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Abstract

Modern computer architectures provide high performance computing capability by having multiple CPU cores. 
Such systems are also typically associated with very large main-memory capacities, thereby allowing them to be used 
for fast processing of in-memory database applications. However, most of the concurrency control mechanism 
associated with the index structures of these memory resident databases do not scale well, under high transaction rates. 
This paper presents the O2-Tree, a fast main memory resident index, which is also highly scalable and tolerant of 
high transaction rates in a concurrent environment using the relaxed balancing tree algorithm. The O2-Tree is a 
modified Red-Black tree in which the leaf nodes are formed into blocks that hold key-value pairs, while each internal 
node stores a single key that results from splitting leaf nodes. Multi-threaded concurrent manipulation of the O2-Tree 
outperforms popular NoSQL based key-value stores considered in this paper.
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1. Introduction

Indexes in database managements system (DBMS)

facilitate fast query processing. Tree structured indexes

in particular, are critical to database processing

systems since they allow for both random and range

query processing. Today’s data processing tasks in

transaction processing, scientific data management,

financial analysis, network monitoring, data analytics,

etc., handle large volumes of data which require fast

accesses and very high throughput.

Recent advances in memory architectures, with 64-

bit addressing, now allow for memory sizes of the order

of hundreds of gigabytes and beyond at a reasonable

cost. It is, therefore, feasible to have sufficiently large

shared memory such that the entire index of either,

a memory resident or disk-resident database, can be
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maintained in main memory. For instance, the latest

Oracle Exadata X3-8 system ships with 4TB of main

memory [25]. This has, therefore, motivated much

research to exploit memory as well as the many-

cores available on such architectures to provide fast

application processing for main-memory databases.

Recently, there has been a flood of developments

and implementations of in-memory data stores with

associated index schemes. These are characterised in

general as NoSQL databases. They are also referred

to as key-value pair index structures [21]. Notably in

this pack are index schemes such as BerkeleyDB [26],

LevelDB [12], Kyoto Cabinet [10], RedisIO [30] and

MongodB [1]. Such in-memory indexes, optimized

for in-memory databases and running on multi-core

processors, can support very high query processing

rates. The challenge with such systems is how to

efficiently ensure that the concurrently executing

processes are isolated from each other in such an
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environment. Current DBMS typically rely on locking

but in a traditional implementation with a separate

lock manager, the lock manager becomes a bottleneck

and results in much overhead cost, especially at high

transaction rates [17].

In this paper we present an in-memory index

structure, referred to as O2-Tree with emphasis on

its implementation in a shared memory multi-core

architecture. Such achitectures have a common shared

memory that can be accessed by multiple programs

running concurrently on several cores, as a result of the

multiprocessing design capability, on the same node.

We address primarily its concurrency control and fault

recovery mechanism. The O2-Tree is essentially a Red-

Black Binary Search Tree in which the leaf nodes are

data blocks that store multiple records of "key-value"

pairs. The internal nodes contain copies of the keys that

result from splitting the blocks of the leaf nodes in a

manner similar to the B+-Tree. However, the O2-Tree is

structurally different from the minimal order of a B+-

Tree also called the 2−3-Tree. A 2−3-Tree is a tree in

which each internal or non-leaf node has either 2 or 3

children, all leaf nodes are at the same level, and every

node may contain 1 or 2 keys. On the other hand, all

leaf nodes of the O2-Tree may not necessary be at the

same level but the leaves containm > 2 keys. One could

question whether the AA-Tree [2] could not be used in

place of the Red-Black-Tree (or RB-Tree) that the O2-

Tree uses for the internal nodes. The answer is yes and

this leads to a generalization of the O2-Tree where the

internal nodes could be organized as an AVL-Tree [? ], a

2−3-Tree [? ], an AA-Tree [? ] or a SkipList [? ].

In the O2-Tree, internal nodes are simply binary

placeholders or routers to facilitate and guide the tree

traversal. The tree index is fault tolerant in the sense

that it is easily reconstructed by reading only the lowest

key values of each leaf node that is always made

persistent. It is inherently persistent and scales well in

highly concurrent environment.

We use a pessimistic concurrency control, but allow

multiple readers to proceed without blocking internal

nodes except for leaf nodes where an updater needs

to hold a lock. This allow us to reduce the lock

overhead due to blocking of concurrent interleaved

query operations. We achieve further performance

gains by using the following mechanisms; search

operations are interleaved using the hand-over-hand

(also referred to as lock-coupling) locking technique;

and mutations perform rebalancing separately which

encompasses smaller fixed sized atomic regions.

We use the relaxed balance algorithm for Red-

Black Tree presented by Hanke et al.[13], to maintain

the invariants of the O2-Tree. We have explored

and evaluated the O2-Tree, and done extensive

experimental evaluations and comparisons with some

of the well known key-value storage schemes, in

multi-core environment under high contentions and

index workloads. The experiments confirmed that

the concurrent O2-Tree has a superior performance

compared to popular NoSQL key-value stores (Tuple
Store category) which are often used as in-memory

database indexes. These include the BerkeleyDB key-

value store (BerkeleyDB), the TreeDB of Kyoto Cabinet

and Google’s LevelDB.

The major contribution being reported in this paper

is the development, implementation and comparative

experimental tests of the O2-Tree main memory

index structure. This is usable as a NoSQL key-

value store for database systems that require a high

performance concurrent access in shared memory

multi-core architectures. We present results which

show that the O2-Tree in-memory index has high

scalability in highly shared concurrent environment,

and performs comparatively better than most popular

NoSQL key-value storage schemes.

The remainder of this paper is organised as follows.

Section 2 presents the background of our study. In

Section 3, we describe theO2-Tree in-memory index and

present our basic algorithms for concurrency control.

