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ABSTRACT

In this paper we present a tool for the analysis of hierarchical
service-oriented extended open fork/join queueing networks
(EOFJQNs). The tool especially focusses on application
areas that consider a service-oriented respectively process-
oriented view of systems. Such application areas are for ex-
ample business process management, logistics, supply chain
management, production planing and control, and computer
and communication systems. Since parallel process execu-
tion is a typical property of corresponding models we con-
sider extended queueing networks that incorporate complex
fork/join structures. For the analysis of EOFJQNs we ap-
ply a frequently used decomposition approach and we ad-
ditionally approximate inter-arrival times and service times
with phase-type distributions. Then the analysis of the iso-
lated nodes is based on their underlying quasi-birth-and-
death process. In this context the main problem is the anal-
ysis of complex fork/join structures. Therefore, at first we
briefly reflect an approach for the analysis of rather sim-
ple fork/join nodes and afterwards apply a new aggregation
techniques that allows us to reduce complex fork/join struc-
tures to simple fork/join nodes. We apply our tool to the
analysis of a parallel production line.
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1. INTRODUCTION

In this paper we present a tool for the steady-state anal-
ysis of hierarchical service-oriented extended open fork/join
queueing networks (EOFJQNs). In contrast to alternative
modelling and analysis frameworks for queueing networks [18,
12] our tool is especially intended for the analysis of service-
oriented respectively process-oriented systems that addition-
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ally contain complex parallel processes. Such systems typi-
cally arise in application areas as for example business pro-
cess management, logistics, supply chain management, pro-
duction planning and control, and computer and communi-
cation systems. In queueing network terminology parallel
processes are in general referred to as fork/join (sub-) net-
works.

For the analysis of EOFJQNs we apply a frequently used
approximate decomposition approach [22, 31]. The main
idea of this approach is to decompose a queueing network
into isolated nodes that are analysed in isolation. The in-
terrelation of the isolated subnets is realised due to the traf-
fic flow. In our approach we approximate the traffic flow
(inter-arrival time) and also the service requests to nodes
with phase-type distributions and thereby map the inter-
nal behaviour of the isolated nodes to quasi-birth-and-death
processes (QBDs). QBDs have the advantage that they can
easily be analysed using matrix-geometric techniques [26].
Then the remaining problem that we have to solve is the
QBD-based analysis of (complex) fork/join nodes.

Several authors have addressed to the analysis of fork/join
nodes. Varki [28, 29] has extended the Mean Value Analy-
sis for closed product–form queueing networks to the anal-
ysis of closed fork/join queueing networks. The fork/join
nodes synchronise several single server queues with expo-
nentially distributed service times. Baynat and Dallery [10,
9] apply Marie’s product–form approximation [24] to the
analysis of general closed fork/join queueing networks. In
the context of manufacturing systems Krishnamurthy et al.
[21, 20] applied special fork/join structures to the analysis
of kanban control mechanisms. Furthermore, some results
are known for the analysis of isolated fork/join nodes. In
the special case of fork/join nodes with two parallel single
servers with exponentially distributed inter–arrival and ser-
vice times Flatto and Hahn [13] presented the generating
function of the common queue length distribution. If addi-
tionally the service times are identically exponentially dis-
tributed Nelson and Tantawi [25] found exact results for the
mean response times. In more general situations several ap-
proximations and bounds are known especially for the mean
response times [6, 7, 30, 19, 5, 8, 23].

The fork/join nets that we consider are more flexible in
the sense that they consist of an arbitrary but fixed number
of complex parallel processes. These complex parallel pro-
cesses may themselves be described in terms of EOFJQNs.
For the analysis of fork/join nodes we proceed in two steps.
At first we only consider a simple type that consists of sev-
eral fcfs single-server queues in parallel with heterogeneous



phase-type distributed service times and a common phase-
type distributed inter-arrival process. The isolated (approx-
imative) analysis of this simple fork/join node was presented
by Balsamo et al. [8]. To handle fork/join nodes that syn-
chronise more complex parallel processes that are beyond
fcfs single-server queues we in a first step analyse each of
the parallel networks individually under the common inter-
arrival process with respect to the mean and the variance of
the response times. In the second step we substitute the par-
allel networks with special single-server aggregates that yield
the same mean and variance of the response times and thus
reduce the analysis of extended (complex) fork/join nodes
to the analysis of simple fork/join nodes.

