
Salus: Kernel Support for Secure Process
Compartments
Raoul Strackx∗, Pieter Agten∗, Niels Avonds,†, Frank Piessens∗

iMinds-DistriNet - KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium

Abstract

Consumer devices are increasingly being used to perform security and privacy critical tasks. The software
used to perform these tasks is often vulnerable to attacks, due to bugs in the application itself or in included
software libraries. Recent work proposes the isolation of security-sensitive parts of applications into protected
modules, each of which can be accessed only through a predefined public interface. But most parts of
an application can be considered security-sensitive at some level, and an attacker who is able to gain in-
application level access may be able to abuse services from protected modules.

We propose Salus, a Linux kernel modification that provides a novel approach for partitioning processes into
isolated compartments sharing the same address space. Salus significantly reduces the impact of insecure
interfaces and vulnerable compartments by enabling compartments (1) to restrict the system calls they are
allowed to perform, (2) to authenticate their callers and callees and (3) to enforce that they can only be
accessed via unforgeable references. We describe the design of Salus, report on a prototype implementation
and evaluate it in terms of security and performance. We show that Salus provides a significant security
improvement with a low performance overhead, without relying on any non-standard hardware support.

Keywords: Privilege separation, principle of least privilege, modularization

1. Introduction
Both desktop and mobile devices are increasingly being
used to perform security and privacy critical tasks,
such as online banking, online tax declarations and
purchasing goods from online stores. The software to
perform these tasks either runs inside a web browser,
or is written as a standalone application. In both cases,
the software is often vulnerable to attack, either due to
bugs in the application itself or due to bugs in included
software libraries or in the runtime environment used
to execute the application (e.g. the browser).

Because of their widespread use and potentially high-
impact nature, such applications form an interesting
target for cybercriminals. Past research has focused
on defending against specific attack vectors such as
buffer overflows [1–4], format string vulnerabilities [5]
and non-control-data attacks [6]. Even though many
of these defense mechanisms are applied in practice,
successful attacks against high-value applications are
still common.

To provide stronger security guarantees, recent
research efforts have shifted from trying to defend

∗firstname.lastname@cs.kuleuven.be
†niels.avonds@gmail.com

entire applications against every possible attack
to providing strong isolation of sensitive parts of
an application with a minimal trusted computing
base (TCB). Cryptographic keys of an application,
for example, can be isolated in a protected module
that has complete control over its own secrets; the
module can only be accessed via its public interface.
Accessing the cryptographic keys directly at assembly
level is prevented by the security architecture. Thus, an
attacker that has successfully exploited a vulnerability
in the non-security sensitive part of the application still
cannot access the cryptographic keys.

A large number of security architectures providing
such protection mechanism have been proposed in
this field, including software implementations using
hardware virtual machine support [7, 8], trusted
computing primitives [9], implementations based on
system management mode [10] and even completely
hardware-based solutions [11–13]. Recent research
papers by Intel indicate that hardware support for these
security architectures will also become available on
mainstream x86 platforms in the near future [14–16].

In practice, isolating security-sensitive parts of an
application is difficult since most program logic can be
considered security-sensitive at some level [17]. A too

1

Research Article
EAI Endorsed Transactions
on Security and Safety

EAI Endorsed Transactions on

01 2015 | Volume 2 | Issue 3 | e1

Received on 10 February 2014; accepted on 29 October 2014, published on 30 January 2014
Copyright © 2014 Raoul Strackx et al., licensed to ICST. This is an open access article distributed under the terms of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/sesa.2.3.e1

EAI for Innovation
European Alliance Security and Safety

mailto:<{firstname}.{lastname}@cs.kuleuven.be>
mailto:<niels.avonds@gmail.com>

R. Strackx et al

coarse-grained approach will result in bloated modules
that may contain vulnerabilities and that are too big to
be formally verified [18]. Minimum-sized modules on
the other hand, can provide strong and easily verifiable
guarantees, but may need to expose insecure interfaces
to interact with other modules. This is a common
problem of module-isolating security platforms, both
in software as in hardware. Application developers are
trapped in a catch-22 with possibly severe security
consequences. In the recent DigiNotar attack [19], for
example, the root CA’s private cryptographic key was
securely stored in a hardware security module (HSM),
but its insecure interface enabled attackers to sign
arbitrary certificates.

In order to improve upon these shortcomings, we ac-
knowledge that almost every part of an application per-
forms security-sensitive operations. To reduce chances
of a successful attack, we propose to partition the entire
application into compartments and implement a non-
hierarchical access control mechanism between com-
partments. Compartments not only provide provable
secure isolation of stored private data (as modules in
related work do), but are also able to confine software
vulnerabilities to the compartments they occur in by
(1) restricting the types of system calls that they are
allowed to issue, (2) enabling authentication of calling
and called compartments and (3) enabling compart-
ments to only service requests made through unforge-
able references, reducing the impact of insecure inter-
faces. By separating likely attack vectors from attack
targets and placing them into different compartments,
an attacker would need to exploit vulnerabilities in
multiple compartments to reach her goal.

Each compartment resides in its own chunk of
memory, consisting of a public section containing
the code of the compartment and a private section
storing sensitive data (e.g. cryptographic keys or
passwords). Only when executing the public section
of a compartment can the private section of that
compartment be accessed. To force other compartments
to use a compartment’s public interface, execution can
only enter the public section via well-defined code
entry points and, if required by the compartment,
unforgeable references. As an additional protection
measure and to support the principle of least
privilege [20], compartments have the ability to restrict
the types of system calls they are allowed to perform.
Once a compartement drops a system call privilege, it
cannot be re-acquired. This further reduces the impact
of compromised compartments. The compartments of
a single process all run in the same address space,
providing a lightweight programming model that
enables legacy applications to be ported easily and
incrementally.

Consider, as an example, an X.509 certificate signing
application consisting of a parser, a validator, a signer

parser validator

signerlogger
parser validator signer

logger

CA service

FS

Figure 1. Salus’ compartmentalization enables strong isolation
of security-sensitive data and contains possibly vulnerable code.
Multiple vulnerable compartments need to be exploited to attack
the system successfully.

and a logging component (Figure 1). When run as a
single monolithic application, a vulnerability in any
one of these components can lead to the compromise
of the entire application. When placing each of these
components in a separate compartment under Salus,
components can only call each other through their
well-defined interfaces using unforgeable references
and each component can authenticate both its callers
and its callees. This restricts the flow of data and
control between compartments to predefined patterns
and raises the bar for a successful attack significantly.
Consider as an example an attacker who exploited
a vulnerability in the parser. In order for her to
sign arbitrary certificates, she would either need to
provide specially crafted credentials for the submitted
certificate that would not cause the “Validator” to
raise flags, or she would need to gain direct access
to the “Signer” compartment by exploiting another
vulnerability in the “CA Service” compartment to leak
the unforgeable reference.