A mechanism for persistent storage and recovery is

presented in Section 4. In Section 5, we describe our

experimental setup and report the performance results

of the experimental comparative study of the O2-

Tree with representative NoSQL key-value stores. We

conclude in Section 6 and give some directions for

future work.
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2. Related Work

Tree structured index operations are fundamental in

database management systems (DBMS). These provide

for fast transaction processing in the DBMS. They

allow for both efficient random as well as sequential

processing of keys and are therefore widely used in

DBMS. Recent advances in main memory technology

and the availability of configured systems with memory

sizes of the order of hundreds of gigabytes and tens of

terabytes have motivated several research in developing

main memory index schemes [4, 15, 18, 20]. The usage is

such that the index of a main memory resident database

or a disk-resident database is kept entirely in memory

for high transaction throughput. Some of the widely

used tree-based index structures include the B+-Tree,

and the T-Tree. However, recently a number of such

index-driven databases have emerged under the banner

of NoSQL databases. NoSQL stores consist basically of a

key-value pair and and as such these databases are able

to scale easily.

The B+-Tree [3, 8] is one of the well studied and well

understood index structure for database systems. It is

generally characterised as a multi-way search tree of

order m in which each node holds at least dm/2e − 1 and

at most m − 1 data item. B+-Tree was specially designed

to speed-up index searches on disk-based DBMS. In

such DBMS the number of disk accesses to retrieve a

record, is proportional to the height h of the tree, where

h ≤ logdm/2eN for a tree of order m or fanout of m. B+-

Tree therefore has a significantly low height for a high

fanout.

An alternative to the B+-Tree, designed specifically

for main-memory indexing, is the T-Tree [18]. It was

proposed as the preferred index structure for main-

memory databases. Though the T-Trees has less storage

overhead than the B+-Tree, research in [27, 28] has

shown that the B+-Tree is able to efficiently utilise the

cache line in modern processors to provide a better

performance. Another index structure which has been

widely studied is the Red-Black binary Tree (or RB-

Tree) [9]. It is noteworthy that in the use of an RB-

Tree as main-memory index, each internal node stores a

key-value pair while external nodes are represented as

NULL values. The RB-Tree provides an efficient scheme

for main memory indexing. However, the performance

deteriorates as the datasets become very large. This is

due to the fact that, the height of the tree increases

greatly and hence traversals and restructuring after

updates become expensive especially in concurrent

environment with high contention. Further, the CPU

cache-line is poorly utilised since each node, either

internal or leaf, is visited once for a single key-value

access.

Restructuring of the RB-Tree after insertions and

deletions can be done during the top-down traver-

sal before the operation or bottom-up after the oper-

ation. One would expect that the concurrency con-

trol in RB-Tree would be efficiently implemented with

top-down insertions and deletions algorithms. Unfor-

tunately standard top-down restructuring algorithm,

does not scale well with the RB-Tree and other index

structures in general. The process of restoring the

tree’s invariant becomes a bottleneck for concurrent

tree implementations. The mutating operations must

acquire not only locks to guarantee the atomicity of

their operations, but also locks to guarantee that no

other mutation affects the balance condition of any

nodes or the sub-tree that will be involved in the

restoration process. The strict standard top-down algo-

rithm limits the amount of concurrency of the index

since every update will proceed with several top-down

balancing steps before exiting. This difficulty led to the

idea of relaxed balance trees [13, 16, 22].

The relaxed balance techniques, effectively uncouple

the mutating operations from the restructuring oper-

ations by allowing the invariants to be violated but

restored by separate rebalancing operations [5, 6, 13,

14, 16, 22, 23]. These separate rebalancing operations

involve only local changes. Larsen [16], showed that for

a relaxed RB-Tree the number of restructuring changes

after update is bounded by O(1) and the number of

color changes by O(log n), where n is the size of the

tree. The process of restoring the invariants in relaxed

RB-Tree has an amortized constant of O(1) [16].

Concurrent control algorithm for relaxed balance

tree implementations based on fine-grain read-write
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locks provide good scalability for tree-indexes. Opti-

mistic concurrency control (OCC) schemes using ver-

sion numbers are also attractive for concurrency con-

trol especially for in-memory index. They naturally

allow readers to proceed without locks, and thus avoid

the coherence contention inherent in read-write locks.

The readers simple read version numbers updated by

writers to detect concurrent mutations since readers

assume that no mutation will occur during access to a

critical region. They retry if that assumption fails i.e

if a mutation occurs. This could however, lead to spu-

rious retries and wasted work. Software transactional

memory (STM) provides a generic implementation of

optimistic concurrency control. STM groups shared-

memory operations into transactions that appear to

succeed or fail atomically. The aim of STM is to deliver

a simple parallel programming at an acceptable perfor-

mance. However, performance gains and scalability are

amongst the most important goal of a data structure

library, and not just simplicity [7]. In practice STM sys-

tems also suffer a performance hit relative to fine-grain

lock-based systems on small numbers of processors (1

to 4 depending on the application) [7].

In this paper, we present the concurrent operations

of the O2-Tree memory resident index structure that

can be used also as a persistent key-value store. It

utilizes an in-memory cache for the leaf nodes and a

fine-grain relaxed balance concurrent algorithm in a

manner similar to the approach in [16]. This effectively

allows for greater degree of concurrency in the O2-Tree.

We discuss this in detail in Section 3. The distinctive

differences in the T-Tree, B+-Tree, RB-Tree and the O2-

Tree are clearly illustrated in Figure 1. The approach we

advocate here where the RB-Tree is used as the memory

resident index can easily be generalised to replace the

internal RB-Tree with any of the following: a 2-3-Tree,

an AA-Tree and a SkipList.

3. The O2-Tree In-memory Index

3.1. Structure of the O2-Tree

The O2-Tree is basically a binary search tree, managed

as a Red-Black Binary-Search Tree, whose leaf nodes

are organised as index blocks, data pages, or chunks

that store records of “key-value” pairs of the form 〈key,

value〉. The “value” may also represent a pointer to the

location where the record is held in memory. In which

case we could also denote it as “〈key, recptr〉”, where

“recptr" denotes the record pointer.

