
ICST Transactions on Scalable Information Systems Research Article

FraTAct for Transforming A Nescient Process
Activity Into an Intelligent Process Activity
Rafiqul Haque1* and Nenad B. Krdzavac1
1Department of Accounting, Finance, and Information System, College of Business and Law, University College

Cork, Cork City, Cork, Ireland.

Abstract

Existing business process technologies support defining only nescient activities. Currently there is no solution
that underpins transforming a nescient activity into intelligent activity. In this paper, we address this
shortcoming of the state of the art. We offer a framework ‘FraTAct’ for transforming regulation intensive
nescient activities of a financial service business process into intelligent activities.

Financial service industries has been experiencing enormous challenges since the last decade. A recent
financial crisis has unearthed various weaknesses in terms of administering the financial service industries.
In order to prevent the future crisis, the regulators are constantly formulating new rules and also forcing
the financial service industry to enact financial regulations in their financial service based application which
automates financial operations.

A financial service application underpins the financial service business process that contains activities. A
nescient activity within a financial service process is prone to the risk of producing an inconsistent outcome
that results in severe legal consequences for a financial institute e.g., a bank. In order to avoid these legal
consequences, a financial institute should develop their financial service processes by composing activities
that should be intelligent to understand and comply with financial regulations. Intelligent activities will
produce outcomes that are consistent to financial regulations. It will reduce the possibility of financial
regulation noncompliance in financial service process based application.

Received on 02 March 2013; accepted on 07 November 2013; published on 04 March 2014

Keywords: Business Process, Nescient Activity, Intelligent Activity, Ontology, Description Graph

Copyright © 2014 R. Haque and N.B. Krdzavac, licensed to ICST. This is an open access article distributed under the
terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits
unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/sis.1.2.e4

1. Introduction
A process simply put, is a set of ordered activities
[15]. Activities carry out operations while a process
is running and producing outcomes. The notion of
process is used in different domains such as software
process, chemical process and so forth. In this paper,
process refers to financial service process and activities
are financial service activities. In a financial service
process (FSP), the operations must be performed in
compliance with financial regulations that are essentially
financial rules. An operation produces an inconsistent

∗Corresponding author. Email: arhaque@ucc.ie
†This research paper is an extension of our research published in [10].

outcome if it does not comply with the relevant
regulations. Inconsistent compliance outcomes result in
severe consequences for an organization regardless of
whether it is a financial or business organization. The
Enron-Scandal [12] is a practical example. Therefore,
compliance is a highly significant issue in FSP.

Activities within FSPs are regulation-intensive which
means that they are based upon financial regulations
(e.g., Basel III accords [3]). However, some activities
within an FSP may not be regulation-intensive.
A regulation-intensive activity within an FSP is
called nescient if it lacks explicit knowledge about
the underlying regulations, it lacks correlation with
financial regulations, and the activity cannot produce
consistent outcomes. A nescient activity is not able

EAI
European Alliance
for Innovation

1
ICST Transactions on Scalable Information Systems

03 2013 - 03 2014 | Volume 01 | Issue 2 | e4

R. Haque and N.B. Krdzavac

to perform operations that comply with financial
regulations. This promotes the need for activities that
are able to perform operations in compliance with
regulations.
Existing business process technologies (e.g., BPEL

[21]) lack the constructs for defining (modeling)
intelligent activities in a financial service process.
Some approaches (e.g., Business Process Model and
Notation (BPMN) [22])facilitate annotating meta-data
of a process activity to give the semantics of that
activity. However, these approaches cannot be used
for FSPs due to the complexity and ambiguity in
financial regulations. More specifically, an FSP is
slightly different from the classical business process
activity as it must be aware of one or more financial
regulations which can be a conjunctive statements. It
may not be easy to annotate an FSP with a conjunctive
statement which expresses explicitly the semantics
of different parts of it. In addition, transforming
annotated financial regulations into machine readable
ones by preserving their semantics is still an unsolved
issue. A solution that supports the straightforward
transformation of a nescient activity into an intelligent
one is strongly required for smart financial service
processes.
In this research, we offer a framework named

FraTAct that underpins transforming nescient activities
into intelligent activities within the FSP space. It is
important to mention that the transformation happens
indirectly i.e., the framework supports the nescient
activities by providing the exact meaning of regulations
and also assists in performing operations complying
with financial regulation. In order to do so, the FraTAct
framework uses the notion of the knowledge base.
The knowledge base is developed using an ontology
approach.
The remainder of this paper is organized as follows.

A motivating example is presented in section 2. The
preliminaries are described in section 3. In section 4,
we describe the knowledge base for financial services.
Section 5 presents the FraTAct framework. We discuss
implementation of the proposed solution in section
6. The related works is discussed in the subsequent
section. Finally, section 8 outlines the conclusion and
future work.