Furthermore, by combining unforgeable references
and restricting the system calls that can be issued by
a compartment, we can provide fine-grained access
control to the kernel. Consider as an example the parser
and assume that it reads its signing requests directly
from the file system. At development time, there are
two options. Option 1 is to grant the compartment
access to the open/close and read/write system calls.
In that case an attacker who exploited a vulnerability
in the parser can inspect the entire file system
with the application’s privileges. The second option
provides stronger security guarantees by revoking the
parser compartment all system call privileges and only
providing it with an unforgeable reference to a file
system compartment (FS in Figure 1). This newly added
compartment tightly restrict access to a single folder or
file type and only provides the parser access to the files
it approves. Having almost unrestricted access to the
file system itself, a vulnerability in the FS compartment
would enable an attacker to launch similar attacks as
in option 1. However, given that this compartment is
likely to be several orders of magnitude smaller than
the parser compartment, the probability that such an

2 EAI Endorsed Transactions on

 01 2015 | Volume 2 | Issue 3 | e1
EAI for Innovation

European Alliance Security and Safety

Salus: Kernel Support for Secure Process Compartments

exploitable vulnerability can be found is limited. Such
constructs are a well-known advantage of capability
systems [21–23].

Concretely, we make the following contributions in
this paper:

• We present a novel approach for partitioning
processes into compartments with support for
strong isolation of sensitive data and containment
of vulnerabilities. To the best of our knowledge,
Salus is the first solution that simultaneously
(1) reduces the impact of insecure compartment
interfaces, (2) enables compartments to restrict
the types of system calls they are allowed to
perform and (3) executes compartments in the
same address space allowing legacy applications
to be ported easily without having to marshall in-
and output messages.

• We report on a prototype implementation of Salus
in the Linux kernel.

• We evaluate the security of our approach and the
performance of our prototype.

This paper is an extended version of a conference
paper published at SecureComm 2013 [24]. This journal
version gives a substantially extended description of
the Salus system, and in addition adds support for
unforgeable references to the compartment model. The
remainder of this paper is structured as follows: in
Section 2 we define our attacker model and describe
our desired security properties. In Section 3 we provide
a high-level overview of Salus, before presenting our
prototype implementation in Section 4. Finally we
evaluate our approach in Section 5, discuss related work
in Section 6 and conclude in Section 7.

2. Attacker Model & Security Properties
We consider an attacker able to inject and execute
malicious shellcode in vulnerable compartments, for
example, by exploiting a buffer overflow vulnerability.
Our system must defend against such attacks in the
following way:

• The exploitation of a compartment must not
affect the security of compartments other than
those that explicitly trust the compromised
compartment.

• Once a compartment is exploited, an attacker
is only able to call other compartments via
their proper interfaces iff it received a reference
to those compartments. Simply guessing the
compartment’s virtual address is not sufficient.

• An exploited compartment may still interact
with other compartments and pass compartment

references. Called compartments however, will
check the types of received arguments and
will refuse to call other compartments with an
incorrect type.

• Attackers are explicitly allowed to create new
compartments. There is thus no guarantee
that compartments requesting protection can be
trusted. Hence, Salus must isolate compartments
from one stakeholder from those of another,
possibly malicious, stakeholder.

• An attacker should not be able to execute system
calls that have been revoked.

Kernel-level and physical attacks are considered
out of scope. Regarding the cryptographic primitives
used, we assume the standard Dolev-Yao model [25]:
An attacker can observe, intercept and adapt any
message. Moreover, an attacker can create messages, for
example by duplicating observed data. However, the
cryptographic primitives used cannot be broken.

3. Overview of the Approach
This section presents a high-level overview of Salus.
Section 3.1 describes the memory access control mech-
anisms on which Salus is based. Section 3.2 presents
the services Salus provides to protected applications
and section 3.3 shows how these services are used in
a typical life cycle of a compartmentalized application.
Authenticated communication between compartments
and unforgeable references to compartments are dis-
cussed in sections 3.4 and 3.5 respectively. Finally we
discuss how new and legacy applications can be com-
partimentalized in section 3.6.

3.1. Compartments of Least Privilege
Structure of a Compartment. The basic layout of a
compartment, shown in Figure 2, is a virtual memory
region divided into two sections: a public section
and a private section. The public section contains
the compartment’s code and any data that should be
read accessible by other compartments of the same
application. This section can never be modified after
initialization, which enables other compartments to
authenticate the compartment based on a cryptographic
hash of the public section (see Section 3.4). The start of
the functions that make up the compartment’s public
interface are marked as entry points. Execution of
the compartment can only be entered through these
memory locations (see Table 1).

The private section contains the compartment’s
private data, which consists of application-specific
security-sensitive data (e.g. cryptographic keys) as
well as data relevant to the correct execution of the
compartment, such as the runtime call stack. The data

3 EAI Endorsed Transactions on

 01 2015 | Volume 2 | Issue 3 | e1
EAI for Innovation

European Alliance Security and Safety

R. Strackx et al

from\to Entry pnt. Public section Private section Unprot. mem.
Entry pnt. --- --x --- ---

Public section r-x r-x rw- rwx

Private section --- --- --- ---

Unprot. mem/
r-x r-- --- rwx

other compartment
Table 1. The memory access control model enforces, for example, that a compartment’s private section (4th column) can only be
read-write accessed from the public section of the same compartment (3rd row)

Private

sign_cert(Cert *)

Key *m_key

set_key(Key *)

Public

Figure 2. Salus’ memory access control model enables the
creation of compartments that provide strong isolation guarantees
to sensitive data. Secure communication primitives reduce the
impact of an insecure interface.

in the private section is read and write accessible1 from
within the compartment, but completely inaccessible
for code executing outside of the compartment. Note
that since each compartment has its own private call
stack, intercompartmental function call arguments and
return addresses must be passed via CPU registers (as
opposed to passing them using the runtime stack).

Applications can still have a memory region that is
not part of any compartment. This region is termed
unprotected memory and is read/write accessible from
any compartment. All compartments of the same ap-
plication run in the same address space, which facili-
tates the compartmentalization of legacy applications.
Nonetheless, fine-grained compartmentalization of a
large code base can still require significant developer
effort. Therefore, Salus enables applications to be com-
partmentalized incrementally by storing code and/or
data in unprotected memory. While unprotected mem-
ory does not provide any of the security guarantees of

1By preventing code execution in the private section, the chances
that an attacker is able to successfully exploit a vulnerability in
a compartment, is reduced significantly. We acknowledge that this
restriction may hinder applications that rely on generated code (e.g.,
JITed applications). Support for such applications could be easily
added; at creation-time the creator should specify whether the new
compartment’s private section should be executable. As we believe
this is a special case, we will not consider it for the remainder of the
paper.

compartments, it does provide an incremental upgrade
path for legacy applications.

