + Q is monotone.

Proof : let u �st v, then according to definition uP �st

vP and uQ �st vQ. Then we have uP + uQ �st vP + vQ.
After factorization we get: u(P +Q) �st v(P +Q). As P +Q
is substochastic P + Q is monotone.

Lemma 3. Let P and Q be two monotone substochastic
matrices on state space E1 and E2 endowed respectively with
order �1 and �2, then P

N
Q is monotone for the product

order.

Before proceeding with the proof, let us show on an ex-
ample that this is not true for a total order. Consider the
following two matrices A and B.

A =

»
1− a a
1− b b

–
B =

»
1− c c
1− d d

–
If b ≥ a then matrix A is monotone. Similarly if d ≥ c
matrix B is monotone. Matrix A

N
B is equal to:2664

(1− a)(1− c) (1− a)c a(1− c) ac
(1− a)(1− d) (1− a)d a(1− d) ad
(1− b)(1− c) (1− b)c b(1− c) bc
(1− b)(1− d) (1− b)d b(1− d) bd

3775
Clearly if ad > bc matrix A

N
B is not monotone due to the

comparison of row 2 and 3. And the assumptions on a, b, c
and d do not forbid to have ad > bc (i.e. we only know that
b ≥ a and d ≥ c). To avoid to compare these two rows, one
must consider a partial order instead of a total order. When
we consider a product order, row 2 which is associated to
state (1, 2) cannot be compared to row 3 which is associated
to state (2, 1).



Let us know turn back to the proof of the lemma. Assume
that u �st v, we want to prove that uP

N
Q �st vP

N
Q.

Let u = (u1, u2) and v = (v1, v2) with the usual lexico-
graphic representation of the product associated to tensor.
As �st is the product order it means that either

u1 = v1 and u2 �2 v2

or

u1 �1 v1 and u2 = v2.

Without loss of generality we assume that u1 = v1 and
u2 �2 v2. Remember that (u1, u2) P

N
Q = (u1 P, u2 Q).

As u1 = v1 we have u1 P = v1 P . As u2 �2 v2 and as Q is
�2 monotone we have: u2 Q �2 v2 Q. Thus:

u P
O

Q �st v P
O

Q,

and the lemma is proved.
To handle the high level representation of a SAN, it is

better to consider an event rather than the row of the ma-
trices and we consider event monotonicity rather than mono-
tonicity. This concept of event-monotone models will clearly
help to reduce the computation cost to check that a SAN is
monotone. Let us now define more formally the event based
monotonicity.

Definition 7 (event). An event e is an application
defined on the state space that associates to each state x a
new state denoted by Φ(x, e). Φ is called the transition
function of the system.

Definition 8 (execution). An execution of the sys-
tem is defined by an initial state x0 and a sequence of events
e = {en}n∈N . The sequence of states {xn}n∈N defined by
the recurrence xn+1 = Φ(xn, en+1) for n ≥ 0 is called a
trajectory.

Definition 9 (monotone events). An event e is said
to be monotone, if it preserves the partial ordering � on the
state space :

∀(x, y) x � y → Φ(x, e) � Φ(y, e)

If all events are monotone, the global system is said to be
event-monotone.

Definition 10 (upper bounding events). An event
e is said to be an upper bound of event f if and only if

∀x Φ(x, f) � Φ(x, e)

Event-monotonicity is much simpler to check algorithmi-
cally on the high level specifications than the stochastic
monotonicity based on the matrix. And event monotone
systems are also stochastically monotone (take care that the
converse is false). As the proof is simple it is omitted here.

Lemma 4. Event monotonicity implies strong stochastic
monotonicity.

In a Discrete Time SAN, the events are synchronizations.
Thus one must provide a method or an algorithm to check
if a SAN synchronization is event monotone. The following
property and algorithm provide such a method.

Property 1. For a Discrete Time SAN, endowed with a
product order the verification of the event monotonicity is
simple. Indeed for all states x and y, x � y implies that all
the components are equal except one. Let i this component.

Assume that the SAN has n automata and let P1,..Pn be
the transition matrices which describe the synchronization
we check. Due to the product ordering and the tensor repre-
sentation we just have to study Pi when the states only differ
in component i. Thus it is sufficient to check every matrix
Pi in isolation and not to consider the cartesian product of
the states and the tensor product of the matrices.