The internal nodes contain copies of only the keys of

the middle “key-value” pairs that split the leaf nodes

when they become full. These internal nodes are formed

into a simple binary search tree that is balanced using

the RB-Tree rotation algorithms. Let Ks be the search

key and let Kp be key stored at a node p. During a

traversal from the root node to a leaf node, a left branch

of the node p is followed if Ks < Kp and the right branch

is followed if Ks ≥ Kp. The process continues until a leaf

node is reached.

We adopt the RB-Tree balancing algorithm for the

O2-Tree since it is less complex than that of the AVL-

Tree which has a more strict balancing condition. The

RB-Tree has been widely studied and known for its

excellent performance. The O2-Tree structure, however

has a number of advantages over existing indices such

as the T-Tree and some of the recent NoSQL key-

value stores. TheO2-Tree can easily be reconstructed by

reading only the lowest “keys" of each of the leaf nodes.

Further, by maintaining only the leaf nodes persistent,

the index tree is inherently persistent. The height

of the internal RB-Tree is also significantly reduced

compared to the situation where each node stores a

single “key-value" pair and the entire tree is maintained

as a simple RB-Tree. By grouping multiple ‘key-value"

pairs in the leaf nodes, we optimise the tree so that

it also exhibit much better cache sensitivity especially

during operations of the leaf nodes. The leaf nodes

are therefore able to utilise the cache-line architectural

features of the machine, and as such reduce the number

of cache misses which would have otherwise resulted

from making single node comparison of “key-value”

pair. We also achieve significant performance gains

by doing single data comparison internally per node

during traversal, unlike other structures such as the B+-

Tree and the T-Tree that require at most m comparisons.

The order of the tree, denoted by m, is the maximum

number of “key-value” pairs a leaf node can hold. Data

is stored in the leaf nodes; whiles the internal nodes
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(a) T-Tree (b) B+-Tree(Also considered as a 2 − 3-Tree)

(c) Red-Black-Tree (d) O2-Tree

Figure 1. Diagram of the various tree structures

are simply binary place holders that facilitate or guide

the tree traversal to reach a leaf node. All successful or

unsuccessful searches always terminate at a leaf node.

This is reminiscent of the search process in a B+-Tree

except that now internal nodes hold only single key

values as opposed to m key values. Figure 1d illustrates

the schematic layout of the O2-Tree of order m = 3. We

show only the keys in the leaf nodes. The corresponding

equivalent Red-Black-Tree is shown side-by-side in

Figure 1. Detailed explanation of the RB-Tree can be

found in [9].

The properties of the O2-Tree index include all of the

RB-Tree [9] properties, plus the following:

1. Each internal node holds a single key value which

is a copy of the minimum key value at the leaf

node. These keys are equivalent to the middle

keys after a leaf node splits.

2. Leaf-nodes are blocks that have between dm/2e
and m “key-value” pairs.

3. If a tree has a single node, then it must be a

leaf which is the root of the tree, and it can have

between 1 to m key values.

4. Leaf nodes are doubly-linked in forward and

backward directions. These links provide easy

mechanism to traverse the tree in sorted order for

key range searches.

We implemented the O2-Tree index structure as a

persistent key-value store by reading and writing the

leaf-nodes using an in-memory cache pool in which the

leaf nodes of blocks of key-values pairs are managed

by the BerkeleyDB Mpoolfile subsystem. The BerkeleyDB

Mpool subsystem is a general-purpose shared memory

buffer pool which can be used for page-oriented, shared

and cached file access. The BerkeleyDB Mpool library
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implementation uses the same on-disk format as its

in-memory format as well. This provides a simple

mechanism to flush cached pages since a page can be

flushed from the cache without format conversion [21].

The internal nodes of theO2-Tree provide simply binary

place-holders for fast tree index traversal. New internal

nodes are only added when leaf-nodes split as a result

of overflows. The index tree may grow in height after

a split of a leaf-block. The reverse occurs when there is

an underflow resulting in the merging of leaf-nodes and

the subsequent removal of the parent of the nodes that

are merged. It should be noted here that this does not

constitute an implicit use of BerkeleyDB Tree search.

Only the cache functionality of the Mpool subsystem is

used.

3.2. Some Analytical Results
We state some analytical properties of the O2-Tree

without formal proofs.

Proposition 3.1. In the O2-Tree, the black leaf-nodes of

blocks of “key-value" pairs remain as leaf nodes under

all rotations of the internal nodes which are structured

as a Red-Black tree.

Figure 2. Single and double rotations in a Red-Black Tree

Proof. In a Red-Black Tree, the two rotations used to

restore the tree’s invariant after update operations are

the single and double rotations. Rotations basically

swap (using pointer manipulations) the roles of the

parent and the child while maintaining the search order

of the binary tree. Single and double rotations are

illustrated in Figure 2. Only leaf-nodes affected by the

rotation are indicated. A single rotation between P and

G restores the tree’s balance after insertion ofX caused a

violation. It is evident from the illustration that, all leaf-

nodes (NIL) remain leaves even after the single rotation.

Similarly, leaf-nodes in a double rotation still remain

leaf-nodes. Though node X, has become the new parent

of the sub-tree, its leaves N1 and N2 still remain leaves

but with different parents and the binary search order

is still maintained.

Proposition 3.2. An O2-Tree with n black leaf-nodes will

still maintain its n black leaf-nodes after single or

double rotations.

Proposition 3.3. The O2-Tree, supports the query

operations of Put(), Delete(), and Get() in time

O(log2N/dm/2e), where N is the number of “key-

value” pairs in the structure.

Proof. This follows from the fact that the number of

leaf-node blocks is at most nb = N/dm/2e. The number

of nodes of supporting internal RB-Tree is nb − 1.

The height h of the internal RB-Tree is given by h ≤
log2 nb [9]. This implies that a search (given by Get()),
and insertion (given by Put()) and a deletion (given by

Delete()) is each computed in time O(log2N/dm/2e).

Proposition 3.4. Assuming the response set of key-value

pairs retrieved in a range search is s, such a range search

can be carried out in an O2-Tree of order m and N key-

value pairs in time O(log2N/dm/2e + s).

Proof. Given a lower bound kl and an upper bound

ku values of keys, a range search retrieves the set of

key-value pairs whose keys lie in the interval [kl , ku].