The outline of our paper is as follows: In section 2 we
present the class of queueing networks that our tool is in-
tended for. We especially refer to the hierarchical service-
oriented view of our approach. In section 3 we describe
our analysis approach and mainly refer to the analysis of
fork/join nodes. For the analysis of complex fork/join nodes
we furthermore present our new aggregation technique. In
section 4 we apply our tool to an example of a parallel pro-
duction line that yields very accurate results with respect to
the mean response time. Finally, we summarise our paper
in section 5.

2. THE CLASS OF EOFJQNS

In our implementation we follow a hierarchical service-
oriented view of EOFJQNs. Therefore, EOFJQNs consist
of three parts, i.e.

1. a description of available resources,

2. a definition of service respectively process pattern and

3. the process instantiation.

The first part defines the available resources in terms of a
set of nodes. The nodes may be of basic node-types or of
complex node-types and they offer special services that de-
fine interfaces to the environment respectively the way the
resources can be used by customers respectively processes.
Currently, basic node-types are either fcfs nodes with one
or multiple servers and infinite queueing capacity or infinite
server nodes. Both types offer the default service request
that allows a customer or a process to use the node for a
predefined time period. We assume that this time period is
described in terms of special phase-type distributions (see
tab. 3.1) with respect to the first and the second moment.
We will refer to complex node-types later.

The second part of EOFJQNs defines one or multiple ser-
vice pattern (process pattern). A process pattern describes
a chronological ordering of service requests to the available
resources. Thereby, a process pattern may sequentially re-
quest some services, it may branch into alternative (sub-)
processes (Markovian routing) and it may fork into sev-
eral parallel/concurrent (sub-) processes. The branch re-
spectively the fork operation may branch respectively fork
into an arbitrary but fixed number of alternative respec-
tively parallel subprocesses with an arbitrary complexity.
We later refer to what we mean with the term complexity
in section 3 in more detail. As the only restriction we re-
quire matching pairs of branch and end-branch operations
as well as matching pairs of fork and join operations. So far,
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Figure 1: Example of an EOFJQN

an EOFJQN is nothing else but a compound component or
complex node that offers one or more services (described in
terms of process pattern) to its environment. We especially
allow an EOFJQN to be part of the available resources of an
environmental EOFJQN and thus get a hierarchical service-
oriented architecture of EOFJQNs. We do not restrict the
depth of hierarchies. In contrast to the basic node-types that
expect the distribution of a time period upon service request
the services of compound components may not have formal
parameters in our current implementation. In the current
version of our tool we only support single-class queueing net-
works which in practice means that each resource may only
be used once in one process pattern.

The final part of an EOFJQN describes the instantiation
of processes in terms of external arrivals. Again, we assume
that external arrivals can be approximated by phase-type
distributions according to tab. 3.1. In our current imple-
mentation the process instantiation part may only occur in
the top-level hierarchy of an EOFJQN. To demonstrate our
hierarchical service-oriented view of EOFJQNs we consider
the example in fig. 1. The very simple example consists of a
fork operation with two fcfs single-server nodes with infinite
spatial capacity in parallel and a join operation. We refer
to the semantics of fork/join nodes in section 3 in more de-
tail. The external inter-arrival times as well as the service
requests to the parallel servers are exponentially distributed
with rate 1 respectively rate 2.

In the current implementation of our analyzer tool we sup-
port a command-line version that expects an XML-description
of EOFJQN. Within a student project we are working on a
graphical editor that allows us to graphically specify EOFJQNs
and automatically transform them into the input language
of our tool. The XML-description of the simple example in
fig. 1 is displayed in fig. 2. The output of our tool is also an
XML-description that adds the analysis results to the input
description. We refer to the analysis results in section 3.

In the input specification the three parts of an EOFJQN
are explicitly separated and enclosed by the <availableResources>,
<providedServices> respectively <extarrival tags. From
the above description the semantics of the XML-specification
is easy to understand. We only mention that within the fork
operation we separate the different parallel processes by en-
closing them with a <part> tag. The same also holds for
branch operations where we separate the different alterna-
tive branches with a <part> tag and additionally specify the
branching probability.

