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Abstract

In this paper, we study the non-stationary parallel multisplitting two-stage iterative methods with self-
adaptive weighting matrices for solving a linear system whose coefficient matrix is symmetric positive
definite. Two choices of Self-adaptive weighting matrices are given, especially, the nonnegativity is eliminated.
Moreover, we prove the convergence of the non-stationary parallel multisplitting two-stage iterative methods
with self-adaptive weighting matrices. Finally, the numerical comparisons of several self-adaptive non-
stationary parallel multisplitting two-stage iterative methods are shown.
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1. Introduction
To solve large sparse linear system of equations on
multiprocessor systems,

Ax = b, A = (aij ) ∈ Rn×n nonsingular and b ∈ Rn . (1)

O’Leary andWhite [14] first proposed parallel methods
based on multisplitting of matrices in 1985, after this,
combing with two-stage iterative methods (see [2, 4,
10]), the multisplitting two-stage iterative methods [15]
were proposed, where several basic convergence results
were found. The scheme was proposed as following

A = Bi − Ci , Bi = Mi −Ni , i = 1, 2, · · · , m , (2)

Mix
(k,l)
i = Nix

(k,l−1)
i + Cix

(k) + b , (3)

x(k+1) =
m∑
i=1

Eix
(k,q(i,k))
i , (4)

HThis paper is an extended version of [22]. We have added a kind
of self-adaptive weighting schemes in Algorithm 1, and also proven
the convergence of Algorithm 1 in this condition. In addition, we
have added the numerical example and completely recalculated
the numerical examples with highly precision and higher size of
coefficient matrix.
∗Chuan-Long Wang. Email: clwang218@126.com

where Ei ≥ 0, diagonal, and
m∑
i=1

Ei = I. (Mi , Ni , Ci , Ei)
m
i=1

will be unchanged and independent of the iterative
number k.
Later, many authors studied the methods for the case

that A is an M-matrix, an H-matrix and a symmetric
positive definite matrix. When A is an M-matrix or
an H-matrix, many parallel multisplitting two-stage
iterative methods (see [3, 5, 6, 12, 15, 17]) were
presented, and the weighting matrices Ei , i = 1, 2, · · · , m
were generalized (see [1, 11])

m∑
i=1

E
(k)
i = I(or , I), E

(k)
i ≥ 0, k = 1, 2, · · · , (5)

and E
(k)
i is diagonal, but these weighting matrices were

preset as multi-parameter.
When A is a symmetric positive definite matrix,

generally, which require the assumption that the
weighting matrices are multiples of the identity
matrix, that is Ei = αiI, i = 1, 2, · · · , m (see [8, 14]), but
these results have little applicability for analysis of
parallel processing. In order to improve the weighting
matrices, White [19, 20] and Wen [18] presented the
multisplitting which had a very special structure,
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Chen [21] discussed asynchronous multisplitting, Cao
[7] gave a nonstandard multisplitting, Migallón [13]
proposed the non-stationary multisplittings, Wang
and Bai [17] discussed the non-stationary two-stage
multisplitting, but the non-stationary multisplitting
usually had a block splitting for parallel processing.
Furthermore, as we know, the weighting matrices
have important role in parallel multisplitting methods,
but the weighting matrices in all above-mentioned
methods are determined previously, they are not known
to be good or bad, this influences the efficiency of
parallel methods. Fortunately, Wang [23] has presented
modified parallel multisplitting iterative methods by
optimizing the weightingmatrices based on the sparsity
of the coefficient matrix A. But none has ever studied
that how to choose optimal weighting matrices for the
parallel multisplitting two-stage iterative algorithms,
we will discuss this problem in the paper.
Here, we still use the scalar weighting matrices

E
(k)
i = α

(k)
i I, i = 1, 2, · · · , m, k = 1, 2, · · · . (6)

in the parallel multisplitting two-stage iterative

method, but α
(k)
i (i = 1, 2, · · · , m, k = 1, 2, · · · ) are

chosen by finding the optimal point in the hyperplane
Hk , where

Hk =

x|x =
m∑
i=1

α
(k)
i x

(k)
i ,

m∑
i=1

α
(k)
i = 1

 , k = 1, 2, · · · .

