
EAI Endorsed Transactions Research Article

Destination Prediction by Identifying and Clustering
Prominent Features from Public Trajectory Datasets

Li Yang1, Andy Yuan Xue1,2,∗, Yuan Li2, Rui Zhang2

1Department of Computer Science, HuBei University of Education, Wuhan, P.R. China
2Department of Computing and Information Systems, The University of Melbourne, Victoria, Australia

Abstract

Destination prediction is an essential task in many location-based services (LBS) such as providing targeted
advertisements and route recommendations. Most existing solutions were generative methods that model the problem
as a series of probabilistic events that are then used to compute the destination probability using Bayes’ rule. In contrast,
we propose a discriminative method that chooses the most prominent features found in a public trajectory dataset, clusters
the trajectories into groups based on these features, and performs destination prediction queries accordingly. Our method
is more concise and simple than existing methods while achieving better runtime efficiency and prediction accuracy as
verified by experimental studies.

Received on 16 April 2015; accepted on 24 June 2015; published on 02 July 2015
Keywords: Trajectory Mining, Destination Prediction

Copyright © 2015 A. Y. Xue et al., licensed to ICST. This is an open access article distributed under the terms of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/sis.2.5.e2

1. Introduction

As the usage of smart phones and in-car navigation systems

becomes part of our daily lives, we benefit increasingly

from various types of location-based services (LBSs) such

as route finding and location-based social networking.

Destination prediction provides essential support to LBS, for

example, to recommend sightseeing places, to send targeted

advertisements based on destination, and to automatically set

destination in navigation systems. Fig. 1 provides a schematic

with the lines representing roads and the circles representing

locations of interests, which may be road intersections,

sightseeing places, shopping centres, etc. If one drives from

l1 to l4, an LBS provider may predict the most probable

destinations to be l7, l8 and l9 based on past popular routes

taken by other drivers. As a result, the LBS provider can

push advertisements of products currently on sale at those

locations.

In this paper, we approach the problem of destination

prediction using taxi trajectories gathered in the city of

Beijing as the training dataset. Following the common

practice of existing work presented in the related work

(Section 2), we partition the map of a city into an n ×

∗Corresponding author. Work done when visiting Hubei University of

Education. Email: andy.xue@unimelb.edu.au

l1 l2 l3

l4 l5 l6

l7 l8 l9

T1

T2

T3

T4

T5

Figure 1. An example of destination prediction

n square grid with n2 nodes/cells. The general idea of

our algorithm is as follows. We firstly convert the GPS

coordinates into grid node IDs and decompose each trajectory

in the trajectory dataset. For instance, a trajectory {n1, n4, n5}
will be decomposed into three partially-finished trajectories

{n1}, {n1, n4} and {n1, n4, n5} with the last location in these

partial trajectories as the current location. We use these partial

1
EAI Endorsed Transactions on

Scalable Information Systems

02-07 2015 | Volume 2 | Issue 5 | e2

http://creativecommons.org/licenses/by/3.0/
mailto:<andy.xue@unimelb.edu.au>

A. Y. Xue et al.

trajectories as the training dataset and study the properties
of these trajectories to select the most prominent features
such as the current location and the travel direction. Then
we group the partial trajectories into different clusters based
on these selected features (i.e., Trajectories with the same
features are categorised to the same cluster.). Within each
cluster, we compute a predicted destination by averaging the
destinations for all partial trajectories in the cluster. When
a query trajectory is supplied by a user, we find the cluster
it belongs to according to the aforementioned features and
return the pre-computed predicted destination of that cluster.
We name our method the PROFILE method (PROminent
Feature Identification and cLustEring).

We make the following contributions in this paper:

• We propose a novel method called PROFILE.

PROFILE first decomposes the trajectory dataset into

partially-finished trajectories, selects four features,

clusters the dataset using these features, and computes

a predicted destination for each cluster. Given a query

trajectory with unknown destination, PROFILE returns

the predicted destination of the cluster it belongs to.

• We compare the PROFILE method with a recent

existing algorithm named SubSynEA [1]. PROFILE

achieves better prediction accuracy in terms of distance

deviation between the predicted destination and the true

destination. This fact reflects the significance of the

features that we selected.