The motivation for considering queueing networks as hi-
erarchical service-oriented models arises from a portability
point of view. In many application areas as for example
software engineering, business process management, logistics
networks, supply chain management, and production plan-
ning and control systems are modelled in a service-oriented
or process-oriented fashion. Additionally, these models of-



<ExtendedQueueingNetwork name="EOFJQN_Example">

<availableResources>

<server name="S1" nserver="1" dis="FCFS"/>

<server name="S2" nserver="1" dis="FCFS"/>

</availableResources>

<providedServices>

<service name="EOFJQN_request">

<fork>

<part>

<useService server="S1"

serviceName="request"

amount="negexp(2.0)"/>

</part>

<part>

<useService server="S2"

serviceName="request"

amount="negexp(2.0)"/>

</part>

</fork>

</service>

</providedServices>

<extarrival servicename="EOFJQN_request"

interArrivalTimes="negexp(1.0)"/>

</ExtendedQueueingNetwork>

Figure 2: XML-description of an example EOFJQN

ten can be intuitively interpreted as queueing network mod-
els and thus it is natural to apply queueing network analysis
techniques to theses models. To simplify model transfor-
mation and to meet the requirements of the aforementioned
application areas we decided to reflect the service-oriented
architecture in the structure of EOFJQNs.

3. ANALYSIS OF EOFJQNS

In this section we consider the analysis of EOFJQNs. We
start with a description of the basic analysis technique and
afterwards briefly present our approach for the analysis of
extended (complex) fork/join nodes.

3.1 The basic analysis approach

For the steady-state analysis of EOFJQNs we apply the
approximate decomposition approach by Kühn/Whitt [22,
31]. The main idea of this approach is to analyse the in-
dividual nodes of a queueing network in isolation and to
realize the interconnection of the individual nodes with re-
spect to their input/output behaviour (traffic flow). To
make the analysis of EOFJQNs more tractable we further-
more approximate the input respectively output streams of
nodes by special phase-type distributions with respect to the
mean and the coefficient of variation. As proposed in [15]
we select phase-type distributions depending on the coeffi-
cient of variation c according to table 3.1. Since we also
assume that the service requests to the basic node-types are
characterised by phase-type distributions a large set of ba-
sic node-types can be considered as quasi-birth-and-death
(QBD) processes. QBDs can efficiently be analysed using
matrix-geometric techniques (cf. [26]) and we can easily de-
rive per node measures as the distribution of population

c ≥ 1 hyper-exponential with 2 phases
c = 1 exponential
c < 1 hypo-exponential with d 1

c2
e phases

Table 1: Approximation with phase-type distribu-
tions

and response-time or the departure processes. Consider-
ing our basic node-types in section 2 only fcfs single-server
nodes with infinite queueing capacity have a QBD represen-
tation. In case of multiple servers we additionally require
the service requests to be exponentially distributed. (For
non exponentially distributed service requests the node has
no QBD representation.) Since also the infinite server has
no QBD representation we approximate this basic node-type
by a composition of several fcfs multiple-server nodes with
exponentially distributed service requests (cf. [2]).

If we consider the traffic flow the sequential execution of
service requests to different basic nodes means that we have
to take the output process of a node and pass it to the in-
put process of a subsequent node. To be more precise we
approximate the output process by an adequate phase-type
distribution as mentioned before and forward this approxi-
mation to the input process of a subsequent node. At this
point several authors [16, 27] apply special Markovian Ar-
rival Processes (MAPs) instead of phase-type distributions.
MAPs have the advantage that they not only consider mo-
ments of departure processes but also incorporate correla-
tions. In our implementation we also compute the output
MAPs of the different node-types by truncation as proposed
in [14, 17] and we can configure our tool such that it takes
the departure MAP of a node as input MAP for a subsequent
node. But from a practical point of view thereby the QBD
representation of subsequent nodes grows dramatically in
size and makes their analysis inefficient respectively impos-
sible. Since on the other hand no appropriate general MAP
fitting techniques are known to reduce the complexity of the
departure MAPs we currently fit the departure processes
by phase-type distributions. Considering the branch and
end-branch operations we need appropriate splitting and su-
perposition operations for phase-type distribution which is
rather simple (see [15]). Thus, the major problem is the
analysis of the complex fork/join processes. We will refer
to this problem in the next subsection but prior we briefly
refer to the performance measures that our tool computes.