Again this is a new idea to illustrate the usefulness of ten-
sor representation.

Finally if a SAN is not monotone, one may ask which
transform we may apply to make it monotone. The main
idea is to obtain upper and lower bound in the stochastic
sense using the algorithms presented in [14]. As we deal with
synchronization which are represented by matrix and event-
monotonicity the simplest method consists in the modifica-
tion of the local matrices of the synchronization. However
the algorithm is highly dependent of the ordering of the local
states of automata (i.e. �1 and �2 orders in previous lem-
mas). When these orders are total orders on the integers,
Vincent’s algorithm [14] provides a matrix representation of
an upper bound events if the synchronization is lumpable.
Indeed in this case, matrix Si,j has constant row sum and
one can easily check that the bound also has constant row
sum. For the sake of completeness we give here the text
of the algorithm. P is the initial matrix representation of
the synchronization and Q is the matrix representation of
the upper bound monotone synchronization. We change the
matrix notation to present a simpler algorithm.

Algorithm 1 Construction of the matrix representation of
an monotone upper bound synchronization:

q1,n = p1,n;
for i = 2, 3, . . . , n do

qi,n = max(qi−1,n, pi,n);
end for
for l = n-1 downto 1 do

q1,l = p1,l;
for i = 2, 3, . . . , n do

qi,l = max(
Pn

j=l qi−1,j ,
Pn

j=l pi,j)−
Pn

j=l+1 qi,j ;
end for

end for
return q

Thus if we use a full matrix implementation of the au-
tomata description, checking if a synchronization is mono-
tone requires a number of instructions equal to

P
i n2

i where
ni is the size of Automaton i. Of course we can reduce the
complexity if we use a sparse matrix representation. But
we just want to remark that if we build the global matrix
and use it to check the monotonicity the complexity will beQ

i n2
i if we assume that all the states are reachable. Again

we have to compare c
P

i n2
i with

Q
i n2

i and if c is not that
large, the tensor based approach associated to the product
ordering of the states is again more efficient.

One can also use a similar algorithm to obtain a monotone
lower bound for the synchronization.

If Q = P at the end of the algorithm it proves that P is al-
ready monotone. When the synchronization is not lumpable



and the row sum is not constant, we have two solutions:

• Make the event monotone first before checking the
monotonicity. We follow this approach in the next sec-
tion.

• Perform the monotonicity checking with an ordered
list of synchronization and keep into account the prob-
ability we add to make the matrix monotone. This
probability has to be removed when necessary from
other automata. Indeed the final matrix must still be
a stochastic matrix. This eventually leads to the dele-
tion of synchronizing events which has a zero proba-
bility. This algorithm is much more complex and we
do not get into the details. For a similar approach
one can consider the various versions of LL algorithms
presented recently by Busic in [1] where the events are
modified independently but in an ordered manner and
where some events may disappear.

Property 2. Note that to obtain an upper bounding syn-
chronization we just have to move the transitions to upper
states. Similarly lower bounding synchronizations are ob-
tained by moving transitions to lower states.

3.1 Aggregation of SAN
In this section we just mention a sufficient condition for

lumpability of SAN which has been published some years
ago [10]. This first result is based on numerical conditions
and it uses the Kemeny and Snell’s theorem on lumpability.

It is well known that P is ordinarily lumpable if each block
in the partitioning of P has equal row sums. Lumpability of
SAN has been considered for a long time (see for instance [4,
5]). In these works Buchholz defined equivalence relations
among states in a component of the model or among the
components. For instance, in [4] where exact aggregation
is applied to hierarchical Markovian models, aggregation is
done with respect to identical classes of customers inside
low level models, with respect to identical low level models,
and with respect to identical states of the high-level model.
In [9] Dayar and his coauthors have considered a SAN in
its general form with functional transitions. They assumed
that the descriptor corresponding to the SAN is a sum of
generalized tensor products and they derived easy to check
conditions on descriptions of automata and their ordering.
These results allow to identify a class of ordinarily lumpable
partitionings in which lumping happens automaton by au-
tomaton. The goal of Dayar’s work was to identify ordinarily
lumpable partitionings of P induced by the block structure of
tensor product. Obviously, this kind of ordinarily lumpable
partitionings is a special case of the lumpability and perfor-
mance equivalence considered by Buchholz in [4, 5]. On the
other hand, it is important here to have a simple condition
for ordinary lumpability. Indeed we assume that the SAN
is not lumpable and we modify it to satisfy the condition.
Here the condition is even simpler because we do not have
functional transitions in the SAN.