As an example of a compartment, consider a single
compartment providing a certificate signing service.
The compartment provides two functions as part of
its public interface (see Figure 2). The first function,
set_key, allows setting the cryptographic key used
to sign certificates. This key is stored as the m_key

variable in the private section. The second function,
sign_cert, handles the actual signing requests. Salus’
memory access control model ensures that only these
two functions are executable; any attempt to jump
to another memory location in the compartment will
fail. Similarly, any attempt to directly read or write
the cryptographic key in the private section from
unprotected code or from another compartment will
be prevented. Only after calling a valid entry point
will read and write access to the private section be
enabled, making the cryptographic key only accessible
while the compartment is being executed. When the
function is terminated, execution returns to the caller
and read/write access to the compartment’s private
section will again be disabled.

Special care is required when execution returns to
a compartment after a call to another compartment.
Execution must resume at the return location, which
is the instruction right after the call instruction in
the caller compartment. This location however does
not typically correspond to an entry point and hence
would cause a memory access violation according to
Salus’ memory access control model (see Table 1).
Compartments can implement a return entry point to
avoid this access violation. Right before calling another
compartment, the return location is placed on the top
of the calling compartment’s private stack while the
location of the return entry point is passed to the
callee in a register. When the intercompartmental call
has finished, execution flow jumps to the return entry
point where the return location is retrieved from the
compartment’s stack and jumped to. Note that a return
entry point is a software implementation and follows
the same access rights as any other entry point.

4 EAI Endorsed Transactions on

 01 2015 | Volume 2 | Issue 3 | e1
EAI for Innovation

European Alliance Security and Safety

Salus: Kernel Support for Secure Process Compartments

Restriction of Privileges. Salus provides two important
primitives to limit the impact of a compromised com-
partment. The first primitive is caller and callee au-
thentication. By authenticating callers and callees, a
compartment can limit its interaction to trusted com-
partments only. Although this does not protect against
trusted compartments that have been compromised, it
does significantly limit the capabilities of an attacker
after a successful exploit. For instance, the “signer”
compartment of the CA signing service displayed in
Figure 1, may only accept calls from the “CA service”
compartment. As such, an attacker who successfully
exploited a vulnerability in the parser may attempt to
call the signing compartment, but the latter will refuse
to service the attacker’s service request.

The second primitive allows compartments to disable
specific system calls for any code executed from within
their public section. Once a system call is disabled,
it cannot be re-enabled. By carefully partitioning an
application into compartments, each of which should
disable any system call it doesn’t need, the impact of the
exploitation of a vulnerable compartment is minimized.
Note that much more fine-grained solutions exist
than restricting complete system calls [26]. However,
we focus on providing strong compartmentalization
primitives that can be used as a building blocks for
finer-grained privilege restriction mechanisms.

3.2. Provided Services
To enable compartmentalization of applications, Salus
provides runtime support of the following services:

Create After code is loaded into memory, this service
can be used to create a new compartment. Given
a memory location and size for the compartment
to create, Salus will enable memory protection
for this region and will return a system-wide
unique ID for the new compartment. Note that
our attacker model explicitly allows the creation
of new compartments by an attacker.

Destroy A compartment can only be destroyed by
the compartment itself. After destruction, the
memory access protection is disabled. Hence, a
compartment should overwrite any private data
before destruction.

Request compartment ID and layout To support se-
cure communication, Salus provides a service to
request the ID and layout (i.e. the size and loca-
tions of the public and private sections and the
available entry points) of a compartment covering
a given memory location. If there is no compart-
ment at the specified location, the service returns
an error code. This service is used as a primitive
in compartment authentication.

Request caller ID To support caller authentication,
Salus provides a service to request the ID and
layout of the compartment that called an entry
point of the current compartment.

Disable system call To limit the impact of the ex-
ploitation of a compartment, unused system calls
can be disabled. To prevent an attacker from
gaining system call privileges by creating a new
compartment, compartments inherit system call
privileges from their parent.

3.3. Life Cycle of a Compartmentalized Application

Compartmentalized applications can be started as any
other application. After the (trusted) operating system
or loader loads the application into memory and
starts its execution, the application can create the
required compartments. Finally, execution can jump
to the compartment containing the application’s main
function. Compartments can be created at any point
during the application’s execution, for example, at the
time a new (compartmentalized) plugin is loaded.

Creation of Compartments. Figure 3a shows the process
of setting up a compartment. As the first step of
setting up a new compartment, the application allocates
(unprotected) memory and loads the compartment’s
code. Next, the application enables protection of this
memory region, by calling Salus’ creation service. Note
that there is no guarantee that the new compartment’s
code has been loaded correctly into memory, since
the creator might have been compromised already.
However, any tampering with the code will be
detected when the compartment tries to communicate
with another compartment, as will be explained in
Section 3.4.

When a new compartment is created, Salus clears
the first byte of the private section. This serves as
a flag to indicate to the compartment that it should
initialize itself when its service is first requested.
As part of its initialization, a compartment should
clear the private memory locations it will use. This
prevents an attacker from crafting a private section by
setting it up in unprotected memory locations where a
new compartment will later be created. Initialization
code should typically also disable the system calls
that will not be used during further execution of the
compartment.

Destruction of Compartments. The destruction of a com-
partment, shown in Figure 3b, can only be initiated
by the compartment itself. This ensures that compart-
ments can clear their private section (which may con-
tain sensitive data), before the memory protection is
lifted. In addition, trusted communication endpoints

5 EAI Endorsed Transactions on

 01 2015 | Volume 2 | Issue 3 | e1
EAI for Innovation

European Alliance Security and Safety

R. Strackx et al

1 2 3

sign_cert(Cert *)
set_key(Key *)

Private

sign_cert(Cert *)
set_key(Key *)

Public

Private

sign_cert(Cert *)

Key *m_key

set_key(Key *)

Public

(a) Creation

Private

sign_cert(Cert *)

Key *m_key

set_key(Key *)

Public
1 2 3

sign_cert(Cert *)
set_key(Key *)

Private

sign_cert(Cert *)
set_key(Key *)

Public

(b) Destruction

Figure 3. The life cycle of a protected compartment from creation (3a) to destruction (3b)

could be notified of the compartment’s imminent de-
struction. After destruction, the unprotected memory
area of the destructed compartment can be freed.