2. Motivating Example
This sections sets out the Common Equity Tier 1 Capital
Ratio Calculation Process model. The process model is
developed based on the description provided in [3]. In
order to make the example simple, a limited number of
activities have been incorporated in the process. Fig. 1
shows the process model.
The process starts with performing the ’List Common

Equity Tier 1 Financial Instruments’ activity that

Figure 1. Common Equity Tier 1 Capital Ratio Calculation
Process

produces a list of financial instruments. Then, the list
is verified by performing Verify the List activity. After
executing these activities successfully, the end event
signals the completion of the process.
The ‘Common Equity Tier 1 Capital Ratio Calcu-

lation’ process is driven by regulations particularly,
the Basel Capital Accords. The activities contained in
this process are regulation-intensive. The operations
performed by these activities must comply with the
Basel accords. These accords are ambiguous. Therefore,
understanding the semantics of these accords is a criti-
cal importance for the activities.
Activities contained within ‘Common Equity Tier 1

Capital Ratio Calculation’ are nescient as these activ-
ities lack the support of an approach that enables
performing operations intelligently. The FraTAct frame-
work supports transforming these activities into intel-
ligent activities that carry out operations by realizing
the semantics of the financial regulations derived from
the Basel accords. The framework leads financial service
process execution in compliance with the correspond-
ing regulations and prevents unwanted consequences
for financial institutes.

3. Preliminary
In this section, we provide a brief description of
intelligent activity. In addition, this section explains
ontologies and description graph.

3.1. Intelligent Activity
Intelligent activity is defined in [10] as follows:

Definition(Intelligent Activity): Each regulation-
intensive activity is an intelligent activity if and only
if

(i) it has explicit correlation with the regulations,

EAI
European Alliance
for Innovation

2
ICST Transactions on Scalable Information Systems

03 2013 - 03 2014 | Volume 01 | Issue 2 | e4

FraTAct: A Framework for Activity Transformation

(ii) it relies on regulations which are encoded as axioms
in a decidable description logic [13],

(iii) it cannot produce outcomes that are non-compliant
to regulations,

(iv) Any activity that does not satisfy (i), (ii) and
(iii) conditions will not be considered as intelligent
activity within FSP.

For example, list common equity Tier 1 capital
ratio calculation is a intelligent activity if it is
able to interpret the semantics of the corresponding
regulations (derived from the Basel Accords), complies
with those regulation while executing the activities, and
the activity produces the list that was desired by the
users.

3.2. Ontologies and Description Graph
The Ontology Web Language (OWL2) [4] is used for
modeling ontologies. The SROIQ DL [13] provides
reasoning services for ontologies based on the tableau
algorithm. The basic OWL2 concepts are classes,
object properties, data-type properties, and individuals.
Additionally, an ontology contains class axioms, and
property assertions as well as individual assertions.
Semantic Web Rule Language (SWRL) [14] is used to
model rules in an ontology.
A Description Graph (DG) [18] is a directed labeled

graph that contains a set of vertices, edges and a
labeling function that assigns each node to an atomic
concept, and each vertex to an atomic role. According
to [18], a graph-extended knowledge base is a 4-tuple
K = (T ;P ;G;A) where T is a TBox, P is a program,
G is a GBox, and A is an ABox. The P consists of a
finite number of connected rules. The G contains graphs
roles i.e. roles one can use in a DG [17]. Reasoning with
ontology is, mostly, based on tableau [13] and hyper-
tableau [18] algorithms.

4. Knowledge Base for Financial Services- A
Graph-Extended Approach
As already mentioned, financial service components are
built on a knowledge base (Fig. 2 shows the knowledge
oriented service components). In this section, the core
mechanism of knowledge base for financial services
is described. Financial regulations are basic building
blocks for financial services. Therefore, our aim is
to develop knowledge bases for financial regulations.
In this section, we explain how to encode regulation
corresponding to common equity Tier 1 capital ratio
calculation process (shown in Fig. 1) into a graph-
extended knowledge base [18] and check satisfiability
of the knowledge base using a hyper-tableau algorithm
[17]. Modeling FSPs using graphs is not a new idea
[28]. However, a problem arises when one needs to

apply automated reasoning on the processes which
must satisfy certain regulations. The execution of each
activity in the common equity Tier 1 capital ratio
calculation process relies on regulations derived from
e.g. Basel III accords.
Reasoning with the process (shown in Fig. 2) is

provided indirectly over reasoning with regulations
encoded as a graph-extended knowledge base. We
do not specify regulations in the process itself. The
reasoning with the given process is important to check
whether the activity of financial service processes is
compliant with the Basel regulations upon execution. It
means that the activity has been executed successfully
and is consistent with regulations fromwhere it is taken
[3]. To consume regulations encoded as graph-extended
knowledge base, the reasoner must check satisfiability
(see Fig. 2).

Figure 2. Encoding FSP to graph-extended knowledge base

To encode financial regulations underlying the
activities within an FSP space, we use the graph-
extended knowledge base, as follows:

(i) Entities related to each activity are encoded as
nodes in DG,

(ii) The interconnection between elements is repre-
sented by graph roles,

(iii) DG rules and SWRL implement regulations
related to an activity,

(iv) Restrictions on the graphs implements control
flows between elements.

We encode the regulations into a graph-extended
knowledge base for the following reasons:

(i) OWL2 is not expressive enough to encode
financial regulations as non-tree structures [17],

(ii) Hyper-tableau algorithm is practically efficient
in reasoning with more than one DG. Also it is
possible to encode process regulations into more
than one DG.