• The PROFILE algorithm also achieves better runtime

efficiency due to the simplicity of both the training and

prediction phases.

• We conduct cost analysis as well as experiments to

evaluate the runtime efficiency and prediction accuracy

of PROFILE and SubSynEA based on a large scale

real-world dataset.

Table 1 summarises the frequently used symbols.

Symbol Explanation

D The historical trajectory dataset

g Size of the map grid

m Number of cells in a grid (m = g2)

ni (, ns , nc , nd) ith (, starting, current, destination) cell

ds→c Travelled distance between ns and nc

θc Direction from nc

θs→c Direction from ns to nc

Table 1. Frequently Used Symbols

The remainder of the paper is organized as follows.

Section 2 presents the related work. Our proposed method

is described in Section 3, and its algorithms are explained

in Section 4. We conduct the cost analysis in Section 5.

Experimental results are presented in Section 6. Finally,

Section 7 concludes the paper.

2. Related Work

2.1. Generative and Discriminative Methods

The problem of destination prediction is to predict the

destination for an ongoing trip or a partial trajectory based

on public data. This is a typical machine learning problem,

specifically a supervised learning problem. There are two

categories of models that a machine learning method may

use: generative model and discriminative model. Before

presenting related work and our proposed method, we would

like to have a discussion on these two models.

Let x and y denote the input and output variables. Dis-

criminative model directly learns the conditional probability

P(y|x) or a function y = f (x) from training data, whereas

generative model focuses on the joint probability P(x, y) first,

and uses it as an intermediate result to calculate P(y|x) or

derive y = f (x). It is a common belief that discriminative

methods outperform generative methods because the joint

probability P(x, y) is more difficult to solve. Ng and Jordan

[2] compared a generative-discriminative pair (Naive Bayes

and Logistic Regression) and concluded that

(a) the generative model does indeed have

a higher asymptotic error (as the number

of training examples becomes large) than the

discriminative model, but (b) the generative

model may also approach its asymptotic error

much faster than the discriminative model.

Simply speaking, we should use discriminative approach

when the training data is abundant and use generative method

when dealing with insufficient training data. Considering the

fact that our dataset contains 1.9 million taxi trajectories, we

choose the discriminative approach.

2.2. Destination Prediction

As discussed above, we will use the discriminative method as

it is more appropriate for the destination prediction problem.

However, to our best knowledge, there is no previous work

using the discriminative method to predict destinations.

Most existing methods belong to the generative method

group by employing the Bayes’ theorem and a grid

representation of map (commonly n × n uniform grid). By

using a grid, they convert the original problem of predicting

a location to predicting a grid cell. By using the Bayes’

theorem, they calculate the probability that a cell being the

destination as

P(dst|T p) =
P(T p |dst)P(dst)

P(T p)
∝ P(T p |dst)P(dst).

The main difference between these methods is the model built

for calculating P(T p |dst).

2
EAI Endorsed Transactions on

Scalable Information Systems

02-07 2015 | Volume 2 | Issue 5 | e2

Destination Prediction by Identifying and Clustering Prominent Features from Public Trajectory Datasets

Predestination [3, 4] builds a simple model which gives

larger probability to the partial trajectories towards the

destination than those leaving.

P(T p |dst) =
c

∏

i=1

p if pi is closer to dst than pi−1
1 − p otherwise

where p is a parameter learnt from historical data.

PROCAB [5] considers vehicle movement as a Markov

Decision Process and trains a cost model for every

possible transition between states. This approach gives higher

probability to T p whose total cost is smaller.

P(T p |dst) =

∑

ζpc→dst
e−cost(ζ;θ)

∑

ζps→dst
e−cost(ζ;θ)

where ζ denotes a possible route and θ is a parameter vector

leant from historical data. SubSyn and its improved method

SubSynEA [1, 6, 7] identified the data sparsity problem in

destination prediction and proposed a method to address

this problem. SubSynEA decomposes each trajectory in the

public historical dataset into smaller segments (i.e., sub-

trajectories) and combines them to generate “synthesised”

trajectories. The underlying process is formulated by a

second-order Markov model and the Bayesian inference

framework. Other notable research outcomes in the field of

prediction algorithms include [8–10].