3.4. Secure Communication

Salus’ memory isolation mechanism provides strong
guarantees that sensitive data in the private section can
only be accessed by code in the public section [27–
30]. Reconsidering our certificate signing service as
an example (see Figure 1), we can prove that the
signing key will never leave its compartment. But an
attacker with access to the compartment’s interface
is still able to sign arbitrary certificates. Salus can
limit the feasibility of such attacks in two ways: (1)
by enforcing both caller and callee authentication,
and (2) by requiring that callers have an unforgeable
reference to the compartment at hand, which means
that guessing the location of a compartment is
insufficient to access it. In this section we will
focus on authentication of compartments. While we
will only discuss authentication of calling and called
compartments, a similar approach can be applied
when locations of other compartments are passed
as arguments. In Section 3.5 we will show how
compartments can enforce that they can only be called
through unforgeable references.

Security Report. Authenticating a compartment consists
of verifying whether that compartment adheres to a
trusted security report of that compartment. A security
report of a compartment consists of:

The cryptographic hash of its public section This al-
lows any code to verify that the public section of
the compartment has not been tampered with: the
cryptographic hash should be recalculated at run-
time and be compared to the known-good value
stored in the security report. This protects against
an attacker who is able to modify the public sec-
tion of a compartment during its creation, before
memory protection is enabled (see Section 3.3).

The layout of the compartment When a creation re-
quest originates from unprotected memory, the
request itself may have been tampered with. An
attacker could, for instance, specify an incorrect
private section size for the compartment to create.
This may result in the use of unprotected memory
that should be under Salus’ protection. By storing
the known-good layout of the compartment in
the security report, any code can verify that the
layout was not tampered with during creation of
the compartment.

A cryptographic signature In order to have integrity
protection and authentication of the security
report, it is digitally signed by its issuer. Each
compartment can decide independently whether
or not to trust a certain issuer, which opens up
the opportunity to integrate compartments from
different parties into a single application. Since
the cryptographic signature provides integrity
protection, security reports can simply be stored
in unprotected memory.

6 EAI Endorsed Transactions on

 01 2015 | Volume 2 | Issue 3 | e1
EAI for Innovation

European Alliance Security and Safety

Salus: Kernel Support for Secure Process Compartments

Authentication of Called Compartments. When exchanging
sensitive information between compartments, caller
and callee must authenticate each other before sensitive
data is exchanged.

To authenticate a compartment to be called, its
ID must first be obtained using Salus’ ‘request
compartment ID’ service. Next, the callee’s security
report must be acquired. For this a central service
where each compartment registers to on initialization,
can be used. Given the callee’s ID, the service should
return the (location of the) corresponding security
report. Note that this service need not be trusted, as
any tampering with the information returned will be
detected during the next steps. Once the security report
has been obtained, it should be validated by checking
the cryptographic signature and by checking that the
issuer is trusted. Each compartment should contain a
list of trusted security report issuers. Next, the callee
compartment’s layout should be requested from Salus
and a hash of the public section should be calculated.
The layout and the hash must be compared to the
values listed in the security report. This completes the
authentication and allows the caller to securely call one
of the callee’s public functions.

When calling a compartment that has already been
authenticated in the past, a re-validation must occur
because the callee may have been destroyed since the
last interaction. A full authentication using the security
report on every call would be very time consuming,
so to reduce the performance impact, Salus allows
compartments to be re-authenticated quickly based on
their ID. Salus ensures each compartment has an ID that
is unique on the system until the next reboot. Hence,
a re-authentication can simply consist of requesting
the ID of the compartment to be called (using the
‘request compartment ID’ service) and checking that it
is the same as during the initial authentication. Using
unique identifiers has the added benefit that code can
distinguish between different instances of the same
compartment.

Authentication of Calling Compartments. To enable com-
partments to limit use of their (possibly insecure) in-
terface to trusted caller compartments, Salus provides
primitives for caller authentication. For a compartment
to authenticate its caller, it can first request the caller’s
ID and memory location (using the ‘request caller ID’
service) and proceed to authenticate the caller using the
same steps as described above.

3.5. Unforgeable references
Salus’ access control mechanism and supporting
services enable authentication of both callers and
callees. Unfortunately, in some situations this does
not suffice. Let’s reconsider the CA service from
Section 1 as an example but now assume that it

receives signing requests over a network. Figure 4
displays how the application can be partitioned into
different compartments. A compartment Listener

listens for incoming network connections and spawns a
new CAConnection compartment for every connecting
client. This compartment is in charge for all future
communication with the client. This is similar to a
Socket object in an object-oriented language. When a
connection is established, clients must provide login
credentials and a certificate request. In order to isolate
vulnerabilities, CAConnection hands off incoming
messages to a compartmentalized parser. If messages
parsed correctly, the parser returns Credentials

and Request compartments to the CAConnection

compartment, or an error code if parsing failed. Once
all data is collected, the CAService is called. Based on
the provided Credentials and Request compartments,
it will authenticate the client credentials, verify that the
client is allowed to request a certificate for the specified
domain and finally instruct the Signer (not displayed)
to sign the certificate request.

By compartmentalizing the Parser, we wish to isolate
possible vulnerabilities. Unfortunately, in this setup an
attacker able to exploit a vulnerability in the parser
may still be able to request certificates for domains that
she does not own. The problem arises when the parser
returns Request and Credentials compartments to
CAConnection. Even though CAConnection is able to
authenticate the Parser, it cannot verify that the
received Request and Credentials compartments are
based on the actual data passed to the parser. An
attacker who successfully exploited a vulnerability in
the parser may be able to scan2 the entire memory
and steal a Credentials compartment belonging to a
different network connection.

To remedy the problem, we propose using unforge-
able references to compartments. Only compartments
with an unforgeable reference to a compartment have
the capability to access it. Thus, even if a compartment
was compromised, it cannot access or pass references
to other compartments that it finds in memory. In our
example, a compromised parser may still find a Cre-

dentials compartment in memory, but it is infeasible
that it can guess the correct nonce (i.e., it cannot create a
correct unforgeable reference to it). Even a compromised
parser can thus not return “stolen” credentials. This
results in a strict separation between different connec-
tions.

While unforgeable references in higher programming
languages are easily enforceable by a type system, we

2An in-application level attacker may scan the entire memory in a
number of ways. For example, by using Salus’ service to request the
layout of a compartment for likely compartment locations until a non-
error result is returned, or by reading the entire program memory for
telltale signs of entry points.