Our tool computes per node measures as the first and
second moment of the population, the response times and
the inter-departure times in case of basic node-types and
the first and second moment of the response times and the
inter-departures times in case of compound node-types. Fur-
thermore, we compute the first and the second moment of
the response times and the inter-departure times per pro-
cess. For this purpose we collect and accumulate the cor-
responding measures of the visited nodes. Of course, since
the decomposition approach inherently neglects correlations
among different nodes and due to our approximation of the
traffic flow with phase-type distributions all the aforemen-
tioned measures can only be approximations.

3.2 Analysis of fork/join nodes

The analysis of fork/join nodes in queueing networks is
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Figure 3: A simple fork/join model

a rather difficult task. Therefore, at first we consider the
model of a simple fork/join node that is displayed in fig. 3.
The model consists of an entrance area, N fcfs-single server
nodes in parallel and an exit area. Upon arrival of a new
customer or task at the entrance area the fork/join node
immediately generates exactly N subtasks and passes them
to the N parallel fcfs single-server nodes (fork operation). At
the servers the subtasks eventually have to wait for service
completions of previously arrived tasks. After the subtasks
have finished service they immediately move to the exit area
and wait for their siblings (join operation). If all subtasks
have arrived to the exit area the corresponding task leaves
the fork/join node without loss of time. At this point we
remark that overtaking of subtasks is not possible due to
the fcfs service discipline of the parallel servers. This means
that at the exit area exactly that subtasks are joined that
have been forked at the entrance area. Finally, we assume
that the inter-arrival times of tasks at the entrance area as
well as the service times of subtasks at the N parallel servers
have phase-type distributions as mentioned above.

Unfortunately, this rather simple fork/join model does not
have a QBD representation because the underlying Markov
Chain is infinite in N directions. Thus, we cannot directly
apply the above approach. To overcome this problem we
consider an approximate model that was introduced by Bal-
samo et al. [8]. The idea of this approximate model is to in-
troduce bounds Uij ≥ 0, i, j = {1, . . . , n} that bound the
number of subtask present at parallel server i to be at most
Uij greater than the number of subtasks present at server j
for each pair of parallel servers (i, j). Let z = (n1, . . . , nN )
be the state of this model with ni ≥ 0 subtasks at the i-th
parallel server. Then the state space Z of this model is

Z = {z = (n1, . . . , nN )|ni ≥ 0,−Uji ≤ ni − nj ≤ Uij} (1)

Obviously, the arrival of a new task does not influence the
bounds Uuj because each component of the state vector is
simply incremented by 1. Thus, only the departure of a
subtask at one of the parallel servers may violate one of
these bounds. Therefore, consider servers i and j and let
the number of subtask at server j be nj and the number of
subtasks at server i be nj+Uij . The departure of a subtask at
server j now would violate bound Uij . To prevent from that
situation we simply block service at server j and we unblock
server j upon the departure of a subtask at server i. Due
to this blocking policy the mean response time of a task in
this fork/join model is at least as long as the mean response
time of the original model and by Little’s law the same also
hold for the mean population. In [8] Balsamo et al. give a
formal proof of this aspect and hence they name this model
Upper Bound model. To recognise the tridiagonal structure

entrance
area

EOFJQN2

EOFJQNN

exit
area

EOFJQN1

Figure 4: An extended fork/join model

of the underlying QBD representation of the Upper Bound
model we divide the state space Z into disjoint partitions
Zk, k ≥ 0 such that

Zk = {z = (n1, . . . , nN ) ∈ Z|mini=1,...,N (ni) = k} (2)

We easily see that Z =
∞
S

k=0

Zk and obviously z = (n1, . . . , nN )

is a state from partition Zk if and only if z′ = (n1+1, . . . , nN+
1) is a state from Partition Zk+1. That means that the
partitions Zk, k ≥ 0 have equal cardinality. Furthermore,
transitions only occur within the same partition or between
directly neighboured partitions. Thus, the Upper Bound
model has a QBD representation.