(7)

Thus, α(k)
i (i = 1, 2, · · · , m, k = 1, 2, · · · ) are the optimal

parameters in k-th iteration. In other words, the point

x(k) =
m∑
i=1

α
(k)
i x

(k)
i generated by the optimal weighting

matrices (6) may be the optimal point to the solution
of linear systems (1) in Hk . Thus, we search the optimal
weighting matrices without nonnegative condition. In
fact, numerical examples (will be seen in section 4)
show that the methods with the weighting matrices (6)
are effective.
The paper is organized as follows. In Section 1,

we give some notations and preliminaries. In Section
2, the non-stationary parallel multisplitting two-stage
iterative methods with self-adaptive weighting schemes
are put forward. In Section 3, the convergence of
the new method is established. We provide numerical
results in Section 4.
Here are some essential notations and preliminaries.

Rn×n is used to denote the n × n real matrix set,
the matrix AT denotes the transpose of A. Similarly
the transpose of a vector x is denoted by xT . A
matrix A ∈ Rn×n is called symmetric positive definite(or
semidefinite), if it is symmetric and for all x ∈ Rn, x ,
0, it holds that xTAx > 0(or xTAx ≥ 0). A = M −N is
called a splitting of the matrix A if M ∈ Rn×n is non-
singular; this splitting is called a convergent splitting

if ρ(M−1N ) < 1; a P -regular splitting of the symmetric
positive definite matrix A ifMT +N is positive definite,
a symmetric positive definite splitting ifN is symmetric
positive semi-definite (see [6, 16]).

2. Algorithms
In this section, we give the non-stationary parallel
multisplitting two-stage iterative methods with self-
adaptive weighting schemes.

Let

E
(k)
i = α

(k)
i I, i = 1, 2, · · · , m,

m∑
i=1

α
(k)
i = 1, k = 1, 2, · · · .

(8)

It is denoted α(k) = (α(k)
1 , α

(k)
2 , · · · , α(k)

m )T .
Algorithm 1. (SMTS) The non-stationary parallel
multisplitting two-stage iterative methods with self-
adaptive weighting schemes

Step 0. Given the precision ϵ > 0, the initial point x(0) and
set k := 0; For k = 0, 1, · · · , until convergence.

Step 1. For all processors

x
(k,0)
i = x(k) ,

Step 2. For processor i, for l = 0, 1, · · · , q(i, k) − 1

Mix
(k,l+1)
i = Nix

(k,l) + Cix
(k) + b, i = 1, 2, · · · , m .

(9)

Step 3. Computing α
(k)
i (i = 1, 2, · · · , m) by the following

quadratic programming models.

(a) Let x =
m∑
i=1

αix
(k,q(i,k))
i ,

min
α

1
2
xTAx − xT b

s.t.
m∑
i=1

αi = 1 . (10)

(b) Let r(k,q(i,k))i = Ax
(k,q(i,k))
i − b, r =

m∑
i=1

αir
(k,q(i,k))
i ,

min
α

rT r

s.t.
m∑
i=1

αi = 1 . (11)

Step 4.

x(k+1) =
m∑
i=1

α
(k)
i x

(k,q(i,k))
i . (12)

Step 5. If ∥Ax(k+1) − b∥ < ε, stop; Otherwise, set k:=k+1;
Go to Step 1.
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By introducing matrices

G(i, k) =
q(i,k)−1∑
l=0

(M−1i Ni)
lM−1i , (13)

H(i, k) = (M−1i Ni)
q(i,k) +

q(i,k)−1∑
l=0

(M−1i Ni)
lM−1i Ci . (14)

We can rewrite the SMTS as the following iteration

x(k+1) =
m∑
i=1

E
(k)
i (H(i, k)x(k) + G(i, k)b) = H(k)x(k) + G(k)b ,

(15)
where

H(k) =
m∑
i=1

E
(k)
i H(i, k), G(k) =

m∑
i=1

E
(k)
i G(i, k) . (16)

It follows from straightforward derivation that

H(i, k) = I − G(i, k)A, i = 1, 2, · · · , m, k = 0, 1, . . . ,
(17)

and the iteration matrix

H(k) = I − G(k)A, k = 0, 1, 2, · · · . (18)

For the quadratic programming, we have following
results (see [9]).