7 EAI Endorsed Transactions on

 01 2015 | Volume 2 | Issue 3 | e1
EAI for Innovation

European Alliance Security and Safety

R. Strackx et al

parser

CAService

CAConnection

Listener

message

Request/
Credentials

parserCAConnection
message

Request/
Credentials

connection 1 connection 2

Figure 4. By enforcing that compartments can only be accessed via unforgeable references, stronger security guarantees can be
guaranteed. Even if an attacker is able to exploit a vulnerability in a parser, she will be unable to access Request/Credentials
compartments belonging to another connection.

cannot apply the same approach. An attacker able to
exploit a vulnerability in a compartment has assembly-
level access and can simply scan the entire memory
area to access other compartments. Instead we propose
establishing unforgeable references as (location, nonce)
tuples. Newly created compartments must be assigned
a cryptographic nonce, which can serve as a key to
access the compartment’s public interface. If and only
if a caller provides the correct nonce, will a call
to the compartment be serviced. This approach has
four advantages: (1) with a sufficiently large nonce,
it is computationally infeasible to forge references,
(2) references can be stored in the secret section
of compartments, just like any other reference, (3)
compartments can implement unforgeable references
using the default Salus services, and (4) both standard
and unforgeable references can exist in the same
application. Section 4.4 describes in detail how
compartments can implement support for unforgeable
references.

3.6. Writing Compartmentalized Applications
Writing safe compartments is a non-trivial task;
each compartment should keep track of it’s own
stack, callbacks to unprotected memory should return
through a specific return entry point, etc. To ease
the creation of such compartments, we developed
a C compiler and linker that takes care of such
considerations. Application developers can simply
annotate functions indicating that they are entry points,
reside in unprotected memory or are located in another
compartment.

Unfortunately, our tool does not solve all problems
at hand. The developer is still in charge to ensure that
sensitive data stored in a compartment is never accessed
from unprotected memory or by another compartment.
The difficulty in ensuring this depends heavily on the

programming language used and the quality of the
source code. Applications written in C may not be very
structured. Each function may allocate memory regions
and pass pointers implicit (e.g., stored in allocated
memory, or type casted as an integer) or explicit (e.g.,
as arguments) to other functions. Compartmentalizing
such legacy applications may be difficult, but given
that all compartments execute in the same address
space, an incremental path exists. Developers may place
functions that operate on the same sensitive data in
the same compartment, while initially still storing the
data in unprotected memory. When all functions are
placed in the compartment and sensitive data is thus
only accessed by a single compartment, it can safely be
allocated inside the compartment. Tools such as logging
access right violations during development instead of
stopping the application (as proposed by [31]) may be
helpful in this process but manual inspection of code is
still required.

Object-oriented languages on the other hand, may
already enforce strict data encapsulation; data may only
be accessed through the object’s public interface. In
such cases each class may be compiled as a separate
compartment but to minimize overhead caused by
crossing protection boundaries, multiple classes may be
placed together in a single compartment.

4. Implementation
Access rights to compartment sections depend on the
value of the program counter. For instance, only if
execution is in the public section of a compartment, will
the private section of that compartment be read/write
accessible. This program counter-based memory access
scheme is at the core of Salus’ protection mechanism.
Enforcing this scheme purely in software would have a
huge performance impact as every memory access has
to be checked. A pure hardware implementation of the

8
EAI Endorsed Transactions on

 01 2015 | Volume 2 | Issue 3 | e1
EAI for Innovation

European Alliance Security and Safety

Salus: Kernel Support for Secure Process Compartments

scheme is possible [12, 13], but prohibits its use on
commodity, off-the-shelf PC platforms. The approach
taken for Salus combines the best of both alternatives,
by using the key insight that memory access rights
for compartments only need to change when execution
crosses a compartment border. This allows Salus to
use the standard memory management unit (MMU) to
enforce the memory protection scheme.

A prototype for Salus has been implemented as a
Linux kernel modification. Section 4.1 describes how
the program counter-based access control mechanism
is implemented in this prototype. Section 4.2 describes
the API Salus provides to processes and Section 4.3 lists
the Linux system calls that had to be modified in order
to provide a secure implementation of the protection
mechanism.

4.1. Program Counter-Based Access Control
By aligning compartment sections to pages, the
standard MMU found on any recent commodity
computer can be applied to enforce the required
memory protection scheme. After a compartment is
created (e.g. from unprotected memory), the MMU
access rights for the pages of the new compartment
are set up according to Table 1: the public section
is world-readable while the private section is isolated
completely.

When execution tries to enter a compartment (e.g.,
because of a call instruction), a page fault is generated
by the MMU. Based on the memory location addressed
and the access type (read, write or execute), Salus
determines whether a valid entry point was called
and, if necessary, modifies the access rights of the
calling and called compartments’ public and private
sections, according to Table 1. Access rights of pages
unrelated to the two involved compartments are not
modified, which minimizes the number of page faults
and access right modifications, thereby reducing the
overall performance impact.

Because unprotected memory is always readable,
writable and executable, no page fault is generated
when execution returns from a compartment to
unprotected memory. To restore the access rights of the
exited compartment, the compartment itself must issue
a system call to Salus.

Since all threads of the same process normally share
the same page tables, our approach cannot guarantee
the required security properties in case of multiple
threads. However, this is not a fundamental limitation
of our model. Support for multithreaded applications
can be added by modifying the kernel in order to
provide each thread with a separate set of page
tables. All threads have identical virtual-to-physical
mappings, but with different access rights depending
on the currently executing compartment in each thread.

Compartments also must be multithreading-aware and
provide a separate stack per thread. Our prototype
currently does not support multithreading.

The Linux page fault handler was modified to
implement these access right modifications. To keep
track of a process’ compartments, the Linux process
descriptor data structure was extended with a list of
comp_struct structures. Each comp_struct describes a
single compartment and contains:

• The (virtual) start address and length of the public
and private sections

• The compartment’s unique ID

• The compartment’s saved stack pointer

• A list of the compartment’s remaining system call
privileges

4.2. System Call API
The following new system calls were implemented in
the Linux kernel. These system calls represent the API
Salus provides to processes.

void salus_create(void* start, uint len_pub,

uint len_priv) Before a new compartment
is created, the list of existing compartments is
checked to ensure that the new compartment
will not overlap with any existing ones. New
compartments must also not overlap with the
kernel or have their memory pages mapped
to files. When these checks succeed, a new
compartment is created and added to the current
process’ compartment list. It receives the same
system call privileges as its parent.

void salus_destroy(void) Since compartments can
only be destroyed from within their own public
section, this system call does not require any
arguments. This system call restores the original
memory access rights on the memory region
occupied by the executing compartment and
then removes the compartment from the current
process’ compartment list.

struct comp_layout* salus_layout(void* addr)

This system call returns the ID and memory
layout of the compartment covering a given
memory location. It can be implemented by
simply iterating over the current process’
compartment list until a matching compartment
is found. A null pointer is returned when there is
no compartment covering the given address.

struct comp_layout* salus_caller(void) This
system call returns the ID and memory layout of
the compartment that last called an entry point

9 EAI Endorsed Transactions on

 01 2015 | Volume 2 | Issue 3 | e1
EAI for Innovation

European Alliance Security and Safety

R. Strackx et al

of the current compartment. A null pointer is
returned when the current compartment was last
called from unprotected memory.

void salus_syscall_disable(uint syscall_id)

This system call disables further use of the
specified system call, by removing it from the list
of system call privileges in the comp_struct of
the current compartment. Once a system call is
revoked, it cannot be re-acquired.

void salus_return(void* addr) Before execution
returns from a called compartment back to its
caller (i.e. unprotected memory or another com-
partment), the access rights of the called compart-
ment’s pages need to be restored. This system call
performs this access rights modification and then
continues execution at the specified address.