Definition 11. The list of transitions for a node of an
automaton is the list of pairs (transition rate, synchroniza-
tion number).

Theorem 2 (Lumbability condition). Consider a dis-
crete time SAN without functions associated to an irreducible

chain. And assume that automaton A1 has the same list of
transitions for each state, then the Markov chain is lumpable.
And the lumbability classes are the states of the chain which
only differ by the state of A1.

Idea of the proof: verify the assumptions of the theorem
on lumbability of Markov chains (the proof is in [10]).

Using the same event representation, we obtain a very
simple sufficient condition for a SAN lumpability. The algo-
rithm is quite simple and we do not present it here because
of the limited size of the paper.

Property 3. A synchronization is event-lumpable for au-
tomaton A1 if its probability is constant and if it occurs in
every state of A1. If all the synchronizations of a SAN are
event-lumpable, then the SAN is lumpable.

These properties show the basic operations one can per-
form when studying a Discrete Time SAN. First check if
all synchronizations are event-lumpable and if this property
holds then perform the aggregation or use the IAD algorithm
proposed in [10].

If some synchronizations are not lumpable, change them
to be lumpable and make all of them be monotone and upper
bounding to obtain a lumpable bound described as a SAN.
One can perform this task algorithmically but one can also
study the model to perform a transformation of a set of
synchronizations. We illustrate this approach by an example
where we group synchronizations and modify them to make
the SAN lumpable.

4. BOUNDING THE LOSS RATE IN AN ATM
SWITCH

We study the cell loss rates in a multistage ATM switch.
Such a switch is decomposed into several queues with feed-
forward routing; and external arrivals always take place at
the first stage. We assume a discrete-time switching as the
ATM cells have a constant size. All the queues are finite.
Thus losses occur in all queues due to the variability of the
input processes. the topology suggests to use a decomposi-
tion to find loss rates stage by stage.

Figure 1: A multistage ATM switch

The analysis of the first stage is not very difficult. If we
assume i.i.d batch arrivals or Markov modulated batch ar-
rivals (MMBP), we can easily build a Markov chain of one
buffer. the second stage is much more difficult to analyze.



Indeed, it is quite impossible to know exactly the arrival
process into a buffer in the second stage even if we assume
a simple i.i.d batch arrival process at the first stage. The
output process of the first stage is usually unknown due to
the losses at the first stage and the superposition of such
processes is unknown even if we assume independence. We
have analyzed this problem using stochastic bounds in [13].
The bounds were derived using evolution equation and the
Strassen’s theorem to compare sample-paths. Here, we show
how these bounds may be obtained quite easily using the
theorems and the properties stated in the previous sections.
For the sake of simplicity, we only present here the deriva-
tion of the upper bound (the most interesting part of the
problem).

The loss rate R is the expected number of lost cells in a
queue of the second stage per unit of time. It is defined as
a reward function on the steady-state distribution.

R =
X
s∈S

π(s)

mX
j=1

p[j, s]((n0 − 1)+ + j −B0)
+ (3)

where n0 is the cell number in this buffer, B0 is the buffer
size and p[j, s] is the probability that j arrivals take place
into this buffer when the chain is in state s. As usual x+

denotes max(0, x). This reward is an increasing function of
the probability distribution π. Therefore it is compatible
with the st-comparison of chains.

4.1 Model
For the sake of simplicity we have considered a system

with two input buffers and one second stage buffer. We will
show on this problem how to perform bounds and aggrega-
tion. The numerical results are obtained on larger problems
(4 input buffers). This is not a limitation of the approach
but we need to present a small model to illustrate the trans-
forms on the SAN.