In Section 6, we conduct experiments to compare both the

efficiency and effectiveness of our proposed method against

SubSyn.

3. Methodology

In this section, we present our proposed method named PRO-

FILE (PROminent Feature Identification and cLustEring).

We first partition the map of a city into an n × n grid. We

convert each trajectory from a sequence of geographic coor-

dinates into a sequence of grid nodes. Then, we decompose

each trajectory in the trajectory dataset. For instance, a tra-

jectory {n1, n4, n5} will be decomposed into three partially-

finished trajectories {n1}, {n1, n4} and {n1, n4, n5} with the

last location in these partial trajectories as the current loca-

tion. These partial trajectories form the training dataset. We

choose four representative features for each trajectory in the

training dataset (Section 3.1) and group trajectories with

identical features into clusters (Section 3.2). When a new

query trajectory arrives, our algorithm maps it to a cluster

according to its features, and predict destination based on the

average destination of all training trajectories in that cluster

(Section 3.3).

3.1. Feature Selection

We find that the most prominent features of a trajectory that

decides the predicted destination using the trajectory is the

direction of travel. Specifically, we select the following two

pieces of directional information: (i) the direction from the

starting location to the current location in the partial trajectory

training dataset; and (ii) the direction of travel at the current

location (i.e., instantaneous direction). These two directional

features are categorised into North, East, South, and West.

Besides the two directions, we select the current location as

an essential feature. Together, the first three features provide

key insight to the user’s destination. For instance, when a user

is on the city-airport freeway and the direction is towards the

airport, then it is very likely that the destination is the airport.

The last feature we select is the travel distance. We

would like to separate short-distance trips from long distance

trips because we observe that longer trajectories and shorter

trajectories passing through the same locations have very

different destinations.

We summarise the four selected features in the list below.

• The instantaneous travel direction at the current node

θc;

• The direction from the starting node to the current node

θs→c;

• the location of the current node nc; and

• the travel distance from the starting node to the current

node in ℓ1 distance ds→c .

3.2. Training

Based on the four aforementioned features, we partition

the training dataset into different clusters. The method of

clustering is by hashing, where partial trajectories with the

same features will be put into the same cluster. In order words,

all partial trajectories in a single cluster have the same four

features. In each cluster, we need to find a location that will be

used as the predicted destination for that cluster. Since we use

distance deviation to measure prediction accuracy, it makes

sense to use a location (x̂, ŷ) in each cluster that minimises

the average ℓ1 distance from the destinations of all training

trajectories in that cluster.

Let k denote the number of trajectories in a cluster and

(xi , yi) denote one of the destinations of trajectories in that

cluster where i ∈ [1, k]. Then the predicted destination for

this cluster is defined as:

(x̂, ŷ) = argmin
(x̂,ŷ)

1

k

k
∑

i=1

|x̂ − xi | + |ŷ − yi |.

Because the expressions of x and y can be separated, finding

(x̂, ŷ) is equivalent to finding an optimal x̂ and an optimal ŷ
separately. It is straightforward to observe that the optimal

value of x̂ is the median of x1, x2, . . . , xk , and the optimal

value for ŷ is similar. Therefore, the predicted destination of

a cluster is the point that have the median latitude and the

median longitude of all destinations in that cluster.

3
EAI Endorsed Transactions on

Scalable Information Systems

02-07 2015 | Volume 2 | Issue 5 | e2

A. Y. Xue et al.

3.3. Prediction

When given a query trajectory, we first compute its feature
values and find the cluster it belongs to by matching its
four features. Then, we simply return the computed predicted
destination of that cluster.

In the case where a query trajectory cannot be categorised
to any cluster due to insufficient training data, we use the
current node as the predicted destination. The same action
is performed for SubSynEA when comparing these two
algorithms in the experimental study in Section 6.

3.4. Discussion

The PROFILE method is more task-oriented than the SubSyn
method for two reasons:

• PROFILE is a discriminative method that models the

destination probability more directly.

• PROFILE treats the destination prediction problem as

a regression problem. In contrast, SubSyn converts it to

a classification problem that aims to find the cell with

the highest probability containing the true destination.

Therefore, it makes sense that PROFILE outperforms SubSyn

method in terms of effectiveness, which is consistent with the

experimental results presented in Section 6.