Let
X(k) = (x(k,q(1,k))1 , · · · , x(k,q(m,k))

m ),

α = (α1, · · · , αm)
T , e = (1, · · · , 1)T .

Theorem 2.0.1. Let {x(k,q(1,k))1 , · · · , x(k,q(m,k))
m } be linear inde-

pendent, the solution of the quadratic programming
(10) is as following

α = (X(k)TAX(k))−1(X(k)T b + µe) , (19)

where µ = 1−eT (X(k)TAX(k))−1X(k)T b
eT (X(k)TAX(k))−1e .

Theorem 2.0.2. Let {r(k,q(1,k))1 , · · · , r(k,q(m,k))
m } be linear inde-

pendent, the solution of the quadratic programming
(11) is as following

α = (R(k)TR(k))−1(R(k)T b + µe) (20)

where µ = 1−eT (R(k)T R(k))−1R(k)T b
eT (R(k)T R(k))−1e .

3. Convergence Analysis
In this section, we study the convergence theories for
algorithm 1 with self-adaptive weighting matrices.

Lemma 3.0.3. [11] Assume that A is a symmetric positive
definite matrix, let A = M −N be P -regular splitting.
Then there exists a positive number r such that

∥A
1
2 (M−1N )A−

1
2 ∥2 ≤ r < 1 . (21)

Lemma 3.0.4. [8] Assume that A is a symmetric positive
definite matrix, let A = F − G is a P -regular splitting.
Given m ≥ 1, there exists a unique splitting A = P −Q
such that (F−1G)m = P −1Q and A = P −Q is also a P -
regular splitting.

Lemma 3.0.5. Assume that A is a symmetric positive
definite matrix. Let A = Bi − Ci , i = 1, 2, · · · , m be sym-
metric positive definite splittings, and Bi = Mi −Ni be
P-regular splittings. If there exists a positive integer q
such that the non-stationary iteration number

q(i, k) ≤ q, k = 1, 2, · · · .

Then there exists a positive number r such that

∥A
1
2H(i, k)A−

1
2 ∥2 ≤ r < 1, i = 1, 2, · · · , m, k = 1, 2, · · · .

(22)

Proof. We compute G(i, k) directly

G(i, k) =
q(i,k)−1∑
l=0

(M−1i Ni)
lM−1i (23)

= (I − (M−1i Ni)
q(i,k))(I −M−1i Ni)

−1M−1i

= (I − (M−1i Ni)
q(i,k))B−1i . (24)

From Lemma 3.0.4, there exists a unique P-regular
splitting

Bi = Pi(k) −Qi(k), i = 1, 2, · · · , m, k = 1, 2, · · · ,

such that P −1i (k)Qi(k) = (M−1i Ni)q(i,k). Hence, it is
derived that

G(i, k) = (I − P −1i (k)Qi(k))B
−1
i = P −1i (k),

i = 1, 2, · · · , m, k = 1, 2, · · · .

and thereby,

H(i, k) = I − P −1i (k)A = P −1i (k)(Pi(k) − A)
= P −1i (k)(Bi +Qi(k) − (Bi − Ci))

= P −1i (k)(Qi(k) + Ci), (25)

i = 1, 2, · · · , m, k = 1, 2, · · · .

From the assumptions of Lemma 3.0.5, the splitting

A = Pi(k) − (Qi(k) + Ci), i = 1, 2, · · · , m, k = 1, 2, · · · , (26)

are P-regular splittings. Thus, there exist the positive
numbers r(i, k), i = 1, 2, · · · , m, k = 1, 2, · · · , such that

∥A
1
2H(i, k)A−

1
2 ∥2 ≤ r(i, k) < 1,
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i = 1, 2, · · · , m, k = 1, 2, · · · .