The QBD-based analysis of this Upper Bound model yields
performance measures as the moments of the response time
distribution of tasks, the distribution of the task population
and the departure process and we can easily integrate the
Upper Bound model into the above described decomposi-
tional analysis approach. We do not go into details of the
QBD-based analysis here and we refer to [8] and [2]. Un-
fortunately, realistic models consist of much more compli-
cated parallel processes that in general cannot be expressed
in terms of several fcfs single-server nodes. We will refer to
the analysis of such more complex extended fork/join nodes
in the following subsection.

3.3 Analysis of extended fork/join nodes

In this section we consider extended fork/join models that
differ from the simple fork/join models displayed in fig. 3
in the structure of the parallel processes. Beyond N paral-
lel fcfs single-server nodes the extended fork/join model is
composed of N parallel processes that are described in terms
of EOFJQNs. The extended fork/join model is displayed in
fig. 4. The behaviour of this model is similar to that of the
simple model. Upon arrival of a new task at the entrance
area the fork node immediately generates N subtasks that
are passed to the N parallel processes EOFJQN1, . . . , EOFJQNN .
After the departure of a subtask at one of the EOFJQNi, i =
1, . . . , N the subtask immediately moves to the exit area. In
the extended fork/join node a departure occurs if N differ-
ent subtasks (1 subtask from each of the EOFJQNi) have
arrived to the exit area. We explicitly remark that we can-
not ensure that at the exit area exactly that subtasks are
joined that have been forked at the entrance area. Consider
for example an extended fork/join model with an infinite
server node in one of the parallel EOFJQNi.

In general the extended fork/join model has no QBD rep-
resentation and also the state space of the QBD would be too
large for practical application of the above mentioned anal-



ysis approach. Therefore, we have developed a new analysis
approach for extended fork/join nodes. In this paper we
only give a brief outline of our approach and we refer to [1]
for more details. The main idea of our approach is to replace
the complexity of the extended fork/join model displayed in
fig. 4 to the complexity of the simple model displayed in
fig. 3 and afterwards apply Balsamo’s approximate analy-
sis approach for the Upper Bound model. To reduce the
complexity of the extended fork/join model in [1] we have
introduced a new aggregation technique that allows us to re-
place each of the N parallel EOFJQNi, i = 1, . . . , N with an
equivalent fcfs single-server node. Thereby, equivalent means
that the fcfs single-server aggregate yields exactly the same
response time with respect to the mean and the variance
as the corresponding EOFJQNi under the common inter-
arrival times.

Again in the following we only give a brief overview of
our aggregation technique and we refer to [1] for more de-
tails. We consider a fcfs single-server node with an unlimited
waiting area and known phase-type distributed inter-arrival
times. Furthermore, we assume that we have observed the
mean ER and the variance V arR of the response times of
tasks at this node. Then the question is whether we can
find appropriate phase-type distributed service times such
that the QBD-based analysis of this single-server node ex-
actly yields the given moments of the response times under
the given phase-type distributed inter-arrival times with rate
λA and coefficient of variation cA. To answer to this question
first assume that the rate µS and the coefficient of variation
cS of the phase-type distributed service times were given.
Then let F1(λA, cA, µS, cS) respectively F2(λA, cA, µS , cS)
be the mean respectively the variance of the response times
of the single-server node under given phase-type distributed
inter-arrival and service times. We can compute F1 and F2

applying QBD-based analysis. In [1] we prove that for fixed
values λA, cA and cS F1 is continuous and strictly decreas-
ing as a function in µS . We furthermore prove that for fixed
values λA, cA and µS F2 is continuous and strictly increas-
ing as a function in cS . Returning to the above question if
we knew the coefficient of variation cS of the service times
we could easily compute the rate of the service times as the
(unique) root of

F̃cS
(x) := F1(λA, cA, x, cS) − ER = 0. (3)

For that purpose we could for example apply the Regula
falsi. On the other hand if we knew the rate µS of the
service times we could compute the coefficient of variation
as the (unique) root of

F̃µS
(y) := F2(λA, cA, µS , y) − V arR = 0. (4)

From this observation in our aggregation approach we start
with an initial value cS (e.g. cS = 1) and we iteratively (re-)
compute µS = x respectively cS = y such that equation 3
respectively equation 4 holds. In [1] we present a necessary
condition for the existence of an aggregate and we further-
more prove that the above procedure converges and thereby
yields the rate and the coefficient of variation of the phase-
type distributed service times of the aggregate.