Execution of the List of Financial Instruments of Core
Capital and the List of Financial Instruments of Additional
Capital (see Fig. 1) must comply with the following
regulations, taken from [3]:
(R1) If a financial institute has a financial instrument as
common stock and the common stock can be converted
to a currency, then the given currency is a principal
amount for the financial institute.
(R2) If a financial institute has a currency as a principal

EAI
European Alliance
for Innovation

3
ICST Transactions on Scalable Information Systems

03 2013 - 03 2014 | Volume 01 | Issue 2 | e4

R. Haque and N.B. Krdzavac

Figure 3. DGs for Common Equity Tier 1 Capital Ratio
Calculation Process shown on Fig. 1

amount and the currency is represented by a common
stock, then the financial institute has a financial
instrument as given by common stock.
The regulations (R1), (R2) are encoded into the
following first order logic formulas:

(∀x, y, z)(FinancialInstitute(x) ∧
hasFinancialInstrument(x, y) ∧

convertsT o(y, z)⇒ hasP rincipalAmount(x, z)) (1)

(∀x, y, z)(FinancialInstitute(x) ∧
hasP rincipalAmount(x, y) ∧

representedBy(y, z)⇒ hasFinancialInstrument(x, z)) (2)

(∀x, y)(FinancialInstitute(x) ∧
convertsT o(x, y)⇒ representedBy(y, x)) (3)

Formula (1) encodes regulation (R1) while formula
(2) encodes regulation (R2). The formula (3) specifies
the relationship between common stock and currency.
Formulas (1), (2) can be expressed as property chains
that are not allowed in OWL2. Instead, we use
formalism based on DGs. Fig. (3) shows the DG
which corresponds to regulations (R1) and (R2). The
formal definition of the DG shown in Fig. 3 is: G =
(V , E, λ), where V = {1, 2, 3}, E = {(1, 2), (1, 3), (2, 3)}.
Concept names are represented as nodes in the graph
(see Fig. 3) as shown in formulation (4) [18]:

λ ⟨1⟩ = FinancialInstitute;

λ ⟨2⟩ = CommonStock;λ ⟨3⟩ = Currency; (4)

The concept FinancialInstitute is the main concept.
Each node in the graph (see Fig. 3) is related to a concept
name. The graph roles are defined as follows:

λ ⟨1, 2⟩ = hasFinancialInstrument;

λ ⟨1, 3⟩ = hasP rincipalAmount;

λ ⟨2, 3⟩ = convertsT o; (5)

The extended signature of the graph (see Fig. 3) is:

NC = {FinancialInstitute, CommonStock, Currency},
NRt = ∅, (6)

NRg = {hasFinancialInstrument, convertT o,

represnetedBy, hasP rincipalAmount},
NI = {bankOf Irelan, stock1, euro}

NC represents the set of graph concepts,NRg is the set
of graph roles, and NI represents the set of individuals.
The set of Tbox roles is empty and all roles are graph
roles [18]. The formula G(BankOf Ireland, stock1, euro)
represents an instantiation of the graph.

4.1. Reasoning with Financial Regulations
Reasoning with financial regulations involved with
common equity Tier 1 capital ratio calculation process
(see Fig. 1) includes:

• Preprocessing the DG which implements regula-
tions consumed by common equity Tier 1 ade-
quacy calculation process,

• Application of derivation rules to the graph-
extended knowledge base.

The preprocessing step includes the process of encoding
rules for the given DG. It includes rules in program P ,
equality rules and disjointness rules. In our case, we
encode the DG (shown on Fig. 3) into rules according to
specification in [18]. Rules in program P can propagate
constraints within DG. The following rules in program
P corresponds to given DG (shown in Fig. 3):

hasFinancialInstrument(?x, ?y) ∧ conversT o(?y, ?z)→
hasP rincipalAmount(?x, ?z) (7)

hasP rincipalAmount(?x, ?y) ∧ representedBy(?y, ?z)→
hasFinacialInstrument(?x, ?z)

The DG shown on Fig. 3, contains an inverse role i.e.
conversT o is inverse role of representedBy role, so the
inverse role can be formalized using the following DG
rules:

conversT o(?x, ?y)→ representedBy(?y, ?x) (8)

representedBy(?x, ?y)→ conversT o(?y, ?x) (9)

Formula (10) specifies one equality rule, while the
formula (11) specifies one disjointness rule.

G(x1, y1, z1) ∧ G(x1, y2, z2)→ y1 = y2 (10)

G(x1, y1, z1) ∧ G(x2, x1, z2)→ ⊥ (11)

EAI
European Alliance
for Innovation

4
ICST Transactions on Scalable Information Systems

03 2013 - 03 2014 | Volume 01 | Issue 2 | e4

FraTAct: A Framework for Activity Transformation

Finally, the following semantic web rules must be
defined:

hasFinancialInstrument(?x, ?y) ∧
hasFinancialInstrument(?x, ?z)→

SameAs(?y, ?z) (12)

convertsT o(?x, ?y) ∧ convertsT o(?x, ?z)→
SameAs(?y, ?z) (13)

hasP rincipalAmount(?x, ?y) ∧
hasP rincipalAmount(?x, ?z)→

SameAs(?y, ?z) (14)

representedBy(?x, ?y) ∧
representedBy(?x, ?z)→

SameAs(?y, ?z) (15)

Rules of the form (12), (13), (14), and (15) are
important for detecting inconsistency of graph-extend
knowledge base shown in Fig. 3. For example, if
individual ’BankOf Ireland’ occurs in a new DG
instance that does not contain individuals ’stock1’ and
’euro’, then the knowledge base inconsistency will
not be detected. We fix this problem by defining all
the roles, shown on Fig. 3, functional using rules of
the form R(x, y1) ∧ R(x, y2)→ y1 = y2 . After providing
these rules, the HermiT reasoner would be able to detect
inconsistency.
Applying derivation rules, the hyper-tableau algo-

rithm checks the satisfiability of (R,A) where R = [∼
](G) ∪ P , and where A is defined Abox [17]. To prove
satisfiability of given graph-extended knowledge base,
the hyper-tableau algorithm tries to construct a model
of a (R,A) by applying different derivation rules to R,
A. Before applying the rules, it is important to define at
least one Abox A. If ⊥ ∈ A then there is a clash and the
algorithm will detect inconsistency in the knowledge
base.