Because of the q(i, k) ≤ q, q(i, k) = 1, 2, · · · , q has q
different values. Thus, the splittings (26) have at most
q different splittings, so are the positive numbers
r(i, k), i = 1, 2, · · · , m, k = 1, 2, · · · . Hence, there exists a
positive number r such that (22) holds.

Theorem 3.0.6. Assume that A is a symmetric positive
definite matrix. Let A = Bi − Ci , i = 1, 2, · · · , m be sym-
metric positive definite splitting, and Bi = Mi −Ni be
P -regular splittings. Suppose that weighting matrices

E
(k)
i = α

(k)
i I, k = 1, 2, · · · are given by (10). If there exists

a positive integer q such that the non-stationary itera-
tion number q(i, k) ≤ q. Then {x(k)} generated by algo-
rithm 1 converges to the unique solution of the linear
system of equations (1).

Proof. Let x∗ be the unique solution of linear system of
equations (1), and let ε(k) = x(k) − x∗, k = 1, 2, · · · . From
the algorithm 1, we have

ε(k+1) = H(k)ε(k), k = 1, 2, · · · , (27)

where

H(k) =
m∑
i=1

α
(k)
i

(M−1i Ni)
q(i,k) +

q(i,k)−1∑
l=0

(M−1i Ni)
lM−1i Ci

 ,
(28)

k = 1, 2, · · · .

On the other hand, model (10) is equivalent to the
following quadratic programming model,

min
α

1
2
(x − x∗)TA(x − x∗)

s.t.
m∑
i=1

αi = 1. (29)

From (29), we have

ε(k+1)
T
Aε(k+1) ≤ ε̃

(k+1)T

i Aε̃
(k+1)
i , (30)

i = 1, 2, · · · , m, k = 1, 2, · · · ,

where

ε̃
(k+1)
i = H(i, k)ε(k), (31)

i = 1, 2, · · · , m, k = 1, 2, · · · .

(27) and (28) combine (30) and (31), for k = 1, 2, · · · , it
holds that

∥A
1
2 ε(k+1)∥2 = ∥A

1
2H(k)ε(k)∥2 ≤ ∥A

1
2H(i, k)ε(k)∥2

= ∥A
1
2H(i, k)A−

1
2A

1
2 ε(k)∥2

≤ ∥A
1
2H(i, k)A−

1
2 ∥2∥A

1
2 ε(k)∥2

≤ · · ·
≤ Π∞k=0∥A

1
2 (H(i, k))A−

1
2 ∥2∥A

1
2 ε(0)∥2,

i = 1, 2, · · · , m .

From Lemma 3.0.5, we have

∥A
1
2H(i, k)A−

1
2 ∥2 ≤ r < 1, i = 1, 2, · · · , m .

Thus,
lim
k→∞

ε(k+1)
T
Aε(k+1) = 0 ,

which is equivalent to limk→∞ ε(k+1) = 0.

Lemma 3.0.7. Assume that A is a nonsingular matrix,
let A = M −N be a convergent splitting. If the matrix
ATM +MTA − ATA is symmetric positive definite, then

∥(ATA)
1
2 (M−1N )((ATA)−

1
2 )∥2 < 1 .

Proof. At first, the matrix ATA − (M−1N )TATA(M−1N )
follows from direct operation that

ATA − (M−1N )TATA(M−1N )

= ATA − (I − ATM−T )ATA(I −M−1A)
= ATM−TATA + ATAM−1A − ATM−TATAM−1A

= ATM−T (ATM +MTA − ATA)M−1A .

Hence, the matrix ATA − (M−1N )TATAM−1N is
symmetric positive definite if and only if the matrix
ATM +MTA − ATA is symmetric positive definite. On
the other hand, the matrix ATA − (M−1N )TATAM−1N
is symmetric positive definite if and only if
∥(ATA)

1
2 (M−1N )(ATA)−

1
2 ∥2 < 1.