The model consists of one automaton per queue. The
automaton models the queue size between 0 and Bi for au-
tomaton i. We have used 4 synchronizations denoted as S0,
S1, S2 and S12. Synchronization Si means that queue i has
released a customer which may join the second stage buffer if
the routing is positive. S0 means that the two input buffers
are empty. As we only consider one output buffer such a
set of synchronizations is sufficient to represent the packet
movements between queues. If we must also study the cor-
relation between output queues connected to the same set of
input queues (buddy nodes in the Multistage Interconnec-
tion Network terminology) one must consider a larger set
of events. Indeed in such a model, an event must explicitly
model the source and the destination of the packet. Here
we do need such a precise representation as we only study a
single output and we have a smaller set of events. However
the representation of these events are more complex.

In Figure 3, we have represented automaton A2 which
models one input buffer. Automaton A3, depicted in Figure
4, represents the behavior of the second stage buffer. Note
that we do not represent all the transitions but only the
ones exiting a state. And as the behavior is different at the
boundary we have represented an arbitrary state i, and the
two boundary states 0 and Bi. The description of the other
input buffer is easily obtained from Automaton A2.

The arrival process at the first stage is the superposition
of two independent Bernoulli processes with rate p and q.

i-1 i+1

State  B2

f(2)(S12+ S12)

(f(1) +f(2))(S2+S12)

f(0)(S2 + S12)
B2B2-1

f(0)(S2 + S12)

f(1)(S0 +S1)

f(0)(S0 + S1)

f(1)(S2 +S12)

f(2)(S0 +S1)

i

State 0

2

1

0

Arbitrary State i

Figure 2: Automaton A2

These arrivals probabilities are combined into the proba-
bilities f0, f1 and f2 which are used in the figure for the
sake of readability. Clearly we have: f0 = (1 − p)(1 − q),
f1 = p(1 − q) + q(1 − p) and f2 = pq. Note that this as-
sumption is not necessary to the analysis. The routing to
enter the second stage queue (or join another queue not rep-
resented) is also independent and Bernoulli with rate beta1
and beta2.

4.2 Designing the bound
Clearly, Automaton A2 have a tridiagonal structure with

distinct behaviors for state 0 and B2. Also it must be clear
that the model is not event-lumpable because S0 only exists
when Automaton A2 is in state 0. We show how we can
modify the synchronizations to obtain a lumpable SAN.

Looking carefully at Automaton A2, it is clear that if we
change synchronization S0 into S2 and S1 into S12, we cre-
ate a new version of Automaton A2 such that the list of
transitions is the same for all nodes of Automaton A2. So
Theorem 1 will apply and the SAN is now lumpable.

Let us now consider the monotonicity problem. We may
prove that either the original SAN or the modified SAN is
event-monotone. As the modified SAN has a smaller set of
events (2 instead of 4) we consider it. However it is worthy
to remark that the original SAN is also monotone even if
the proof is more complex.

Consider the new synchronizing event S2 for instance for
Automaton A3. We can check very easily using Vincent’s
algorithm that the event is monotone. Indeed its matrix is
simply (for buffer size equal to 4):



B3 - 1

1

0

i+1i-1 i

B3

State 0

2

S0 + S1(1-beta1) + S1 beta1 + S2 beta2 +
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Arbitrary state i

S1 beta1 + S2 beta2 +

S12 beta1 (1-beta2) + 
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S1 beta1 S2 beta2 +
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Figure 3: Automaton A3
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1− beta2 beta2
1− beta2 beta2

1− beta2 beta2
1− beta2 beta2

1− beta2 beta2

37775
Similarly for the same automaton, synchronization S12 is

associated to matrix representation (again with a buffer size
equal to 4):

26664
a2a1 c b
a2a1 c b

a2a1 c b
a2a1 c b

a1a2 b + c

37775
with a2 = 1− beta2, a1 = 1− beta1, c = a1beta2 + a2beta1,
and b = beta1 beta2 to simplify the matrix representation.

It is very simple to check numerically that these matri-
ces are monotone using Vincent’s algorithm. And they are
also upper bounding events of the former events. Further-
more, this modification is performed on lumpable automata.
And this modification implies a st-comparison of the global
matrix.

Note that the structure of the chain explains intuitively
why the system is monotone. Indeed, the automata are as-
sociated to Batch/D/1/B queues which are known to be
monotone. Here we obtain a simple verification procedure
for an upper bound lumpable description based on events.