Using the key kl the search for the leaf node bucket

Bl that should contain the key kl is first retrieved.

This takes time O(log2N/lceilm/2e). Once the bucket

Bl is retrieved, the forward pointer from this bucket,

and all subsequent buckets, can followed to retrieve all

the key-value pairs whose their keys are less than ku .

The process stops when the maximum key value ku is

retrieved. The sequential scan performed, retrieves only

leaf-buckets that contain s key-value pairs satisfying the

6EAI for Innovation
European Alliance

EAI Endorsed Transactions on 
Scalable Information Systems

03 -04 2014 | Volume 1 | Issue 3 | e6



Concurrent Operations of O2-Tree on Shared memory Multicore Architectures

range search. The total time to conduct the range search

is therefore O((log2N/lceilm/2e) + s).

3.3. Concurrency Control in the O2-Tree

We present our concurrent control scheme based on the

relaxed balance RB-Tree algorithm by Larsen [16], but

we manage our index structure such that the number

of restructuring steps after mutation operations is

further reduced. To achieve maximum concurrency,

we implement the thread-safe algorithm with page-
level or node-level locking. In this case, each node can

be locked and unlocked. This simple fine-grain lock-

coupling technique ensures that multiple threads can

proceed concurrently as long as they don’t interfere

with each other at the same node. We use three locks as

in [23, 24] which we denote as rlock, wlock, and xlock.

Several user processes can rlock a node at the same time,

whereas, only one process canwlock a node at a time but

can coexist with other processes with rlock on the same

node. xlock on the other hand ensures exclusive access

to a node and cannot coexist with any other process.

The entire process of handling contentions in the

tree is also handled by a rebalancing process which

we denote as the rebalancer() process and runs

in the background. The rebalancer() process locates

nodes in the tree with conflicts and resolves them

appropriately. We adopt the problem queue approach to

manage contentions instead of random traversal by the

rebalancer() which could result in several interferences

with other query processes and causes degradation in

the performance of the index. Let a user operation

intending to insert/delete a “key-value” pair be denoted

as an updater() process. In the problem queue approach,

when a lock conflict situation is created in the tree, a

pointer to the parent of the node involved is placed

in the problem queue. The rebalancer() continuously

reads the queue and purposefully proceeds to the exact

location to fix the imbalance. The tree is balanced

if the problem queue is empty. We implemented a

concurrent problem queue to allow for simultaneous

push() and pop() operations such that neither the

rebalancer() nor the updater() processes are blocked

while traversing and manipulating the O2-Tree. An

updater() appends requests to the tail of the problem

queue, while the rebalancer() pops these request from

the head of the queue. This prevents interference as

much as possible and guarantees consistency between

updaters() and the rebalancer() processes. The problem

queue is temporarily locked and released both by an

updater() and a rebalancer() during times that they

access the problem queue only.

Before presenting the algorithm for the concurrent

operations, we first define the following notations. Let

T denote an O2-Tree. The root node will be designated

as Root(T ) whose parent is the header of the index. If z

denotes an Internalnode in T , then z.lef t and z.right

refer to the left and right child respectively of z. Let

z.parent denote the parent of z and let z.sibling refer to

the sibling of z such that z and z.sibling have the same

parent (i.e., if z is a left child of its parents then z.sibling

will be the right child of the parent and vice versa). Also

z.key is the value of the key in z, if z is an internal

node (i.e., nodeT ype , leaf ). In addition, z.key[i] and

z.value[i] refers to the key and value respectively in

the ith position of z given that z is a page block (i.e.,

nodeT ype = leaf ).

Exact-Match Search Algorithm: Get(x, T ). The Get(key x)

function returns the exact-match key-value pair

〈x, valx〉 associated with the key x from the data store

T , if x exist, otherwise a null value is returned. The

search traverses nodes from the root by lock-coupling

with rlocks until the the leaf page with the given x

is found. Once the leaf-page z, in which the search

key x resides, is located, we utilise a binary search

function binarySearch(x, z) to locate the “key-value”

pair 〈x, valx〉 from z. Unlike the T-Tree and the B+-Tree,

the search proceeds with only one key comparison in

the internal node. The T-Tree and the B+-Tree do on the

average m/2 comparisons before continuing with the

search for a given key. The thread-safe search algorithm

for the O2-Tree is given in Algorithm 1.

Range Search Algorithm (Get Next, Get P revious). The

range search traverses nodes from the root by lock-

coupling with rlocks just as in the exact-match search

query. The search begins by locating the minimum key,

xmin in the given range e.g., xmin ≤ x ≤ xmax, where xmax
is the maximum key in the range. The search returns the

range of key-value pairs 〈x, valx〉 within the specified
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Algorithm 1: Get(key x)
Data: key x, T

Result: corresponding 〈x, valx〉 pair if f ound,
otherwise null

1 begin

2 /* node is the current node pointer for traversal*/

3 node←− root(T )

4 node.rlock()

5 while node.nodeT ype , leaf do

6 if x < node.key then

7 node.lef t.rlock()
8 node.unlock()
9 node← node.lef t

10 else

11 node.right.rlock()
12 node.unlock()
13 node← node.right

14 done← binarySearch(x, node)

15 node.unlock()

16 return done

range. Once the leaf page with key xmin is located,

the algorithm proceeds with a sequential scan of the

leaf node until the last key in that node is reached.

If the maximum key xmax is still not located, the scan

continues with an rlocks to the next leaf following

the forward-link pointer between the leaf nodes. This

continues until the last key xmax in the range is found.

The algorithm is illustrated in Algorithm 2.