Applying this results our algorithm for the analysis of ex-
tended fork/join nodes works as follows:

1. Analyse each of the N parallel EOFJQN1, . . . , EOFJQNN

separately under the common inter-arrival times of

the extended fork/join node.. Especially, compute the
mean and the variance of the response times. For this
step apply the decomposition approach described in
subsection 3.1 to each of the complex parallel processes
separately.

2. For each of the EOFJQN1, . . . , EOFJQNN determine
corresponding fcfs single-server aggregates according
to the previously described aggregation approach.

3. Replace each of the EOFJQN1, . . . , EOFJQNN with
the corresponding aggregates and apply Balsamo’s anal-
ysis approach for the Upper Bound model.

4. ANALYSIS OF A PRODUCTION-LINE

In this section we apply our tool to the analysis of a pro-
duction line. As mention in section 2 our motivation for
considering a hierarchical service-oriented view of queue-
ing networks arises from the service-orientation respectively
process-orientation of systems in several application area.

In logistics as well as in production planing and control
systems are modelled in a process-oriented fashion in terms
of so-called Process Chains. Process Chains mainly focus
on the description of processes and therefore they define a
series of activities that need to be performed in order to
fulfil a process. The ordering of activities may be sequential,
a process may branch into alternative subprocesses and it
may fork into parallel subprocesses. Information on how
activities are executed and which resources are available for
that purpose often are only insufficiently specified. Thus,
for the analysis of Process Chains this information have to
be added and afterwards the Process Chains is (manually)
transformed into a simulation model.

To overcome this laborious and error-prone procedure we
have developed the ProC/B-tool1 [4, 3] that integrates mod-
elling and simulation of Process Chains. Therefore, we have
defined a formalisation of Process Chains (the so-called ProC/B
formalism) that not only describes processes but addition-
ally gives information on available resources and the way the
activities use these resources. Typically, resources are either
time consuming (e.g. employees, machines etc.) or they are
space consuming (e.g. inventory). The ProC/B-tool pro-
vides a graphical editor for modelling of (hierarchical) Pro-
cess Chains respectively ProC/B models and it also allows
a simulative investigation of ProC/B models. Therefore, it
transforms a model into the input-language of the simula-
tion tool HIT [11]. Recently, we also have implemented a
translation of ProC/B models into the input-description of
our analyser for EOFJQNs. This allows us to apply our
approach to ProC/B models or at least to a subclass.

4.1 The ProC/B model

In this section we demonstrate our tool and therefore con-
sider the ProC/B model of a production line. We do not go
into the details of ProC/B but refer to [4, 3]. Our ProC/B
model is displayed in fig. 5. The middle part of the model

1The ProC/B-tool was developed at the Department of
Computer Science at the University of Dortmund in corpo-
ration with a collaborative Research Centre on “Modelling
of Large Logistics Networks” (SFB 559, www.sfb559.uni-
dortmund.de).



specifies the process and the bottom part describes the avail-
able resources. At the top of the model we see the model
name and optional comments. We consider a company that
produces special components for external customers. Or-
ders from external customers arrive to the company in time-
intervals that are approximated by a phase-type distribution
with rate 1 and coefficient of variation 0.5. Upon the arrival
of an order the company at first initiates some preparation
(prepare oder). This job is performed in the office (see the
Office element in the resource part at the bottom of fig. 5).
After the preparation step the company start the produc-
tion of the order (see element produce in the middle part of
fig. 5). The production is performed by the production unit.

The internal behaviour of the production unit is refined
in the ProC/B model in fig. 6 on a deeper level of hierarchy.
Upon arrival of an order (from the office) in the production
unit the production unit immediately starts two parallel pro-
duction processes that produce and inspect parts of type A
respectively of type B. Obviously, this parallel production
process has to be mapped to an extended fork/join node in
the corresponding EOFJQN. We assume that the time that
is needed for the production of type-A parts can be described
in terms of a phase-type distribution with rate 2 and coef-
ficient of variation 0.8. The inspection time be phase-type
distributed with rate 6 and coefficient of variation 0.8. The
information on type-B parts in fig. 6 have to be interpreted
accordingly. After the parallel production and inspection
of type-A and type-B parts in the final step both parts are
assembled which takes a phase-type distributed time-period
with rate 6 and coefficient of variation 0.8. To perform these
five activities the production unit provides five teams of em-
ployees that serve orders in fcfs service discipline (see the
bottom part of fig. 6).