Lemma 3.0.8. Assume that A is a nonsingular matrix.
Let A = Bi − Ci , i = 1, 2, · · · , m be convergent splittings,
and let Bi = Mi −Ni , i = 1, 2, · · · , m be also convergent
splittings. Suppose the induced splitting

Bi = Pi(k) −Qi(k), i = 1, 2, · · · , m, k = 1, 2, · · · ,

such that

P −1i (k)Qi(k) = (M−1i Ni)
q(i,k), i = 1, 2, · · · , m, k = 1, 2, · · · ,

and

AT Pi(k) + Pi(k)
TA − ATA, i = 1, 2, · · · , m, k = 1, 2, · · · .

are symmetric positive definite. If there exists a positive
integer q such that the non-stationary iteration number
q(i, k) ≤ q, i = 1, 2, · · · , m, k = 1, 2, · · · . Then

∥(ATA)
1
2H(i, k)((ATA)−

1
2 )∥2 < r(i, k) ≤ r < 1, (32)

i = 1, 2, · · · , m, k = 1, 2, · · · ,

Proof. We apply Lemma 3.0.7 to the splitting

A = Pi(k) − (Qi(k) + Ci), i = 1, 2, · · · , m, k = 1, 2, · · · ,

the (32) is obtained directly.
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Theorem 3.0.9. Assume that A is a nonsingular matrix.
Let A = Bi − Ci , i = 1, 2, · · · , m be convergent splittings,
and let Bi = Mi −Ni , i = 1, 2, · · · , m, k = 1, 2, · · · be also
convergent splittings. Suppose that weighting matrices

E
(k)
i = α

(k)
i I, i = 1, 2, · · · , m, k = 1, 2, · · · are given by

(11). If the induced splitting Bi = Pi(k) −Qi(k), i =
1, 2, · · · , m, k = 1, 2, · · · such that

P −1i (k)Qi(k) = (M−1i Ni)
(q(i,k), i = 1, 2, · · · , m, k = 1, 2, · · · ,

and

AT Pi(k) + Pi(k)
TA − ATA, i = 1, 2, · · · , m, k = 1, 2, · · · ,

are symmetric positive definite, then {x(k)} generated
by algorithm 1 converges to the unique solution of the
linear system of equations (1).

Proof. The model (11) is equivalent to the following
quadratic programming model

min
α

(x − x∗)TATA(x − x∗)

s.t.
m∑
i=1

αi = 1 . (33)

Thus, similar to Theorem 3.0.6, for i = 1, 2, · · · , m, k =
1, 2, · · · , it is derived that

∥(ATA)
1
2 ε(k+1)∥2 = ∥(ATA)

1
2H(k)ε(k)∥2

≤ ∥(ATA)
1
2H(i, k)ε(k)∥2

= ∥(ATA)
1
2H(i, k)(ATA)−

1
2 (ATA)

1
2 ε(k)∥2

≤ ∥(ATA)
1
2H(i, k)(ATA)−

1
2 ∥2∥(ATA)

1
2 ε(k)∥2

≤ · · ·
≤ Π∞k=0∥(A

TA)
1
2H(i, k)(ATA)−

1
2 ∥2∥(ATA)

1
2 ε(0)∥2 ,

i = 1, 2, · · · , m.

From Lemma 3.0.8 we have

∥(ATA)
1
2H(i, k)(ATA)−

1
2 ∥2 ≤ r(i, k) ≤ r < 1

i = 1, 2, · · · , m, k = 1, 2, · · · .

Thus,
lim
k→∞

ε(k+1)
T
(ATA)ε(k+1) = 0 .

so is the sequence {ε(k)}. Hence, we have proved this
theorem.

Remark 3.0.10. The choice the optimization model of
weighting matrices in k-th iteration can be various.
Here, we only consider two schemes of optimizing
weighting matrices for a linear system. In order to
obtain self-adaptive weighting matrices, we need to
solve the quadratic programming, but it may decrease
the iterations largely because of the inequality implied
in Theorem 3.0.6 and Theorem 3.0.9. Furthermore, we
can parallel compute α as (19) and (20).