Insert and Update Algorithm: P ut(x, valx, T ). The P ut()

operation proceeds with a traversal similar to that of

the Get(). However, a much more elegant approach is

to use a wlock, which allows several rlock by other

threads on the resource but not another wlock or

xlock. This allows for interleaved Get() operations to

overtake updater() operations if necessary and not be

blocked. To insert the key-value pair 〈x, valx〉, the leaf

page ( denoted as node) in which the key-value pair

belongs is first located. Once the page is located, it is

locked exclusively with an xlock and if there is room,

the new key-value pair 〈x, valx〉, is inserted in order

Algorithm 2: Range Scan(key xmin, key xmax)
Data: key xmin, key xmax
Result: corresponding key-value for each existing

key in the range

1 begin
2 x←− xmin
3 node←− root(T )

4 node.rlock()

5 while node.nodeT ype , leaf do

6 if x < node.key then

7 node.lef t.rlock()
8 node.unlock()
9 node← node.lef t

10 else

11 node.right.rlock()
12 node.unlock()
13 node← node.right

14 return rangeScan(xmin, xmax, node)

15 ∗Range search starting from the min key in the
range from the current leaf

16 ∗Continue scan in the next leaf if the maximum
key in the range is not encountered

by the function insertInOrder(x, valx, node) into the

page, based on the value of the key x. If the page is

already full, then a split is performed using the function

splitInsert(x, valx, node) (see Algorithm 4), where node

is the leaf-node to be split. A split basically allocates a

new page in the in-memory cache pool and assigns half

of the key-value pair 〈x, valx〉 from the overflow page to

the new page. The previous and next page pointers are

updated appropriately. After the split, a new internal

node is inserted which becomes the parent of the two

page blocks. The new internal node is coloured Red. The

tree may grow in height only when a page (leaf-node)

overflows. If the operation results in the violation of the

invariant condition, the parent of the new parent node

is pushed to the problem queue. The thread-safe P ut

algorithm is presented in Algorithm 3.

Delete Algorithm: Delete(x, T ). The delete algorithm

follows a similar pattern as the insert algorithm.

However, the delete may result in page underflow. In
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Algorithm 3: Put(key x, value valx, T )
Data: key x, value valxT
Result: true for success f alse otherwise

1 begin
2 /*node is the current node pointer for traversal */
3 parent ←− header
4 node←− root(T )
5 parent.wlock()
6 node.wlock()
7 while node.nodeT ype , leaf do

8 if x < node.key then

9 node.lef t.wlock()
10 parent.unlock()
11 parent ← node
12 node← node.lef t

13 else

14 node.right.wlock()
15 parent.unlock()
16 parent ← node
17 node← node.right

18 /* Upgrade both node and parent locks to xlock */

19 parent.xlock()
20 node.xlock()
21 if !(node.isf ull) then

22 done← insertInOrder(x, valx, node)

23 else

24 done← splitInsert(x, valx, node)
25 Update problem queue if invariant is violated

26 parent.unlock()
27 node.unlock()
28 return done

this case, either key-value pairs 〈x, valx〉 are borrowed

from adjacent pages (previous or next pages) or pages

are merged with the leaf-node that underflowed and the

other page is deallocated or released into the cache pool.

A merger of pages also results in the the subsequent

removal of the parent node. If this results in the

violation of the invariant condition, the grandparent

of the new parent node is pushed to the problem

queue. The thread-safe delete algorithm is as given in

Algorithm 5.

Algorithm 4: splitInsert(Key x, value valx, O2node
node)
Data: key x, value valx, O2node node
Result: true for success f alse otherwise

1 begin
2 newP age←− new leaf P age()
3 newNode←− new internalNode()
4 midpoint ←− m

2
5 where m is the order of the tree */
6 j ←− 0

7 for i ← midpoint to m − 1 do
8 newP age[j + +]←− node.remove(i)

9 /* insert "key, value" into the appropriate leaf page
*/

10 newNode.key ←− newP age.key[0]
11 newP age.parent ←− newNode
12 node.parent ←− newNode
13 /* reset forward and backward links of leaf nodes */

3.4. Correctness

The concurrent protocol presented guarantees linearis-

ability as well as deadlock freedom. This ensures cor-

rectness of all transactions. The algorithm does define

lock order for traversals such that all request are made

in the same top-down approach. This ensures freedom

from deadlock. For instance, a request by one thread

for a lock on a child node can only be granted after

a lock request on the parent node has been granted.

Each critical region preserves the binary search tree

property. The lock ordering ensures that there is no

deadlock cycle loop where a thread, T1 waits on a lock

by another thread, T2 whiles T2 waits on a lock held by

T1. Since no such loop exists in the tree structure, and all

parent-child relationships are protected by the required

locks to make them consistent, the concurrent protocol

algorithm is deadlock free.

In order for the algorithms to behave as expected

in a concurrent environment, they require that

their implementations be linearisable. This implies

that operations for a particular key produce results

consistent with sequential operations on the tree-index

structure. Atomicity and ordering is trivially provided

between Put() and Delete() operations by the wlock

hand-over-hand tree traversal. This ensures that no
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Algorithm 5: Delete(key x, T )
Data: key x T

Result: true for success f alse otherwise

1 begin
2 /* minKeys ensures that node is at least half full */

3 minKeys←− m
2

4 parent ←− header
5 node←− root(T )
6 parent.wlock()
7 node.wlock()

8 while node.nodeT ype , leaf do

9 if x < node.key then
10 node.lef t.wlock()
11 parent.unlock()
12 parent ← node
13 node← node.lef t

14 else
15 node.right.wlock()
16 parent.unlock()
17 parent ← node
18 node← node.right

19 /* Upgrade both node and parent locks to xlock */
20 parent.xlock()
21 node.xlock()

22 done← removeKey(x, node)

23 if done and node.underf low() then

24 sibling.xlock()

25 if node.sibling.keys > minKeys then
26 /* Borrow from sibling to keep occupancy

*/

27 done← node.appendKeyFrom(sibling)

28 else
29 /* Merge leaf and sibling into the left node;

release page block and delete parent node */

30 done← mergeLeaf (node, node.sibling)

31 sibling.unlock()

32 parent.unlock()
33 node.unlock()

34 return done

two of such operations overtake or interfere with each

other. It is not possible for two threads, T1 and T2,

to lock the same node resource simultaneously. This

ensures that the updates are serialised. More over,

each critical region during a mutation operation, only

changes child and parent links after acquiring all of the

required locks, hence guaranteeing the atomicity of the

transaction.