5. FraTAct - Activity Transformation Framework
FraTAct (Framework for Transforming Activity) sup-
ports the transformation of a nescient activity of a
financial service process into an intelligent activity. This
framework combines two different but complementary
technologies which include ontology based technologies
and service oriented technologies. In this section, an
overview of the framework is presented and the under-
lying technique of the framework is described.
The FraTAct framework is developed relying on

Service Oriented Architecture (SOA) [27]. It adopts
two characteristics of SOA including loose coupling and
ubiquity. The FraTAct framework consists of a process
design interface, a process engine, service component
repository, and management components. FraTAct is a
multi-layer framework depicted in Fig. 4.

Figure 4. Activity Transaction Framework

In the following, the components of FraTAct
framework are briefly described.

(i) Process Design Interface: The design interface
facilitates the users performing design activities.
It offers elements including activities, decision
gateways, etc. for designing financial service
business processes.

(ii) Process Engine: Process engine is a back-end
component which resides at the process layer.
A process after designed is deployed in the
process engine that executes the process. The
process engine executes processes by means of
invoking the components for process activities
(aka services). In other words, the process
engine orchestrates the financial services business
process activities.

(iii) Component Repository: Component repository
resides at the component layer. It contains
knowledge oriented financial service components
that ’actualizes’ the process activities. The term
’actualization’ refers to performing operations.
Precisely, the components perform operations
of corresponding process activities. The process
engine invokes one or more of these financial
service components for performing a process
activity.

Financial service components are the key con-
stituents in a financial service system. These com-
ponents perform operations of a corresponding
process activity by relying on the financial regu-
lation knowledge base. In effect, a process activity
which used to be a simple abstraction that is not
aware of financial regulations, turns into an intel-
ligent one. It is worth noting that the intelligence
of a financial service process activity is its ability

EAI
European Alliance
for Innovation

5
ICST Transactions on Scalable Information Systems

03 2013 - 03 2014 | Volume 01 | Issue 2 | e4

R. Haque and N.B. Krdzavac

to realize the exact semantics of financial reg-
ulations and carry out operations by complying
them.

(iv) Process Manager: Process manager resides at man-
agement layer. It is responsible for performing
management tasks such as substituting activities
contained in business processes for adapting a
change. In addition, it supports modification of
business processes.

(v) Message Broker: It is a message management
component residing at management layer. This
component acts to manage messages exchanged
between the components, components and pro-
cess engine, and also between the components.
The message broker is connected with the pro-
cess manager. Any changes occur in processes
may promote adjusting the messaging sequences,
aggregating messages in message broker.

6. Implementation of FSBA using FraTAct
Framework
Throughout this section, we will describe how we
have implemented an FSBA using FraTAct framework.
According to our understanding, an implementation of
a Financial Service based Application(FSBA) will suffice
in demonstrating how FraTAct assist in transforming
a nescient activity into intelligent activity. Notably, we
have implemented common Equity ‘Tier 1 Capital Ratio
Calculation Process’ shown in Fig. 1. Sections include
6.2, 6.3, 6.4 will describe our implementation. In any
case, we will provide an overview of the technological
aspect of the framework in section 6.1.

6.1. Technological Overview of FraTAct Framework
FraTAct framework shown in Fig. 4 relies on OpenESB
[26] that is a middleware comprises a list of
components. We will not describe all of these
components in this section rather we will briefly
introduce the components that are used in FraTAct
framework.
FraTAct is built by integrating a process design

component. The component provides an interface for
designing financial service business process. It offers
elements used in designing financial service business
processes. The framework integrates a scalable BPEL
[21] service engine for executing financial service
business processes.
Java Enterprise Edition (Java EE)is integrated into

FraTAct. FraTAct Java EE facilitates building ontology
oriented financial service components. Since FraTAct is
built on the service oriented architecture paradigm, the
components are offered as services using Web Service
Description Language (WSDL) [34] which describes the

service components specifically, the operations, and
inbound and outbound messages. FraTAct relies on
XML schemas for specifying inputs for the components
that perform operations based on the given inputs.
FracTAct was deployed into Glassfish container [9]

which is an application server. Furthermore, FraT-
Act utilizes Composite Application Service Assembly
(CASA) to facilitate the users to assemble the finan-
cial service components in an FSBA. FraTAct relies
on Java Business Integration module (JBI) that offers
the binding components used to bind the components,
messages, processes, and container. For exchanging
messages, FraTAct depends on Simple Object Access
Protocol (SOAP) [32].
FraTAct framework utilizes Glassfish administration

module as a process manager (shown in Fig. 4) for
managing the changes while financial service business
processes are running. Themodule offers a user friendly
interface for managing business processes. Moreover,
FraTAct integrates the Hermes Java Messaging Service
(Hermes JMS) [11] that is a message broker used
in publishing and editing messages between service
components that hosted at distributed locations.