Again an intuitive explanation of the upper bound is sim-

ple: synchronization S0 is associated to subdiagonal tran-
sitions for Automaton A3 while S2 represent subdiagonal
and diagonal transitions. Similarly, changing S1 into S12
modifies the contribution in the global transition matrix to
obtain something greater in the st-comparison.
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(f(1) +f(2))(S2+S12)

f(0)(S2 + S12)
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f(1)(S2 +S12)

f(0)(S2 + S12)

f(1)(S2 +S12)

f(2)(S2 +S12)

i

State 0

2

1

0

Arbitrary State i

Figure 4: Modified Automaton 2

This system has a physical interpretation : we have simpli-
fied the original system by deleting some of the input buffers
and we replace them by greedy sources (the black dot in fig-
ure 4.2). A greedy source always has a customer to send.
This is equivalent to a queue which is always backlogged
(i.e. these buffers behave as they are never empty). It is
clear that this system provides a sample-path upper bound
of the initial system. If the input buffer is never empty, it is
not necessary to represent it to study the output queue. It is
basically the modification that we have obtain when we have
merged synchronization S0 with S2 and synchronization S1
with S12.

4.3 Using the bound
We apply this method to several topologies, several batch

distributions of arrivals and several routing probabilities.
We present here some typical results. We consider a sys-
tem with 4 input buffers with the same size. Two cases are
presented: buffers of size 10 and 20. The exact model is
associated to a Markov chain of size (B + 1)5. The upper
bound is obtained with a model of two input buffers and
two sources. Thus the chain size is only (B +1)3. The lower
bounds are depicted here to show the quality of the results.
But the bounds are obtained by another method that we
cannot detail here (see [13]). The numerical computations
have been conducted using the Gauss-Seidel’s algorithm or
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Figure 5: Modified Automaton 3

B = 20

B = 20

B = 20
p3

p4
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p1

Figure 6: Physical Model for Upper Bound; the
black node represents a greedy source of packets

the GTH algorithm when the convergence of the former al-
gorithm is slow.
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Figure 7: Buffer of size 10, q=0.01
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Figure 8: Buffer of size 10, q=0.1

The best results are obtained when the flows of arrivals
from the input buffers are unbalanced. For instance, in fig-
ures 4.3 and 4.3, we present the bounds for buffer of size 10.
We assume that the external arrivals batch is the superpo-
sition of 2 independent Bernoulli processes with probability
p. So, the load in queues of the first stage is 2p. The proba-
bilities beta1 and beta2 are respectively 0.4− q and 0.6− q.

The second example is a system with buffers of size 20. For
the upper bounds the number of buffers replaced by sources
is arbitrary. Clearly, this gives a hierarchy of bounds with a
tradeoff between accuracy and computation times.

4.4 About the lower bound
We have reported in the previous drawings the upper

bounds and the lower bounds. The lower bounds are ac-
tually computed using the sample path approach used in
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Figure 9: Buffer of size 20, q=0.01
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Figure 10: Buffer of size 20, q=0.05
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Figure 11: Buffer of size 20, q=0.1

[13]. We can also obtain lower bounds for that system using
a similar modification of the SAN but we must first study
SAN where an automaton is lumpable but cannot be re-
moved from the model. We have just allowed to simplify
the automaton and consider a SAN with the same number
of automata but one of them is now smaller. We must first
obtain some sufficient conditions on Discrete Time SAN be-
fore building the theory of SAN comparison. Such a theory
is now under investigation.

5. CONCLUSION
Clearly, a general theory of exact aggregation and stochas-

tic comparison technique for SAN has to be developed. We
hope that this work will prove that such a theory may be
useful to develop new algorithms for SAN. Note that our
approach is quite different from the algorithms proposed in
[14] even if we use the same properties (monotonicity and
comparison of matrices). Indeed we modify the SAN to be
lumpable and obtain an upper bound and we use a partial or-
dering. To the best of our knowledge it is the first approach
where the output of the bounding method is a high level
specification instead of a stochastic matrix. Thus bounding
algorithms in this context may be considered as preprocess-
ing before using a numerical technique based on tensor rep-
resentation. Recently Daly, Buchholz and Sanders have also
presented how to preserve bounds when we combine SANs
[8]. We expect that it will be possible to combine all these
results in a more general comparison method for SAN and
other high level specification frameworks.
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