3.5. Storage Utilisation

The expected storage utilisation the O2-Tree, from the

fact that it grows and shrinks from block splitting and

merging respectively, is O(ln 2). It can easily be shown

using a similar approach as in the approximate storage

utilisation of B-Trees [19]. Let N be the total number of

keys in the tree and let n denote the number of index

blocks at the leaves of the tree. Let m be the order of the

tree. Each leaf block has at least dm/2e and m keys. The

storage utilisation denoted by µ is the total number of

keys stored divided by the total storage capacity of all

the nodes.

µ =
N

m × n
The expected storage utilisation is

E(µ) =
N
m
E
(1
n

)
To evaluate E(1/n) we note that n lies in the interval

[N/m, 2N/m]. By approximating the distribution as a

continuous random rectangular distribution over the

interval, we have

E(µ) ≈ N
m

∫ 2N/m

N/m

dn
n

= ln 2.

4. Persistence and Recovery

A major concern with main-memory databases and

and their memory resident indexes is the guarantee of

the database persistence, recovery and fault-tolerance.

Since main memory is volatile, it is essential that one

adopts recovery techniques for the entire database as

well as the index, such that the mechanism to restore

the database to a consistent and operational state is not

expensive and time consuming. An expensive and time

consuming recovery index technique will obviously

become a bottleneck in the overall performance of

the database. Fast recovery mechanisms are essential

to ensure that the database and its associated index

can be quickly repaired and restored into a usable
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state from which normal processing can resume. The

faster the index can be restored or recovered, the less

impact it will have on the performance of the entire

database recovery process. Generally, transactional

logging, check-pointing and reloading techniques are

employed. Logging maintains a log of transactions that

occur during normal execution, whereas check-pointing

takes a snapshot of the database periodically and copies

it onto persistent storage for backup purposes. After a

system failure, the persistent copy of the database is

reloaded into main memory. The indexes are rebuilt and

the database is then restored to a consistent state by

applying information in the undo and redo logs to the

reloaded copy.

Since disk (persistent storage) reads are expensive,

reducing the disk overhead during recovery from

persistent dumps is very crucial in designing the

recovery techniques for in-memory databases. The O2-

Tree in-memory key-value store ensures persistence by

accessing the leaf-pages through the in-memory cache

pool. A separate thread periodically flushes dirty pages

to the persistent store asynchronously.

The O2-Tree persistent store provides an efficient and

simply approach for index recovery. The reason being

that rebuilding the index structure of the O2-Tree from

persistent store, unlike the B+ − T ree and the T-Tree

structures, requires reading only the first key values in

each of the leaf-page. This eliminates the performance

bottleneck of traversing the entire “key-value” pairs

of data in the leaf-pages. In systems where the index

data is too large to fit into available memory, pages are

paged-in and paged-out of the in-memory cache using

a cache replacement policy such as the least recently-

used protocol. In addition, bulk-loading the index from

the persistent pages provides a much faster approach to

restoration as the amount of restructuring is minimal.

Besides storing the leaf-pages by a background

process, such that the entire RB-Tree structure can be

rebuilt from the minimum key values of each leaf-

page, the internal-nodes of the O2-Tree that form the

RB-Tree can be occasionally dumped onto disk during

checkpoint or after each session of usage. Just before a

session starts and as part of the initialisation phase, the

RB-Tree can be restored from the persistent store.

5. Performance Evaluation

We evaluated the performance of the O2-Tree index

as a key-value persistent store, on the Intel Xeon

E5630 CPU machine. We enabled hyper-threading for

all performance evaluations. We conducted all the

implementations and code compilation with the GNU

GCC/G++ compiler on a 64-bit machine having a

72GB of RAM and running the Scientific Linux release

5.4 Operating system. We generated 32-bit uniform

distributed keys with which we formed key-value pairs

where the values were also uniform random generated

values. We also performed some experiments with live

data read from the flight statistics datasets [11] as well

as the records of the Order table generated from the

TPC-H dbgen data generator [31].

5.1. Sequential Evaluations

For completeness, we present the comparative results

of the performance of the O2-Tree with the basic

index structures such as the B+-Tree, T-Tree, AVL-Tree,

and the Top-Down Red-Black-Tree. Figure 3 shows the

performance of the five data structures for a simple

build of the index. We performed up to 50M unique

key insertions. The order of the T-Tree, B+-Tree, and the

O2-Tree used was m = 512. The graphs show the times

for building the respective data structures in memory.

As can be observed from the graphs, T-Tree performed

worst among the index structures considered while

the O2-Tree had the best performance. The Top-down

Red-Black Tree also performed better than the AVL-

Tree. AVL’s strict balancing requirement accounts for

its worst performance. The O2-Tree on the other hand,

required fewer splits and rotations which accounts for

its superior performance. The B+-Tree performed better

than the T-Tree due to its significant low depth and less

complexity in restoring the tree’s invariants.

The O2-Tree, however, outperformed the B+-Tree

from the simple fact that the B+-Tree makes multi-

way-decision during its traversal down the tree

while the O2-Tree makes single data comparison to

determine the search path during traversal. Splitting

and redistribution of keys in the nodes of a B+-Tree

may continue all the way to the root of the tree. In
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the O2-Tree only colour changes may propagate to the

top. These operations are less expensive compared to

the splitting and redistribution in B+-Trees. The poor

performance of the T-Tree and the B+-Tree, compared

to the O2-Tree, is due to the fact that several data

comparisons are required to locate a bounding node for

child node to be visited during traversals.

Figure 4 illustrates the performance evaluation of

these structures when subjected to interleaved mix

of insertions, deletions and searches with different

percentage of each operation for a total of 50 million

(50M) query operations with a single thread. Figure 5

shows the operational throughput (query operations per
second) for varying workloads with 50% updates. The

query mix operations involved generating either an

update (insertion or deletion) and conducting a lookup

with varying probabilities. We refer to the probability

of generating an update multiplied by 100 as the update

ratio. Thus, a 0% update ratio indicates only data look-

ups whiles a 100% update ratio indicates only update

operations. Each update ratio consist of 30% deletions

and 70% insertions. The preliminary results from the

graphs indicates that the O2-Tree clearly outperforms

all the basic structures considered.