6.2. Implementation of Service Component
At the first phase of our implementation, we develop
service components. The development of service
components rely on the mechanism described in section
4. We develop two components bsOntology.java and
OntoConsistency.java that perform the List Common
Equity Tier 1 Financial Instruments and Verify the List
activities (see Fig. 1). These activities are regulation
intensive, should be performed intelligently. Therefore,
the components developed in this paper are ontology
based. We describe the development of our ontology
based service components in this section.
We implement the following financial instruments:

Common shares, Stock surplus, Retained earnings,
Comprehensive incomes, Other disclosed reserves, Sub-
sidiaries common shares. Minority interests financial
instrument is not part of the current implementation.
The Implementation consists of three parts (see Fig. 5):

• Implementation financial regulations as local
ontologies. For each financial instrument we have
one local ontology. For example, common share
local ontology.

• Implementation financial regulations as descrip-
tion graphs.

• Integration ontologies and description graphs.

We use OWL2 language to implement local ontolo-
gies. To check consistency of the ontologies we use
Pellet reasoner [20]. When OWL2 is not expressive
enough for implementing financial regulations, then we

EAI
European Alliance
for Innovation

6
ICST Transactions on Scalable Information Systems

03 2013 - 03 2014 | Volume 01 | Issue 2 | e4

FraTAct: A Framework for Activity Transformation

Figure 5. Federation of ontologies in graphs extended knowledge
base

use description graphs. To do that, we use the hermit-
reasoner API [31] as well as OWL API [25].
To create graph concepts and roles we use

AtomicConcept and AtomicRole classes respectively
imported from Hermit API [31]. For the creation of
graph roles we allocate memory using the AtomicRole
class. To check satisfiability of the graph-extended
knowledge base, the Hermit reasoner takes ontology
and DG as input. In order to do that, we use the
Reasoner class imported from the Hermit API. For
more details, how to implement some financial
regulations using description graphs, please see [23].
Imported ontology can not contain built-in predicates
because HermiT reasoner does not support reasoning
with built-in predicates. For example, the HermiT
reasoner is not useful in case of testing consistency of
ontology during calculation equity capital in a balance
sheet. For such cases, we use Pellet reasoner.
To implement regulations for all financial instru-

ments, integration of ontologies and description graphs
is employed. We use a hybrid approach (see Fig. 5)
because of the following reasons:

• Local ontologies and graphs are easy to modify.
The reason is that some regulations can be
changed in the future and it requires modification
of local ontologies.

• Integration module connects local ontologies and
graphs. It will allow different type of reasoners to
check consistency of different ontologies extended
with description graphs or just checks the
consistency of ontologies without extensions with
description graphs.

• Local ontologies and description graphs can
be interconnected independently of integration
module. For example, one local ontology can be
imported into another local ontology.

6.3. Implementation of Financial Service Process
The previous section describes the implementation of
service components bsOntology.java and OntoCon-

sistency.java. We wrapped these components using
WSDL [34] as services bsOntologyService.wsdl and
bsOntoConsistencyService.wsdl and published on
Glassfish container. In addition, we developed a client
side web service bsOntologyCChkWSDL.wsdl that pro-
vides interface for accepting the requests from the
client.
Next, we implemented the Common Equity Tier 1

Capital Ratio process shown in Fig 1. In order to
implement the process, we used BPEL (version 2.0)
- an eXtensible Markup Language (XML) based de
facto language for developing business processes. First,
we defined a Process Scope that contains the process
activities. The scope contains StartOntologyProcess

activity that receives requests from client service bsOn-
tologyCChkWSDL.wsdl. Fig. 6 shows the connection
between StartOntologyProcess activity and bsOn-

tologyCChkWSDL.wsdl service. The next activity con-
tained in the scope AssignInput copies the input to
the subsequent activity ProvideOntology within the
scope. It is a regulation intensive activity and upon
triggering this activity the process engine invokes the
ontology oriented service component GetOntologySer-
vice.WSDL that actualizes List Common Equity Tier

1 Financial Instruments (see Fig. 1). As this compo-
nent is an ontology based component, it performs activ-
ity by realizing the semantics of financial regulations
and in effect, the activity List Common Equity Tier 1

Financial Instruments turns into an intelligent activ-
ity.

Figure 6. Implementation of Common Equity Tier 1 Capital Ratio
Process

Then, we defined AssignConsistencyInput activity
within the scope that copy the output produced by
ProvideOntology activity into GetConsistencyChkRe-

sult which is another regulation intensive activity
invokes the ChkConsistency.WSDL component actual-
izes the Verify the List activity contained in the

EAI
European Alliance
for Innovation

7
ICST Transactions on Scalable Information Systems

03 2013 - 03 2014 | Volume 01 | Issue 2 | e4

R. Haque and N.B. Krdzavac

Figure 7. Graphical View of of Financial Service Application

process in Fig. 1. The output is copied by AssignOutput
to ReturnOutput that delivers the output to client ser-
vice bsOntologyCChkWSDL.wsdl. Notably, the start and
end events are outside of this scope. Fig. 6 shows the
bsOntologyProcess.
A BPEL script bsOntologyProcess.bpel is generated

automatically which is then deployed on the processes
engine. The BPEL script is added in Appendix.