4. Algorithm

In this section, we present the training and prediction

algorithms in detail.

4.1. The Training Algorithm

The training algorithm takes a dataset D of historical taxi

trajectories and a grid size g as input, and returns a matrix

A containing the average destinations of all clusters. The

algorithm is presented in Algorithm 1.

Then we explain the algorithm line by line. In lines 1-

2 of Algorithm 1, we set a default average destination and

trajectory count for every cluster. A cluster here is identified

by four feature values (nc , ds→c , θc , θs→c). We set the default

average destination of cluster (A[cluster]) to the center of nc
of cluster (cluster.curCell.center) and set count[cluster] to 0.

In lines 3-6, we traverse all partial trajectories that are

extracted from all trajectories in the dataset D. In order to

calculate value of features in practice, we only need to extract

consecutive GPS points in T instead of the entire T p . In this

way, θc and θs→c can be calculated directly.

In lines 7-8, we calculate the position of the median for

every cluster. For example, the position of the median of

a cluster containing 7 or 8 partial trajectories should be

the x and y coordinates of the 4th location. Then, we find

the median latitude and longitude of destinations for every

cluster based on the position of median we store in the matrix

count[·]. Because the matrix count[·] would be modified in the

Algorithm 1: PROFILE-Training(D, g)

1 for all cluster do // initialization

2 A[cluster], count[cluster]←
cluster.curCell.center, 0

3 for T in D do // count trajectories for every cluster

4 for T p in T do

5 calculate feature values and find the cluster that

T p belongs to

6 count[cluster]← count[cluster] + 1

7 for all cluster do // calculate the position of median

8 count[cluster] = ⌊(count[cluster] + 1)/2⌋

9 back up count matrix

10 sort trajectories in D by the latitude of destination

11 for T in D do // find median latitude for every cluster

12 for T p in T do

13 calculate feature values and find the cluster that

T p belongs to

14 count[cluster]← count[cluster] − 1
15 if count[cluster] = 0 then

16 A[cluster].latitude = T .dst.latitude

17 restore count matrix from back up

18 sort trajectories in D by the longitude of destination

19 for T in D do // find median longitude for every cluster

20 for T p in T do

21 calculate feature values and find the cluster that

T p belongs to

22 count[cluster]← count[cluster] − 1
23 if count[cluster] = 0 then

24 A[cluster].longitude = T .dst.longitude

return: A

loop from line 11 to line 16, we first make a back-up for it at

line 9 and restore it from back-up on line 17.

In lines 10-16, we first sort all the trajectories in the dataset

D by latitude followed by traversing all T p (similar to lines 3-

6). When a T p is extracted from T , we decrease the trajectory

count of the its cluster by 1. If the trajectory count of a cluster

comes down to 0, the latitude of destination of the current T p

is the median latitude for that cluster. Finally, we store the

median latitude in matrix A[cluster].

Lines 19-24 are used to compute the median longitudes.

The method is similar to lines 10-16. Eventually, the

algorithm returns the matrix A, which stores the predicted

destination (median latitude, median longitude) of every

cluster.

4
EAI Endorsed Transactions on

Scalable Information Systems

02-07 2015 | Volume 2 | Issue 5 | e2

Destination Prediction by Identifying and Clustering Prominent Features from Public Trajectory Datasets

4.2. The Prediction Algorithm

Compared with the training algorithm, the prediction

algorithm is much more straightforward. The prediction

algorithm is summarised in Algorithm 2.

Algorithm 2: PROFILE-Prediction(A, T p)

1 if T p contains only one point then
return: T p.src

2 L← 1 +
∑c

i=1 CELLℓ1(pi−1, pi)
3 θc ← ∠(pc−1 → pc)
4 θs→c ← ∠(ps → pc)

return: A[nc,max{L, g}, θc , θs→c]

Given a partial trajectory T p , the algorithm first calculates

the value of the four features. Then, it returns the predicted

destination of the cluster that T p belongs to. One exception is

that T p contains only one point, i.e. the starting location. In

this case, the algorithm simply predicts the staring location as

the destination for that the information is inadequate.