4.3. Conflicting System Calls
Some existing system calls in the Linux kernel conflict
with Salus’ compartmentalization. Additional security
checks had to be inserted for these conflicting system
calls.

mprotect The mprotect system call can be used to
change the access rights of pages in memory.
Additional checks were added to prevent this
system call from modifying the access rights of
compartments.

mmap Existing system calls such as mmap or mremap

modify the virtual address space of a process.
An attacker could abuse these system calls
to map a compartment’s private section to a
file, for instance. When the compartment then
writes sensitive information to the newly mapped
pages, this information may leak to an attacker.
We prevent this attack by verifying that a
compartment is mapped correctly before it is
called. These checks were also added to the
salus_layout API call.

personality In Linux, each process has a personality,
which defines the process’ execution domain.
The personality includes, among other settings, a
READ_IMPLIES_EXEC bit, which indicates whether
read rights to a memory region should automat-
ically imply executable rights as well. For com-
partments this would result in world-executable
public sections, nullifying the use of designated
compartment entry points. Therefore, Salus en-
forces that this bit is disabled for compartmental-
ized processes.

fork The fork, vfork and clone system calls can
be used to create a new process or thread.

As these processes or threads share parts of
their page tables, the elevated access rights of
the private section of a called compartment,
affects all processes/threads and enable its access
from unprotected memory. While these system
calls could be modified to create copies of
the page tables leading to the same virtual-
physical address translation but with different
access rights, our research prototype currently
does not support this. Linux’ existing CLONE_VM

and VM_DONTCOPY flags are used to prevent
compartments being mapped in the new process
or thread. Checks were also added to the madvice

system call, since it can be used to modify the
VM_DONTCOPY flag.

4.4. Unforgeable references

Implementing support for unforgeable references
consists of two steps: (1) newly created compartments
must generate a cryptographic nonce, and (2) whenever
a compartment is called, it must check whether the
caller did indeed have the capability to access it.

The first step can be achieved in two ways. One
option is to modify Salus’ salus_create service call
(see Section 4.2). After creating the compartment, the
kernel generates a new cryptographic nonce and stores
it at a specific location in the compartment’s private
section. Finally the salus_create service call returns
the (location, nonce) tuple as the unforgeable reference.

Alternatively, newly created compartments can be
taken ownership of on a first-call basis, by providing
a take_ownership entry point that generates and
returns an unforgeable reference on its first call.
Only the first compartment that requests ownership
will be provided with the unforgeable reference,
subsequent calls to this entry point will be rejected.
While malicous compartments may “steal” newly
created compartments by taking ownership as soon as
possible, they do not gain any additional power, since
compartments are created from unprotected memory
and hence do not possess any sensitive information
that may leak to an attacker. Listing 1 shows a sample
implementation of the take_ownership entry point in
pseudo code.

In the second step, a called compartment must check
whether the caller did indeed have the capability
to access the compartment. To perform this check,
the caller must pass the cryptographic nonce of the
unforgeable reference to the called entry point. If and
only if the provided nonce is identical to the nonce
stored in the compartment’s private section, will the call
be serviced. Otherwise an error value will be returned.
Note that the compartment is able to specify for every
entry point whether or not it requires the nonce to

10
EAI Endorsed Transactions on

 01 2015 | Volume 2 | Issue 3 | e1
EAI for Innovation

European Alliance Security and Safety

Salus: Kernel Support for Secure Process Compartments

1 take_ownership :
i f (nonce != 0)

3 return −1;
e l s e

5 {
nonce = gen_nonce () ;

7 return nonce ;
}

Listing 1: An implementation of the take_ownership

entry point

access it. The take_ownership entry point, for example,
will never require a capability.

5. Evaluation
The effectiveness of Salus’ protection mechanisms is
evaluated in Section 5.1 and its performance impact is
discussed in Section 5.2.

5.1. Security Evaluation
To evaluate Salus’ security, we make a distinction be-
tween memory-safe and memory-unsafe compartments.
A memory-unsafe compartment can be exploited by an
attacker using low-level attack vectors such as buffer
overflows [1–4], format string vulnerabilities [5] or non-
control data attacks [6]. A memory-safe compartment
does not contain such vulnerabilities, for instance be-
cause it was written in a memory-safe language or
simply because the compartment doesn’t contain any
memory-safety bugs.

Since memory-safe compartments cannot be ex-
ploited directly, the only attack vector against them is
through exploitation of another compartment in the
same address space. However, recent research [27–30]
has shown that memory protection mechanisms such as
those offered by Salus, are able to provide full source
code abstraction. This means that, even when other
compartments have been successfully exploited, an at-
tackers’ capabilities are limited to interacting with the
memory-safe compartment through its public interface.
A carefully constructed interface can thus effectively
limit the attack surface of a compartment. But in many
cases, creating a secure interface is still a challenging
problem [32]. Recall the example of a certificate signing
compartment introduced in Section 3.1: even if the
private cryptographic key is never exposed, an attacker
could potentially still use the compartment’s interface
to sign arbitrary certificates [19]. By taking advantage of
Salus’ support for caller/callee authentication however,
the risk of such an attack can be minimized by only
servicing requests from compartments that would issue
them as part of the normal operation of the application
(e.g. in Figure 1, the signer compartment should only
accept requests from the validator compartment).

Memory-unsafe compartments may still contain
vulnerabilities that can be exploited by attackers.
Even though Salus does not prevent such attacks,
compartmentalization can still provide significant
security benefits. Firstly, high-risk components can be
identified and be placed in separate compartments.
Effective but high-overhead countermeasures [33, 34]
can be used to harden such compartments. By only
applying these countermeasures to likely vulnerable
compartments, their performance impact remains
limited.

Secondly, Salus’ ability to provide unforgeable
references and it’s ability to restrict access to system
calls, can be used to enforce fine-grained access policies.
Enabling a compartment to issue open/close and
read/write system calls, essentially provides it access
to the entire file system3. Alternatively, small, safe
compartments can be created that provide similar
support but may limit access to a specific folder.
Since the compartment cannot issue open system calls
herself, it can only access the file system through the
received “capability” compartment (see Section 1 for an
example).