We however observed that for lower update ratios

such as 0% and 10% , the T-Tree and the B+-Tree

provided better and comparable performance to the O2-

Tree. Figures 5 and 6 show the operational throughput

(query operations per second) for varying workloads with

50% and 100% updates respectively. We observed a

general decline in throughput as the workload and

update ratios increase. However, the O2-Tree index

provided the best operational throughput in all cases.

We also present the results with the single threaded

persistent implementation of the O2-Tree index

structure, where the key values and their associated

data are kept persistent through an in-memory cache,

with some NoSQL(key-value) data stores such as the

BerkeleyDB [29], the Kyoto Cabinet TreeDB [10] and

LevelDB [12]. These experiments were conducted

primarily to compare the O2-Tree index structure to

other popular NoSQL(key-value) data stores that use

tree structured access methods and have been reported

in the literature as being extremely fast. The data

operations are performed with the leaf nodes read and

written through the memory resident cache. The leaf

nodes are then written to disk using the Least Recently

Used (LRU) cache replacement algorithm. At the end

of a session, the cache is flushed so that all memory

resident leaf-nodes are written to disk and the overall

time to complete the operation is reported. We repeated

this for varying data sizes.

We refer to the persistent O2-Tree implementation

as O2-Tree-KV. This scheme was compared with other

popular NoSQL key-value stores. Each key-value store

was initialised with a page size of 4K, as well as a

2.5GB in-memory cache size. We applied the tuning

mechanisms to the NoSQL databases as indicated and

recommended in their respective documentations.

Furthermore, we did not enable compression. The

TPC-H generated dataset from the Order table was used

for all experiments involving the persistent key-value

stores.

Our results indicate that the O2-Tree, using

BerkeleyDB Mpool subsystem as a cache, outperformed

the BerkeleyDB and the Kyoto Cabinet when using

the TreeDB, by several orders of magnitude. However,

O2-Tree-KV performance is very comparable to that

of the LevelDB. We actually did run the LevelDB

in asynchronous mode in which a separate thread

concurrently flushed the cache contents to disk. Even

though in comparing the LevelDB and the BerkeleyDB

with with O2-Tree, the O2-Tree had the disadvantage

that it does not have asynchronous back-end persistent

store. Our objective however, was to evaluate how the

O2-Tree-KV, in writing to disk through an in-memory

cache, compared with these popular industry-standard

NoSQL key-value stores without multi-threading.

The O2-Tree-KV with a cache support however,

performed over 5X faster than the Kyoto Cabinet when

using the TreeDB access method of the Kyoto Cabinet

and about 1.5X as fast as BerkeleyDB using the B-Tree
access method. The results are as shown in Figure 7. The

second set of experiment with the NoSQL databases,

illustrated in Figure 8, show the performance of each

key-value store under different mix of queries where

the update ratio was varied from 0% to 100%. Again,

12

EAI for Innovation
European Alliance

EAI Endorsed Transactions on 
Scalable Information Systems

03 -04 2014 | Volume 1 | Issue 3 | e6



Concurrent Operations of O2-Tree on Shared memory Multicore Architectures

Figure 3. Index build with randomly generated keys Figure 4. Mixed Operations of Searches, Inserts and Deletes

Figure 5. Operational Throughput with 50% Updates for Basic Indexes
using TPC Dataset

Figure 6. Operational Throughput with 100% Updates for Basic
Indexes using TPC Dataset

the O2-Tree, when reading and writing through a cache

shows performance characteristics that are superior to

the NoSQL databases considered. It outperformed the

LevelDB and the Kyoto Cabinet that used the TreeDB

access method, by several orders of magnitude.

Figure 9 and Figure 10 show the corresponding oper-

ational throughput results for mixed query operations

on the NoSQL data stores with varying data sizes from

10M to 50M operations for 100% and 50% updates

respectively. The O2-Tree-KV demonstrated a superior

operational throughput at high update ratio and large

dataset. The efficient index mechanism of the O2-Tree-

KV accounts for its superior performance.

5.2. Multi-threaded Evaluations

We evaluated the average time for a multi-threaded

insertion of “key-value” pairs of generated data into

each of the following storage schemes: the O2-Tree

persistent store, which we refer to as O2-Tree-KV, the

BerkeleyDB and Kyoto-Cabinet TreeDB using the B−
T ree access method as well as the LevelDB NoSQL

key-value store. These experiments were conducted

primarily to compare the performance of O2-Tree with

these key-value stores where the data blocks are written

and read through an in-memory cache to a disk file

using multiple threads. We evaluated the average time

it takes to perform 20 million (20M) insertions of “key-

value” pairs concurrently with the number of threads
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Figure 7. Persistent store: Insertions With In-Memory Cache using
TPC dataset

Figure 8. Persistent store: With In-Memory Cache and 50M Mixed
Queries

Figure 9. Operational Throughput for Persistent Storage with 100%
Updates

Figure 10. Operational Throughput for Persistent Storage with 50%
Updates

varying from 2 to 16. The page size as well as the in-

memory cache size for each key-value store was set to

4k and 2.5GB respectively for all experiments in this

group. We ensured that the operations were performed

with the index tree in memory while the data pages

were maintained in the in-memory cache pool. The

data pages were read and written to disk according

to the Least Recently Used (LRU) cache replacement

policy of the Mpool. The results are shown in Figure 11.

The general observation was that the average time to

perform insertions decreased with increasing number

of threads. This was due to the fact that the degree of

access contentions increased as the number of threads

increased. Threads must block to ensure correctness

of query operations. Therefore, more threads result

in lock contention as several threads are blocked.

This eventually affects the overall performance of the

structures. However, the O2-Tree-KV performed better

than the other “key-value" storage schemes discussed

in the paper. The O2-Tree-KV employs a simple index

mechanism which accounts for its better performance.