6.4. Implementation of Common Equity Tier 1 FSBA
We describe how the financial service based application
was developed. The application was developed by
binding service components with ‘Common Equity
Tier 1 Capital Ratio Calculation’ process that we
implemented(described in the previous section). The
‘Composite Application Service Assembly (CASA)’
facilitates developing the common equity tier 1 capital
ratio calculation service based application. We will
describe howwe assembled the service components into
an application.
We generated the Jar files from process bsOntol-

ogyProcess.bpel and service components bsOntol-

ogy.java and OntoConsistency.java. The jar files
bsOntologyProcess.jar, bsOntology.jar, and Onto-

Consistency.jar are then imported on Java Business
Integration module that binds the service components
using SOAP protocol. The application was then built
and deployed in the Glassfish application server. Fig. 7
depicts the development of common equity tier 1 FSBA.
The financial service based application of common

equity calculation process is now ready to automate the
common equity tier 1 capital ratio calculation process.
The application performs the regulation intensive
process activities intelligently.
Scalability and performance of the approach on a

large scale of DGs depends on the HermiT reasoner

performances discussed in [19]. The reasoner shows
significant advantages in reasoning with a large scale
ontologies [19] comparing to other standard reasoners
such as the Pellet [20]. The open issue is how to query
financial ontologies extended with description graphs
by using SPARQL.

7. Related Works
In this section, we discuss the related solutions
revolving around the financial regulation knowledge
base, reasoning, and process. To the best of our
knowledge, financial regulation has been scoped in
a very small amount of research. Thus, the actual
need (e.g., machine readable definition of Basel-based
regulations) of the financial service industry has been
addressed very briefly in current solutions. Some very
recent research including [29], [30], and [1] focus on
investigating the issues and challenges, and defining a
roadmap for governance, risk and compliance within
business processes. Nonetheless, no concrete solution
has been discussed in these works. Additionally, a
language to capture the compliance requirements of
business processes is proposed in [33] and [6]. The
language is promising, but offers a very limited number
of constructs that do not facilitate defining financial
regulations in FSB. Solutions including [7] and [16] are
offered to perform reasoning on business processes to
verify the correctness of business processes. However,
these solutions do not address the problem of this
research.

8. Conclusion
In this paper, we have shown how to transform a
nescient activity within an FSP into an intelligent
activity. In order to support the transformation, we have

EAI
European Alliance
for Innovation

8
ICST Transactions on Scalable Information Systems

03 2013 - 03 2014 | Volume 01 | Issue 2 | e4

FraTAct: A Framework for Activity Transformation

shown how to encode financial regulations into a graph-
extended knowledge base that assists process activities
to perform operations intelligently. Additionally, we
have shown how to perform reasoning with financial
regulations. We have also described the current state of
implementation.
We plan to extend the solution in order to enable

a system to decide actions for the conditions that
are evolved at runtime. In the future, we plan to
cover more complex financial regulations. In addition,
our intention is to cover financial regulations from
various bodies. We also plan to enable these systems to
support fuzzy reasoning. Keeping completeness for an
incomplete ontology reasoner is a challenge [8] which
we have experienced in this research. We will try to
tackle this challenge in its future extension.
Currently, FraTAct is a specific framework which

serves only financial domain but we plan to add more
features that can cover other domains such as business
to business(B2B). In B2B, businesses are governed by
service-level agreement (SLA). The business processes
activities must be accomplished by satisfying SLAs.
We plan to develop knowledge-oriented component
which provides explicit semantics of SLA clauses for
corresponding process activities. We are considering
to integrate technologies such as Semantic Markup for
Web Services(OWL-S) [24].

Acknowledgement. This research is done within the scope
of the Governance, Risk, and Compliance Technology Centre
project funded by Enterprise Ireland. The authors thank
to Patrick O′Sullivan for his contribution to improve the
readability of the paper. The authors thank to the GRCTC
Team for supplying inputs related to financial instruments
and the Basel Accords. The authors is thankful to Boris Motik
from University of Oxford, UK, for his advices in practical
applications of DGs in modeling financial regulations.

References
[1] Abdullah S.A., SadiqW.S., andMarta I. (2010) Emerging

Challenges in Information Systems Research for Regula-
tory Compliance Management. International Conference on
Advance Information System Engineering(CAiSE). pp. 251-
265.

[2] Apache Jena, http://jena.apache.org/

documentation/ontology/index.html

[3] Basel III (2010) A Global Regulatory Framework. Bank for
International Settlement.

[4] Cuenca Grau B., Horrocks I., Motik U., Parsia P., Patel-
Schneider P.F., and Sattler U. (2008) OWL 2: The next
step for OWL. Journal of Web Semantics. Vol 6(4). pp. 309-
322.

[5] IFRSs and XBRL, http://www.ifrs.org/XBRL/XBRL.

htm,Lastvisited:May, 2012.
[6] Elgammal E., Turetken O., and Heuvel W.J.V.D. (2010)

Using Patterns for the Analysis and Resolution of
Compliance Violations. emphInternational Journal of
Cooperative Information System. vol. 21(1), pp. 31-54.

[7] Francescomarino C. D., Ghidini C., Rospocher M., Ser-
afini L., and Tonella P. (2008) Reasoning on Semantically
Annotated Processes. International Conference on Service
Oriented Computing. pp.132-146.

[8] Grau B.C.,Motik B., Stoilos G.,Horrocks I. (2012) Com-
pleteness Guarantees for Incomplete Ontology Reason-
ers: Theory and Practice. Journal of Artificial Intelligence
Research. vol. 43. pp. 419-476.