Thirdly, compartmentalization can automatically
thwart certain types of attacks. For instance, limiting
entrance of compartments to valid entry points
significantly reduces the chance of an attacker finding
enough gadgets to successfully execute a return-
oriented-programming (ROP) attack [35, 36].

Fourthly, compartmentalization can be used as a
building block for new countermeasures. For instance,
a custom loader could be implemented that loads
compartments at different locations in memory for
every program execution. This is similar to address
space layout randomization (ASLR) [37], but can be
applied at a much finer-grained level.

Finally, even when a compartment has been success-
fully exploited, Salus can still limit the impact of the
attack. Because Salus provides entry point enforcement,
caller/callee authentication and system call privilege
containment, an attacker will likely have to compromise
multiple vulnerable compartments before reaching her
intended target. This significantly increases the effort
an attacker must take to successfully exploit the appli-
cation. The ability to confine attackers to the exploited
compartment even allows implementing a tightly con-
trolled sandbox where user-provided machine code can
be executed safely.

5.2. Performance Evaluation
To evaluate the performance of Salus, we performed
micro- and macrobenchmarks. All tests were run on

3Of course this is restricted by the access rights the application is
executing in

11
EAI Endorsed Transactions on

 01 2015 | Volume 2 | Issue 3 | e1
EAI for Innovation

European Alliance Security and Safety

R. Strackx et al

Type CPU cycles Relative

Function Call 5,944 1
System Call 193,970 32.63
Compartment Call 4,024,227 677.02

Table 2. Compartment access overhead

a Dell Latitude E6510. This laptop is equipped with
an Intel Core i5 560M processor running at 2.67 GHz
and contains 4 GiB of RAM. A Ubuntu Server 12.04
distribution with (modified) Linux 3.6.0-rc5 x86_64
kernel was used as the operating system.

System-wide impact. To show that legacy applications
not using the modularization technique are not
impacted by our changes to the Linux kernel, we ran
the SPECint 2006 benchmark. All tests finished within
±0.4% compared to the vanilla kernel.

Microbenchmarks. To measure the overhead caused by
switching the access rights, we created a microbench-
mark that measures the cost of a call to a secure com-
partment and compare it to the cost of calling a regular
function and calling a system call. The compartment
used in the benchmark immediately returns to the
caller. The system call and function behave similarly.

Table 2 displays the results of this microbenchmark.
Calling a compartment is about 677 times slower
compared to calling a regular function. This overhead
is attributed to the need to modify the access rights
of pages. Compared to calling a system call, the
compartment is only 20 times slower. Due to these
high costs, there is a trade-off to be made between
a low number of compartment transitions and small
compartments with additional security guarantees.

Secure Web Server. As a macrobenchmark, we com-
partmentalized an SSL-enabled web server based on
an example provided by PolarSSL library4. For every
new connection a new compartment is created, securing
session keys even in the event that an attacker is able to
inject shellcode in the compartment providing its own
SSL session.

The secure compartment was built using the PolarSSL
cryptographic library and a subset of the diet libc
library. A simple static 74-byte page is returned to the
clients over an SSL-connection protected by a 1024-bit
RSA encryption key.

We used the Apache Benchmark to benchmark this
web server for an increasing number of clients that are
concurrently requesting pages. The results are shown
in Table 3. The performance overhead tops at 12.72%

4https://polarssl.org/

Concurrency Vanilla Salus Relative perf.

1 109.11 96.54 -11.52 %
2 165.56 153.62 -7.21 %
4 184.31 164.78 -10.60 %
8 199.98 175.35 -12.32 %

16 206.82 181.00 -12.48 %
32 207.78 181.50 -12.65 %
64 206.64 180.35 -12.72 %

128 206.49 180.97 -12.36 %
Table 3. Requests per second of an SSL-enabled webserver
where every SSL session is protected in its own compartment,
for an increasing number of clients.

and is mainly attributed to the many compartment
boundaries crosses during the SSL negotiation phase.

Compartmentalized parser. As input files are often under
the control of an attacker and sanitation of their
content can be difficult, parsers are a likely attack
vector for many applications. As a second benchmark,
we isolated the decompressing function of gzip (GNU
zip). While disabling unused system calls for the entire
process would result in similar security guarantees, we
are interested in the impact of repeated compartment
crossings in a parser setting. Applications that place
their parser and the rest of the application in different
compartments, would incur a similar overhead as only
one additional compartment boundary needs to be
crossed.

To benchmark the application, we created input
files with randomized content, ranging from 16 KiB to
64 MiB in size, compressed them and measured the
time taken to decompress the files with the hardened
application. The application was run 100 times on each
file. File I/O used a buffer of 32 KiB and the output
was redirected to the null device. Figure 5 displays the
results.

Given the relatively high overhead of a call to a
compartment and the low computation cost of the
decompressing function, it is unsurprising that for
small input files the overhead can be as high as
21.9%. When the input size is increased however, the
overhead drops steadily to -0.5% for 64 MiB input files,
even though also the number of compartment-border
crossings increases from 8 to 8200. We attribute this
significant drop in overhead to the increased amount of
slow disk I/O that needs to be performed as the input
file size gets bigger, an effect that we predict to see in
most parser-like compartments. The small performance
gain of 0.5% can be attributed to cache effects.

The way an application is partitioned will have a
significant impact on performance. Applications should
be compartmentalized in logical blocks where each
compartment has direct access to most of its required

12
EAI Endorsed Transactions on

 01 2015 | Volume 2 | Issue 3 | e1
EAI for Innovation

European Alliance Security and Safety

https://polarssl.org/

Salus: Kernel Support for Secure Process Compartments

Figure 5. Salus’ performance overhead on the gzip macro benchmark drops significantly as the input file size increases.

data. Once a logical block has finished, control and
all data should be passed to the next compartment,
reducing the number of inter-compartment calls.
Smaller, heavily protected compartments such as an
SSL compartment, provide strong security but may
impact performance more significantly when called
repeatedly. This makes the performance impact of
compartmentalization difficult to predict. Therefore we
advocate for automatic partitioning tools that analyze
the application’s call graph and information flow to
reduce the number of compartment crosses and help
the programmer decide which compartments should be
hardened.

6. Related Work
Various security measures have been proposed to
harden applications. Many of them aim to protect
against very specific vulnerabilities such as buffer
overflows [1–4], format string vulnerabilities [5] or non-
control data attacks [6]. While these countermeasures
make it significantly more difficult for an attacker
to compromise software applications, they cannot
offer complete protection. Static verification of source
code [38], in contrast, is able to provide such hard
security guarantees, but typically comes at a significant
economic cost in terms of programming and verification
effort.