5. Cost Analysis

In this section, we analyse both the time and space

complexities of the two algorithms described in this paper,

i.e., PROFILE-Training and PROFILE-Prediction.

In the following analysis, we let D be the trajectory dataset

and s be the average number of GPS points in each trajectory.

5.1. The Training Algorithm

Time Complexity: As we described in Section 4, Algorithm 1

sorts all trajectories in D twice (by the latitude of destinations

and the longitude of destinations, respectively) and traverses

all T p in D three times. Because the latitude and longitude in

the dataset we use have at most six digits after the decimal

point (otherwise it is also reasonable to truncate them to such

precision which is enough for daily life), we treat them as

integer after multiplying them by 106. Then we use a 2-pass

sorting mechanism called the Pigeonhole Sort [11], whose

time and space complexities are both O (C + |D|) where C
is the range of either latitude or longitude and thus a constant.

Therefore, the sorting process runs in O(2|D|). Regarding

the traversing process, the algorithm needs to process every

GPS point in the trajectory dataset. Thus, traversing all the

dataset runs in s|D| where s is the average number of GPS

points in a trajectory. Therefore, the total time complexity is

O (|D| × 2 + s|D| × 3) = O (s|D|).
Space Complexity: In Algorithm 1, the matrices we used

include A, count[·] and a back-up for count[·]. They all have

the same size of g2 × g × 4 × 4 but different types in that A
is a pair of float numbers (latitude and longitude) whereas

count[·] and its back-up are int. Therefore, the total space

needed is 16g3 × 2 × 4 + 2 × 16g3 × 4 = 256g3 = 256m1.5

Bytes, which is in O(m1.5).

5.2. The Prediction Algorithm

Time Complexity: Algorithm 2 first calculates the value of the

selected features for a partial trajectory T p , i.e. nc , ds→c , θc

and θs→c , which can be calculated in constant time. Then the

algorithm returns the corresponding destination stored in A.

The whole process is as easy as looking up an element in a

table. Therefore the time complexity of Algorithm 2 is O (1).

Space Complexity: Algorithm 2 only requires matrix A
to be stored in the memory. The size of A is g2 × g × 4 ×
4 = 16g3 = 16m1.5, and every element in A is a pair of

float numbers (latitude and longitude). Therefore, the space

required is 16m1.5 × 2 × 4 = 128m1.5 Bytes and the space

complexity is O(m1.5).

5.3. Summary

We summarise the time and space complexities in the

tables below. We also compare the complexities of our

algorithms with those of the SubSyn methods. Table 2

Complexity Time Space

SubSynE-Training O
(

m2.5
)

O
(

m2
)

PROFILE-Training O (s|D|) O
(

m1.5
)

SubSynEA-Prediction O (m) O
(

m2
)

PROFILE-Prediction O (1) O
(

m1.5
)

Table 2. Time and Space Complexities

summaries the time and space complexity of the algorithms,

and Table 3 provides an intuitive display of the space size

that the algorithms may consume on grids of different sizes.

From these tables we can see that PROFILE-Prediction

Grid Size 40 50 60 70

SubSynE-Training 78M 191M 396M 733M

PROFILE-Training 16M 31M 53M 84M

SubSyn-Prediction 39M 95M 198M 366M

SubSynEA-Prediction 332M 810M 1.6G 3.0G

PROFILE-Prediction 8M 15M 26M 42M

Table 3. Space Occupation for Various Grid Sizes

outperforms SubSynEA-Prediction in terms of both runtime

efficiency and space occupation. PROFILE-Training also

outperforms SubSynE-Training in term of space complexity.

The comparison on runtime efficiency is less intuitive, and we

will show the experimental results in Section 6.

5
EAI Endorsed Transactions on

Scalable Information Systems

02-07 2015 | Volume 2 | Issue 5 | e2

A. Y. Xue et al.

6. Experimental Study

In this section, we evaluate both the runtime efficiency
and prediction accuracy of SubSynEA and PROFILE. In
Section 6.1, we present the dataset and means of measurement
used in experiments. Then, we compare the runtime efficiency
of both the training and prediction algorithms in Section 6.2
and Section 6.3, respectively. Finally, we compare the
prediction accuracy of the two algorithms in Section 6.4.