[9] Java Community Process (2012). Glassfish Container.
Available on: http://glassfish.java.net/

[10] Haque R., Krdzavac B.N., Butler T., (2012) Transform-
ing Nescient Activity into Intelligent Activity. In Proc.
of the Data and Knowledge Engineering (ICDKE 2012).
isbn:978-3-642-34678-1.

[11] Hermes. Hermes Java Messaging
Services(Hermes JMS). Available on:
http://www.hermesjms.com/confluence/display/HJMS/Home.

[12] Healy M.P., and Palepu G.K. (2003) The Fall of Enron.
Journal of Economic Perspectives. vol. 17(2). pp. 3-26.
Spring Publication.

[13] Horrocks I., Kutz O. , and Sattler U.(2006) The Even
More Irresistible SROIQ. In Proc. of the 10th Int. Conf. on
Principles of Knowledge Representation and Reasoning (KR
2006). pp. 57-67. (AAAI Press).

[14] Horrocks I., Patel-Schneider P.F., Boley H., Tabet S.,
Grosof B., and Dean M.SWRL: A Semantic Web Rule
Language Combining OWL and RuleML. W3C Member
Submission.

[15] Leymann F. and Roller D. (1999) Production Workflow:
Concepts and Techniques. Prentice Hall; Edition 1, ISBN-
10: 0130217530.

[16] MissikoffM., Proietti M.,and Smith F. (2010) Reasoning
on Business Processes and Ontologies in a Logic
Programming Environment. In the Proceedings of 3rd
Interop-Vlab.It Workshop, CEUR-WS. pp. 653.

[17] Motik B., Shearer R., and Horrocks I.(2009) Hyper-
tableau Reasoning for Description Logics. Journal of Arti-
ficial Intelligence Research. pp.165–228.

[18] Motik B., Cuenca Grau B., Horrocks I., and Sattler U.

(2008) Representing Structured Objects using Description
Graphs. In Gerhard B. and Jerome L., editors. In Proc.
of the 11th Int. Joint Conf. on Principles of Knowledge
Representation and Reasoning (KR). pp. 296–306. AAAI
Press, Sydney, NSW, Australia.

[19] Shearer R., Motik B.,and Horrocks I.. (2008) HermiT:
A Highly-Efficient OWL Reasoner. In Ruttenberg A.,
Sattler U., and Dolbear C., editors. In Proc. of the 5th
Int. Workshop on OWL: Experiences and Directions (OWLED
2008 EU). Karlsruhe, Germany.

[20] Pellet reasoner. http://clarkparsia.com/pellet/
[21] OASIS (2007). Business Process Execution Language.

Available on: http://docs.oasis-open.org/wsbpel/2.
0/wsbpel-v2.0.pdf

[22] OMG (2011). Business Process Modeling Notation.
Available on:http://www.omg.org/spec/BPMN/2.0/

[23] N. Krdzavac, R. Haque, T. Butler, Web-based Reasoning
With Balance Sheets, Workshop ’AI on the Web’ at
the 35th German Conference on Artificial Intelligence
(KI2012, AIW 2012), 09/2012, Saarbrucken, Germany,
(2012)

EAI
European Alliance
for Innovation

9
ICST Transactions on Scalable Information Systems

03 2013 - 03 2014 | Volume 01 | Issue 2 | e4

R. Haque and N.B. Krdzavac

[24] OWL-S. Available: http://www.w3.org/Submission/

OWL-S/. Last visited May, 2012.
[25] OWL API. Available: http://owlapi.sourceforge.

net/. Last visited May, 2012.
[26] OpenESB Community (2012). Open Enterprise Service

Bus (OpenESB). Available on:http://www.open-esb.
net/

[27] Papazoglou P.M.,Heuvel v.d.W., (2007) Service oriented
architectures: approaches, technologies and research
issues. VLDB Journal. vol. 16(3). pp. 389-415.

[28] Polyvyanyy A., andWeskeM. (2008) Hypergraph-Based
Modeling of Ad-Hoc Business Processes. Business Process
Management Workshops. pp. 278-289.

[29] Sadiq W.S., Muehlen Z.M., and Indulska M. (2012)
Governance, risk and compliance: Applications in infor-
mation systems. Information Systems Frontiers. vol.14(2).
pp. 123-124.

[30] Sadiq W.S. (2011) A Roadmap for Research in Business
Process Compliance. In proceedings of BIS (Workshops).
pp. 1-4

[31] Shearer R., Motik B., and Horrocks I.(2008) HermiT:
A Highly-Efficient OWL Reasoner. In Alan Ruttenberg,
Ulrile Sattler, and Cathy Dolbear, editors, Proc. of the 5th
Int. Workshop on OWL: Experiences and Directions (OWLED
2008 EU). pp. 26 - 27. http://hermit-reasoner.com/

[32] SOAP (2007). Simple Object Access Protocol(SOAP).
Available on:http://www.w3.org/TR/soap/

[33] Turetken O., Elgammal A., Heuvel W.J.V.D., and
Papazoglou P.M. Capturing Compliance Requirements:
A Pattern-Based Approach. IEEE Software. vol.29(3). pp.
28- 36.