4. Numerical Experiments
In this section, we give some preliminary computational
results. We implement our Algorithm 1 with three
splittings (Gauss-Seidel splitting, Relaxation splitting
and upper Gauss-Seidel splitting) to solve the linear
system (1).
The test PDE problem we are considering in this

paper is

− ∆u ≡ −
(
∂2u

∂x2
+
∂2u

∂y2

)
= f (x, y) (34)

with (x, y) ∈ Ω, where Ω = (0, 1) × (0, 1) is a square
region. In all cases, the initial vector x(0) is set to zero
and the stopping criterion for Algorithm 1 is

∥b − Ax(k)∥2
∥b∥2

≤ 10−6 .

where ∥ · ∥2 refers to L2-norm. In the following Tables,
IT stands for the number of iterations satisfying the
stopping criterion mentioned above, CPU stands for
the parallel execution time of Algorithm 1. All timing
results are reported in seconds. For the test problems,
only the matrix A, which is constructed from finite
difference discretization of the given PDE (34), is of
importance, so the right-hand side vector b is created
artificially. Hence, the right-hand side function f (x, y)
in Examples 1 and 2 is not relevant.
Example 1 This example considers equation Ax = b

obtained from nine-point finite difference discretiza-
tion of the given PDE (34). So the coefficient matrix

A =



Dp Gp

Gp Dp Gp
. . .

. . .
. . .

Gp Dp Gp

Gp Dp


q×q

,

where

Dp =


20 −4
−4 20 −4

. . .
. . .

. . .
−4 20 −4

−4 20


p×p

,

Gp =


−4 −1
−1 −4 −1

. . .
. . .

. . .
−1 −4 −1

−1 −4


.

and the right-hand side vector b is chosen so that b =
(1, 2, 3, · · · , n)T .
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Example 2 This example considers equation Ax = b
from five-point finite difference discretization of the
given PDE (34). So the matrix A is constructed as in
Example 1, butDp andGp are different from Example 1,

that is Dp =


4 −1
−1 4 −1

. . .
. . .

. . .
−1 4 −1

−1 4


p×p

and Gp = −I ,

and the right-hand side vector is chosen so that b =
(1, 1, · · · , 1)T .
In all our numerical experiments, three splittings of

the matrix A are proposed as following. Let

A = Bi − Ci , i = 1, 2, 3

with Bi =



Dip Gip

Gip Dip Gip
. . .

. . .
. . .

Gip Dip Gip

Gip Dip


.

Especially in Examples 1, we chose

D1p =


24 −4
−4 24 −4

. . .
. . .

. . .
−4 24 −4

−4 24


,

G1p =


−2 −1
−1 −2 −1

. . .
. . .

. . .
−1 −2 −1

−1 −2


,

D2p =


22 −4
−4 22 −4

. . .
. . .

. . .
−4 22 −4

−4 22


,

G2p =


−3 −1
−1 −3 −1

. . .
. . .

. . .
−1 −3 −1

−1 −3


,

D3p =


26 −3
−3 26 −3

. . .
. . .

. . .
−3 26 −3

−3 26


,

G3p =


−4

−4
. . .

−4

 .

and in Examples 2, we chose

D1p =


10 −1
−1 10 −1

. . .
. . .

. . .
−1 10 −1

−1 10


,

G1p =


−3

−3
. . .

. . .
. . .
−3

−3


,

D2p =


8 −2
−2 8 −2

. . .
. . .

. . .
−2 8 −2

−2 8


,

G2p =


−2

−2
. . .

. . .
. . .
−2

−2


,

D3p =


12 −2
−2 12 −2

. . .
. . .

. . .
−2 12 −2

−2 12


,

G3p =


−2 −1
−1 −2 −1

. . .
. . .

. . .
−1 −2 −1

−1 −2


.

Let
Bi = Di − Li − LTi , i = 1, 2, 3 , (35)

where Di = diag(Di,p, · · · , Di,p), i = 1, 2, 3. and
corresponding to the Di block, Li is strictly block
lower triangular matrix. Mi and Ni of Algorithm 1 are
determined by the following three splitting methods.