6.1. Setup

Dataset: The dataset we use is a real-life taxi GPS trajectory
dataset containing nearly 900, 000 trajectories from the T-

drive project [12, 13]. The taxi trajectory dataset is from the
city of Beijing within a 40km × 40km area. We randomly
select 20, 000 trajectories from the training dataset as the test
dataset.

Parameters: We conduct experiments by varying the grid
size g from 20-70 to study the effect of different resolutions.
When g = 20, the resolution of each cell is 2km. When
g = 70, the resolution becomes much finer to approximately
570m. The runtime efficiency is simply a measure of running
time. The algorithms were run on a workstation machine with
Intel™ Xeon-W3670 CPU (3.2GHz) and 24GB RAM. The
prediction accuracy is measured by the distance deviation
between the predicted destination and the true destination of
all query trajectory. The deviation is measured in ℓ1 distance
because of the grid representation.

6.2. Efficiency of Training Algorithms

Fig. 2 shows the running time of the two training algorithms,
PROFILE and SubSynEA. It can be observed that when g
is small (e.g., 20 − 40), the difference between the running
times of SubSynEA-Training and PROFILE-Training is
within 10 seconds. As g increases, the difference becomes
more significant (e.g., when g = 70, PROFILE-Training
outperforms SubSynEA-Training by more than an order of
magnitude). It is worth mentioning that varying the grid size
only has marginal influence on the running time of PROFILE-

Training since its training time is mostly associated with the
size of the training dataset rather than the grid size.

10-1

100

101

102

103

 20 30 40 50 60 70

T
i
m
e

(
s
)

Grid Granularity (g)

SubSynEA-Training PROFILE-Training

Figure 2. Runtime Efficiency of the Training Algorithms

6.3. Efficiency of Prediction Algorithms

We also compare the runtime efficiency of SubSynEA-

Prediction and PROFILE-Prediction in the average time to

predict the destination for one query in Fig. 3. By using the

already-determined predicted destination from the training

stage, PROFILE-Prediction runs in constant time, whereas

SubSynEA-Prediction needs to compute the probability

of every cell containing the true destination. Therefore,

PROFILE-Prediction can run one to two orders of magnitude

faster constantly.

10-4

10-3

10-2

10-1

100

 20 30 40 50 60 70

T
i
m
e

(
m
s
/
q
u
e
r
y
)

Grid Granularity (g)

SubSynEA-Prediction PROFILE-Prediction

Figure 3. Runtime Efficiency of Prediction Algorithms

6.4. Accuracy

In this part, we compare the prediction accuracy of the

PROFILE method with that of SubSynEA. The comparison

is conducted by varying the grid size g from 20 to 70.

Furthermore, since the length of trajectories matters as

discussed in Section 3, we also vary the length of trip

completed percentage. The distance deviation of PROFILE-

Prediction is about 3km smaller than that of SubSynEA-

Prediction when the prediction is made at 30% of the trip and

1km smaller at 70% of the trip.

 0

 2

 4

 6

 8

 10

 20 30 40 50 60 70

P
r
e
d
i
c
t
i
o
n

E
r
r
o
r

(
k
m
)

Grid Granularity (g)

SubSynEA (trip=30%)
SubSynEA (trip=70%)

PROFILE (trip=30%)
PROFILE (trip=70%)

Figure 4. Prediction Accuracy

As shown in Fig. 4, PROFILE-Prediction outperforms

SubSynEA-Prediction constantly (about 3km when trip% =
30% and 1km when trip% = 70%).

7. Conclusion

In this paper, we proposed a novel discriminative method

called PROFILE, which first selects four features for the

6

EAI Endorsed Transactions on

Scalable Information Systems

02-07 2015 | Volume 2 | Issue 5 | e2

Destination Prediction by Identifying and Clustering Prominent Features from Public Trajectory Datasets

training trajectory dataset and partitions the dataset into

clusters based on these features. Then, we compute a

predicted destination for each cluster using the median of all

destinations in that cluster. When given a query trajectory,

the PROFILE method find the cluster that has the identical

features as the query trajectory, and return the predicted

destination of that cluster to the user.