4.2 Analysis of the ProC/B model

In the analysis of the above ProC/B model we are in-
terested in the mean time-duration (response time) it takes
from the arrival of an order to its fulfilment. Therefore, we
have automatically transformed the above ProC/B model
into the XML-input of our analyser tool. Besides the origi-
nal parameterisation of the model we also have investigated
how the mean response time changes if we increase the ar-
rival rate of external orders. Thereby, we get an impression
of the number of orders that the company can accept per
time-unit while providing acceptable response times to its
customers without changing the available resources. To get
an impression of the accuracy of our approach we have com-
pared the results to an simulative investigation of the model.
The results of our experiments are displayed in table 4.2.

The table displays the arrival rate of external orders (λ)
the mean response times calculated with our analyser tool
(KW) the results from a simulative investigation (Sim) and
finally the relative distance (∆) of both results in percent.
The simulation results lie in 90% confidence level of width
smaller than 3%. Additionally, table 4.2 displays only that
part of the (mean) response time that is spent in the parallel
production process (extended fork/join node) of the produc-
tion unit. The interpretation of the columns of table 4.2 is
the same as for table 4.2.

Obviously, for this model our analysis approach yields
very accurate results. We have applied our approach to
several different logistics models with much more complex

λ KW Sim ∆ (%)

1.0 1.394 1.408 0.99
1.1 1.463 1.464 0.07
1.2 1.555 1.576 1.33
1.3 1.672 1.693 1.24
1.4 1.825 1.85 1.35
1.5 2.047 2.1 2.5
1.6 2.382 2.392 0.4
1.7 2.936 2.92 0.55
1.8 4.013 3.865 3.83

Table 2: mean response time

λ KW Sim ∆ (%)

1.0 1.052 1.062 0.94
1.1 1.12 1.115 0.45
1.2 1.2 1.222 1.8
1.3 1.323 1.338 1.12
1.4 1.474 1.491 1.14
1.5 1.693 1.738 2.59
1.6 2.045 2.025 0.99
1.7 2.577 2.546 1.24
1.8 3.652 3.52 3.75

Table 3: mean time spent in parallel production

fork/join subnets (cf. [1, 2]) and also observed very accurate
results. One reason for the high accuracy of our approach in
logistics networks is that those network typically are feed-
forward nets and in general do not contain cycles. In case
of cyclic nets the decomposition approach yields rather bad
results especially with respect to response times due to the
negligence of correlations among the nodes. Another reason
for the high accuracy is the fact that we only have consid-
ered phase-type distributed external inter-arrival times. In
several experiments on acyclic models with phase-type dis-
tributed external inter-arrival times we also have observed
rather small correlations in the departure processes of inner
nodes. Of course, this situation will dramatically change if
we consider MAP-based external inter-arrival times. But
as mentioned in section 3 we currently have no appropriate
MAP-fitting techniques at hand that allow us to approxi-
mate the MAP-based internal traffic flow.

5. CONCLUSIONS

In this paper we have presented a tool2 for the analysis
of extended open fork/join queueing networks (EOFJQNs).
The tool is based on an approximate decomposition ap-
proach and especially focusses on the analysis of queueing
networks with complex fork/join structures. For the anal-
ysis of complex fork/join structures we have introduced an
aggregation technique that allows us to reduce the complex-
ity of fork/join structures to rather simple models that can
easily be analyzed (approximatively) by a QBD-based ap-
proach.

To meet the requirements of service-oriented respectively

2Our tool is not available online yet.



process-oriented systems in a large range of application areas
we follow a hierarchical service-oriented view of EOFJQNs.
We have demonstrated the usefulness of this view in case of
Process Chains that are an accepted formalism in logistics
and production planing and control. The application of our
tool to the analysis of a parallel production line yielded very
accurate results with respect to the mean response time of
the production line. Thereby, on the one hand we profit from
the fact that Process Chains in general are acyclic networks
and on the other hand from the description of the traffic
flow in terms of special phase-type distributions. Within a
student project we are currently working on a graphical edi-
tor that allows us to specify EOFJQNs and to automatically
transform them into the input language of our tool.
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Figure 5: ProC/B model of the company

Figure 6: ProC/B model of the production unit