The Gauss-Seidel splitting method

M1 = D1 − L1, N1 = LT1 ; (36)
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Table 1. Comparison of computational results for Example 1

p SMTS SMTS old Alg old Alg old Alg
with (11) with (10) with (i) with (ii) with (iii)

20 IT 49 53 538 382 284
CPU 0.541037 0.537481 3.817864 3.772102 2.799893

30 IT 99 111 1152 819 636
CPU 2.417201 2.775316 27.843393 19.953243 15.499852

40 IT 186 193 2003 1424 1003
CPU 9.365693 9.571924 100.408128 70.903005 50.194703

50 IT 294 274 3089 2196 1902
CPU 23.093113 21.421537 258.096561 173.782059 151.376797

60 IT 424 377 4412 3136 2233
CPU 50.778948 44.560516 531.147234 396.874754 267.580311

70 IT 582 391 5970 4244 3448
CPU 103.469121 68.018041 1067.300887 748.579123 609.459062

80 IT 769 463 7765 5520 4126
CPU 308.959919 149.931800 2107.084033 1363.542538 1039.778497

The SOR splitting method

M2 =
1
ω
(D2 −ωL2), N2 =

1
ω
((1 −ω)D2 +ωLT2 ) ; (37)

The upper Gauss-Seidel splitting method

M3 = D3 − LT3 , N3 = L3 . (38)

In addition, the weighting matrices E
(k)
i = α

(k)
i I, i =

1, 2, 3, k = 1, 2, · · · .
In order to compare old algorithm with the fixed

weighting matrices, we propose the fixed weighting
matrices as following,

(i) Ei = αiI, i = 1, 2, 3, with α1 = 0.2, α2 = 0.2 α3 =
0.6;

(ii) Ei = αiI, i = 1, 2, 3, with α1 = 0.4, α2 = 0.3, α3 =
0.3;

(iii) E1 = diag(α1Ip, α2Ip, · · · , αqIp),
E2 = diag(β1Ip, β2Ip, · · · , βqIp),
E3 = diag(γ1Ip, γ2Ip, · · · , γqIp),
where αi and βi(i = 1, 2 · · · q) are generated
randomly in (0,1), and γi = 1 − αi − βi .

In all our tests we take p = q, ω = 1.5, q(i, k) = 5.
Numerical results for Example 1 and Example 2 are
listed in Tables 1 and Tables 1, respectively.
In Example 2, the coefficient matrix A itself contains

more zero entries than the matrix of Example 1. So
we choose larger p. From Table 1 and Table 2 we
see that the iteration counts and the CPU times of
SMTS with (11) grow rapidly than SMTS with (10)
with problem size, but they are much less than the
usual old algorithm with fixed weighting matrices.
The reason is that the nonnegativity of weighting

Table 2. Comparison of computational results for Example 2

p SMTS SMTS old Alg old Alg old Alg
with (11) with (10) with (i) with (ii) with (iii)

20 IT 14 20 162 136 112
CPU 0.132377 0.194257 1.552457 1.284103 1.080881

40 IT 40 44 529 440 424
CPU 1.929001 2.143014 25.336636 20.901150 20.130860

60 IT 89 67 1130 940 851
CPU 10.163563 7.775480 129.333241 107.352299 105.052453

80 IT 161 110 1967 1637 1671
CPU 40.565789 26.947623 496.462925 389.863508 398.499981

100 IT 251 175 3039 2531 2469
CPU 105.032853 73.645276 1177.090124 1046.563264 1021.525050

120 IT 363 244 4346 3621 3467
CPU 224.098729 151.474390 2630.780502 2307.731365 2101.069915

matrices are deleted, the range for finding the optimal
weighting matrices is extended. The iteration counts
and the CPU times of the old algorithm with (iii) is
not stable because of randomly, so we have chosen
lesser iteration number than the old algorithms with
(i) and (ii). Numerical experiments have been presented
showing the effectiveness of the self-adaptive strategy
for weighting matrices.
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