Experiments based on real-life taxi GPS trajectory dataset

has shown that the performances of our PROFILE method

is better than that of the SubSynEA method in terms of

both runtime efficiency and prediction accuracy. Furthermore,

the time complexity of the PROFILE-Training algorithm is

linear to the size of training set and the PROFILE-Prediction

algorithm runs in constant time.

References

[1] XUE, A.Y., QI, J., XIE, X., ZHANG, R., HUANG, J. and

LI, Y. (2014) Solving the data sparsity problem in destination

prediction. The VLDB Journal .

[2] NG, A.Y. and JORDAN, M.I. (2001) On discriminative vs.

generative classifiers: A comparison of logistic regression and

naive bayes. In Advances in Neural Information Processing

Systems: 841–848.

[3] KRUMM, J. and HORVITZ, E. (2006) Predestination: Inferring

destinations from partial trajectories. In UbiComp 2006:

Ubiquitous Computing (Springer), 243–260.

[4] KRUMM, J., GRUEN, R. and DELLING, D. (2013) From

destination prediction to route prediction. Journal of Location

Based Services 7(2): 98–120.

[5] ZIEBART, B.D., MAAS, A.L., DEY, A.K. and BAGNELL,

J.A. (2008) Navigate like a cabbie: Probabilistic reasoning

from observed context-aware behavior. In Proceedings of

the 10th international conference on Ubiquitous computing

(ACM): 322–331.

[6] XUE, A.Y., ZHANG, R., ZHENG, Y., XIE, X., HUANG, J.

and XU, Z. (2013) Destination prediction by sub-trajectory

synthesis and privacy protection against such prediction. In

29th International Conference on Data Engineering (ICDE)

(IEEE): 254–265.

[7] XUE, A.Y., ZHANG, R., ZHENG, Y., XIE, X., YU, J. and

TANG, Y. (2013) Desteller: A system for destination prediction

based on trajectories with privacy protection. Proceedings of

the VLDB Endowment 6(12): 1198–1201.

[8] ALI, M.E., ZHANG, R., TANIN, E. and KULIK, L. (2008) A

motion-aware approach to continuous retrieval of 3d objects. In

Data Engineering, 2008. ICDE 2008. IEEE 24th International

Conference on (IEEE): 843–852.

[9] ZHANG, J., TAO, X. and WANG, H. (2014) Outlier detection

from large distributed databases. World Wide Web 17(4): 539–

568.

[10] YAO, W., HE, J., WANG, H., ZHANG, Y. and CAO, J.

(2015) Collaborative topic ranking: Leveraging item meta-data

for sparsity reduction. In Twenty-Ninth AAAI Conference on

Artificial Intelligence.

[11] BLACK, P.E. (2006), Pigeonhole Sort, http://www.

nist.gov/dads/HTML/pigeonholeSort.html. In

Dictionary of Algorithms and Data Structures [online].

[12] YUAN, J., ZHENG, Y., ZHANG, C., XIE, W., XIE,

X., SUN, G. and HUANG, Y. (2010) T-drive: Driving

directions based on taxi trajectories. In Proceedings of the

18th SIGSPATIAL International Conference on Advances in

Geographic Information Systems, GIS ’10: 99–108.

[13] YUAN, J., ZHENG, Y., XIE, X. and SUN, G. (2011) Driving

with knowledge from the physical world. In Proceedings of the

17th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’11: 316–324.

7

EAI Endorsed Transactions on

Scalable Information Systems

02-07 2015 | Volume 2 | Issue 5 | e2

http://www.nist.gov/dads/HTML/pigeonholeSort.html
http://www.nist.gov/dads/HTML/pigeonholeSort.html

	1 Introduction
	2 Related Work
	2.1 Generative and Discriminative Methods
	2.2 Destination Prediction

	3 Methodology
	3.1 Feature Selection
	3.2 Training
	3.3 Prediction
	3.4 Discussion

	4 Algorithm
	4.1 The Training Algorithm
	4.2 The Prediction Algorithm

	5 Cost Analysis
	5.1 The Training Algorithm
	5.2 The Prediction Algorithm
	5.3 Summary

	6 Experimental Study
	6.1 Setup
	6.2 Efficiency of Training Algorithms
	6.3 Efficiency of Prediction Algorithms
	6.4 Accuracy

	7 Conclusion