The O2-Tree-KV, performed about 2 ∼ 3X faster than

the KyotoDB and BerkeleyDB both of which use the B-

Tree access method. The results are shown in Figure 11.
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Figure 11. Index Construction with Varying Number of Threads

Figure 12 shows the operational throughputs of each

of the key-value stores under different workloads. Each

workload consisted of a mix of look-ups, insertions and

deletions referred to as update ratio from the previous

discussion. For each update ratio, we interleaved all

operations such that a thread performed either an

update or a lookup. All operations were performed

by a maximum 16 threads we had on the machine.

We observed a general decrease in throughput as the

update ratio increased. This was due to the fact that,

updates require restructuring of the index which affects

the overall performance. TheO2-Tree-KV did record the

highest throughput which was about 1.9M operations

per second (op/s). This rate later dropped to 1.3M op/s
at 100% updates. A similar trend was observed for all

the other key-value stores considered.

Figure 12. Operational Throughput for Different Mix of Workloads

We also compared the average time to conduct

a search or lookup for all key-value stores. One

objective of NoSQL key-value store is to provide

effective lookup without the bottlenecks of traditional

Relational database systems (RDBMS). We conducted

the experiments with 20M 32 − bit keys. We gradually

increased the number of threads to ascertain the effect

of shared memory multi-threaded concurrent access

of these different data storage systems. The results

show that, as the number of threads increased, the

lookups proceeded faster since there was relatively

little work per thread. During lookups, threads do

not block and thus, can proceed immediately with

expected linearisable results. Though the O2-Tree-KV

outperformed all the key-value stores considered, it

rather exhibited a poor performance gain as the number

of worker threads increased. This could be due to the

cache coherence problem associated with single node

traversals. We anticipate a much better performance

with a lock-free protocol such as Software transactional

memory STM.

Figure 13. Concurrent Look-ups for 20M “key-value” using Varying
Workloads

Additionally, we performed multi-threaded scalabil-

ity evaluations on the O2-Tree-KV as well as the Berke-

leyDB, Kyoto-Cabinet TreeDB and the LevelDB NoSQL

key-value stores. We adopted the strong scalability test

approach in which we doubled the dataset as well as the

number of threads for each run of the experiment. The

dataset was varied from 5M with 2 threads and doubled

for each run to 40M with 16 threads for the last run.
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The first set of scalability test shown in Figure 14 illus-

trated the results with only insertions (Puts). Figure 15

however, indicates similar experiment but this time for

a mix of query operations in which 50% were look-ups

and 50% updates (of which 70% were insertions and

30% deletions). We observed a comparable and even

better performance for the O2-Tree-KV which exhibited

a high level of scalability. Generally, a gradual increase

in CPU times for all the key-value stores considered was

observed as the number of threads and datasets were

doubled.

We also evaluated the total size of the problem queue
which is used by the relax balance algorithm of the O2-

Tree. We varied the data size as well as the number of

threads in each run of the experiment. We observed that

the total problem queue size was a function of the size

of the dataset used to build the index. Large datasets

resulted in larger problem queue size. Figure 16 shows

the graph for the total problem queue sizes for the

tree index. We observe a rapid increase in the problem

queue size given a small increase in the dataset. For

instance, the queue increases rapidly from about 6X104

when the dataset is 3M to an average of about 12X104

(double the previous size) when the dataset is increased

by 1M.

However, a series of experiments conducted indicated

that the average problem queue size was comparatively

small at any instance using a single rebalancer thread.

Since, the rebalancer thread does not traverse the index

from the root but goes directly to the offending node,

it is able to process problem queue items faster than

the update threads. This accounts for the minimal

average problem queue size observed in the experiment.

Further, as the number of the rebalancer threads

increases, the problem queue size reduces significantly

as more threads are able to concurrently process the

queue with minimal interference to ensure that the tree

is balanced.

Finally, we evaluated the performance of each key-

value store using real life flight statistics data [11] that

consisted of 32bit keys and their corresponding data

values. The physical size of the file was about 600MB.

We loaded 10M keys and their corresponding values

into each key-value store using varying concurrent

threads up to to 16 threads. The operational throughput

Figure 16. Total Problem Queue size for Varying Data sizes and
Threads

to load the data from the persistent dump was then

reported. The primary objective of this experiment was

to measure the performance with real life data besides

the synthetic data used in the previous experiments.

We observed a comparable performance between all the

key-value stores considered. The O2-Tree-KV exhibited

a much better throughput even though the others were

comparable. Figure 17 illustrates the results.

Figure 17. Concurrent Loading of Real-life Persistent data

6. Conclusion and Future Work

In this paper we have presented the O2-Tree as an

in-memory resident index for a persistence key-value

store. It delivers high performance and exhibits good
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Figure 14. Scalability Test with 100% Insertions Figure 15. Scalability Test with 50% Update Ratio

scalability while being tolerant of contention. We have

also presented a concurrent access protocol based on

the relax balance tree technique which allows the

scheme to attain high performance as well.

We compared our index persistent O2-Tree

implemented through an in-memory cache against

popular high performance and widely used NoSQL
key-value stores such as the BerkeleyDB, Google’s

LevelDB and Kyoto-Cabinet TreeDB. Our experiments

show that O2-Tree key-value store outperforms both

BerkeleyDB, and Kyoto-Cabinet TreeDB by 2 − 3X.

It also performs comparatively well against Google’s

LevelDB for many access patterns. More importantly,

the experimental results show that O2-Tree index

structure exhibit a good scalability and tolerates

contention. It also exhibit superior performance

especially during high updates. It’s therefore the

index structure of choice in applications with frequent

updates such as Online Transaction Processing (OTP).

Future work anticipated involves using optimising

techniques to make the structure much more cache

aware using blocking techniques to improve CPU

cache usage as well as bulk loading techniques

for greater throughput. We are also exploring the

use of GPU traversals for O2-Tree for even higher

throughput. Other future work include replacing the

RB-Tree internal structure of the O2-Tree with other

tree structures such as the AA-Tree, 2−3-Tree and the

SkipList, and compare their performance measures.
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