[34] WSDL (2001) Web Service Description Language.
Available on: http://www.w3.org/TR/wsdl

9. Appendices
The BPEL script bsOntologyProcess.bpel is presented in the
following.
BPEL Code:

<?xml version="1.0" encoding="UTF-8"?>

<process

name="bsOntologyCChkProcess"

targetNamespace="http://enterprise.netbeans.org/bpel/

bsOntologyConsChkProcess/bsOntologyCChkProcess"

xmlns:tns="http://enterprise.netbeans.org/bpel/

bsOntologyConsChkProcess/bsOntologyCChkProcess"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/

executable"

xmlns:sxt="http://www.sun.com/wsbpel/2.0/process/

executable/SUNExtension/Trace"

xmlns:sxed="http://www.sun.com/wsbpel/2.0/process/

executable/SUNExtension/Editor"

xmlns:sxeh="http://www.sun.com/wsbpel/2.0/process/

executable/SUNExtension/ErrorHandling" xmlns:sxed2=

"http://www.sun.com/wsbpel/2.0/process/executable/

SUNExtension/Editor2"

xmlns:ns0="http://xml.netbeans.org/schema/

bsOntChkInputSchema">

<import namespace="http://j2ee.netbeans.org/wsdl/

bsOntologyConsChkProcess/bsOntologyCChkWSDL"

location="bsOntologyCChkWSDL.wsdl" importType=

"http://schemas.xmlsoap.org/wsdl/"/>

<import namespace="http://enterprise.netbeans.org/

bpel/OnToConsistencyServiceWrapper"

location="OnToConsistencyServiceWrapper.wsdl"

importType="http://schemas.xmlsoap.org/wsdl/"/>

<import namespace="http://OnToConsistency.nenad.com/"

location="OnToConsistencyService.wsdl"

importType="http://schemas.xmlsoap.org/wsdl/"/>

<partnerLinks>

<partnerLink name="ProvideOntChkResultPL"

xmlns:tns="http://enterprise.netbeans.org/bpel/

OnToConsistencyServiceWrapper" partnerLinkType=

"tns:OnToConsistencyLinkType" partnerRole=

"OnToConsistencyRole"/>

<partnerLink name="OntologyConsChkPL"

xmlns:tns="http://j2ee.netbeans.org/wsdl/

bsOntologyConsChkProcess/bsOntologyCChkWSDL"

partnerLinkType="tns:bsOntologyCChkWSDL"

myRole="bsOntologyCChkWSDLPortTypeRole"/>

</partnerLinks>

<variables>

<variable name="CheckConsistencyOut" xmlns:tns=

"http://OnToConsistency.nenad.com/" messageType=

"tns:CheckConsistencyResponse"/>

<variable name="CheckConsistencyIn"

xmlns:tns="http://OnToConsistency.nenad.com/"

messageType="tns:CheckConsistency"/>

<variable name="BsOntologyCChkWSDLOperationOut"

xmlns:tns="http://j2ee.netbeans.org/wsdl/

bsOntologyConsChkProcess/

bsOntologyCChkWSDL" messageType=

"tns:bsOntologyCChkWSDLOperationResponse"/>

<variable name="BsOntologyCChkWSDLOperationIn"

xmlns:tns="http://j2ee.netbeans.org/wsdl/

bsOntologyConsChkProcess/bsOntologyCChkWSDL"

messageType="tns:bsOntologyCChkWSDLOperationRequest"/>

</variables>

<sequence>

<receive name="StartOntoChkProcess"

createInstance="yes"

partnerLink="OntologyConsChkPL"

operation="bsOntologyCChkWSDLOperation"

xmlns:tns="http://j2ee.netbeans.org/wsdl/

bsOntologyConsChkProcess/

bsOntologyCChkWSDL"

portType="tns:bsOntologyCChkWSDLPortType"

variable="BsOntologyCChkWSDLOperationIn"/>

<assign name="AssignInput">

<copy>

<from>$BsOntologyCChkWSDLOperationIn.InputPart/

ns0:getConsChkResult</from>

<to>$CheckConsistencyIn.parameters/

getConsChkResult</to>

</copy>

</assign>

<invoke name="ProcessCChk" partnerLink=

"ProvideOntChkResultPL"

operation="CheckConsistency" xmlns:tns=

EAI
European Alliance
for Innovation

10
ICST Transactions on Scalable Information Systems

03 2013 - 03 2014 | Volume 01 | Issue 2 | e4

FraTAct: A Framework for Activity Transformation

"http://OnToConsistency.nenad.com/" portType=

"tns:OnToConsistency"

inputVariable="CheckConsistencyIn"

outputVariable="CheckConsistencyOut"/>

<assign name="AssignOutput">

<copy>

<from>$CheckConsistencyOut.parameters/

return</from>

<to>$BsOntologyCChkWSDLOperationOut.OutputPart

/ns0:ConsChkResult</to>

</copy>

</assign>

<reply name="ReturnOntChkOutcome"

partnerLink="OntologyConsChkPL"

operation="bsOntologyCChkWSDLOperation"

xmlns:tns="http://j2ee.netbeans.org/wsdl/

bsOntologyConsChkProcess/

bsOntologyCChkWSDL"

portType="tns:bsOntologyCChkWSDLPortType"

variable="BsOntologyCChkWSDLOperationOut"/>

</sequence>

</process>

EAI
European Alliance
for Innovation

11
ICST Transactions on Scalable Information Systems

03 2013 - 03 2014 | Volume 01 | Issue 2 | e4