Singaravelu et al. [17] proposed to isolate security-
sensitive parts of applications in complete isolation
from the rest of the system. Many research proposals
have since been filed based on this principle. Each
of them provides some way of executing modules
in isolation, relying on a trusted code base ranging
from only a few thousands of lines of code [7, 8]
to only the protected modules themselves and a

small runtime library [9, 10]. More recently, specially
tailored hardware support has been proposed in
academia [11–13] and industry [14–16]. While these
research prototypes offer provable security to the
sensitive data that they protect [27–30], they do
not attempt to reduce the impact of a vulnerability
elsewhere in the code by executing modules with the
least amount of privileges possible [20]. An attacker
who successfully gains control over the platform is
still able to interact with other protected modules
unrestrictedly.

Other work focuses on confining possible software
vulnerabilities. Early work focused on reducing the size
of the kernel itself [39], where process privileges are
managed by capabilities. Recently Watson et al. [26]
proposed applying a similar idea to partition applica-
tions themselves, where capabilities can be granted to
each created partition. As partitions live in their own
process, interaction takes place through remote proce-
dure calls and passed data must be marshalled. Salus
avoids these drawbacks by executing compartments in
the same address space and unprotected memory can
be used to gradually partition legacy applications (see
section 3.6).

Provos et al. [40] and Brumley et al. [41] propose
separating sensitive applications into a privileged
monitor and one or multiple slave components.
Monitor and slaves communicate through system
sockets and thus also require arguments to be
marshalled. Subsequent work by Provos [42] argues
for finer grained access policies for system calls.
Bittau et al. [31] also propose splitting applications
into compartments (called sthreads) executing with
least privilege. Developers can tag memory locations
and a security policy enforces that a compartment can

13
EAI Endorsed Transactions on

 01 2015 | Volume 2 | Issue 3 | e1
EAI for Innovation

European Alliance Security and Safety

R. Strackx et al

only access memory locations with a matching tag.
When an sthread requires more privilege operations,
it can request so by calling a callgate. A security
policy enforces which callgates an sthread can call.
Salus’ unforgeable references enable a much more
flexible security policy. Compartments can be provided
temporary access to system resources by encapsulating
them in a compartment. As all interaction to the
resource passes by this compartment, the caller’s access
rights can easily be revoked at a later point in time [43].

Native Client (NaCl) [44, 45], which builds upon the
concepts of software fault isolation [46], takes another
approach and attempts to completely sandbox x86 code.
Accesses to the environment from within a sandbox
are tightly controlled by runtime facilities. While NaCl
focuses on downloaded, untrusted binary code, it could
be used to partition entire applications. Interaction
between two NaCl partitions is provided through a
service similar to Unix domain sockets, making porting
existing legacy applications a challenging undertaking.
Salus on the other hand can provide a similar tightly
controlled sandbox by placing such partitions in one
compartment while the remaining legacy application
is placed in another. A specially created wrapper can
ensure that all system call privileges are revoked before
execution control is given to the sandboxed code.
There are however two major differences compared
to NaCl. First, Salus only impacts performance when
compartment boundaries are crossed. NaCl on the
other hand places constraints on the binary code
itself, resulting in a varying performance impact.
Second, Salus employs a non-hierarchical separation
of privilege, allowing compartments to be completely
isolated from other compartments (possibly provided
by other vendors) while compartments of the same
vendor can co-operate easily.

Finally, our earlier work [8, 11] is the most related
to Salus. It also employs a program-counter based
access control mechanism, but assumes a safe interface.
Therefore it has the same limitation as other research
prototypes [7, 9, 10] that provide strong isolation of
sensitive data: it does not reduce the possible impact of
exploited vulnerabilities.

7. Conclusion

Protected-module architectures isolate sensitive parts
of applications. They guarantee that sensitive data
can only be accessed via a well-defined interface. In
practice, however, it is hard to isolate security-sensitive
parts, as most code in an application is sensitive up
to some level. As a result, modules of such platforms
may need to provide unsafe interfaces; an attacker may
not access the sensitive data directly, but access to the
provided interface may still lead to unwanted behavior.

We presented Salus, a new security architecture
providing strong isolation guarantees of both sensitive
data and software vulnerabilities. Salus significantly
reduces the impact of unsafe interfaces by (1)
supporting the authentication of compartments and (2)
enabling compartments to enforce that they can only
be accessed through unforgeable references. This allows
likely attack vectors and targets to be placed in different
compartments, such that an attacker must successfully
attack multiple compartments before an attack target
can be reached.

Acknowledgement. This work has been supported in part by
the Intel Lab’s University Research Office. This research is
also partially funded by the Research Fund KU Leuven, and
by the EU FP7 project NESSoS. With the financial support
from the Prevention of and Fight against Crime Programme
of the European Union (B-CCENTRE). Raoul Strackx holds
a PhD grant from the Agency for Innovation by Science
and Technology in Flanders (IWT). Pieter Agten holds a
PhD fellowship of the Research Foundation - Flanders (FWO).

References

[1] Aleph One: Smashing the stack for fun and profit.
Phrack magazine 7(49) (1996)

[2] Erlingsson, Ú.: Low-level software security: Attacks and
defenses. In Aldini, A., Gorrieri, R., eds.: Foundations of
Security Analysis and Design IV. Volume 4677 of Lecture
Notes in Computer Science. Springer-Verlag (2007) 92–
134

[3] Strackx, R., Younan, Y., Philippaerts, P., Piessens, F.,
Lachmund, S., Walter, T.: Breaking the memory secrecy
assumption. In: Proceedings of the Second European
Workshop on System Security. EuroSec’09, New York,
NY, USA, ACM (2009) 1–8

[4] Younan, Y., Joosen, W., Piessens, F.: Code injection
in C and C++ : A survey of vulnerabilities and
countermeasures. Technical Report CW386, Department
of Computer Science, KULeuven (2004)

[5] Cowan, C., Barringer, M., Beattie, S., Kroah-Hartman,
G., Frantzen, M., Lokier, J.: Formatguard: automatic
protection from printf format string vulnerabilities. In:
Proceedings of the 10th conference on USENIX Security
Symposium. SSYS’01, Berkeley, CA, USA, USENIX
Association (2001) 1–9

[6] Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.K.: Non-
control-data attacks are realistic threats. In: Proceedings
of the 14th conference on USENIX Security Symposium.
Volume 14 of SSYM’05., Berkeley, CA, USA, USENIX
Association (2005) 177–192

[7] McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor,
V., Perrig, A.: TrustVisor: Efficient TCB reduction and
attestation. In: Proceedings of the IEEE Symposium
on Security and Privacy. S&P’10, Washington, DC, USA,
IEEE Computer Society (May 2010) 143–158

[8] Strackx, R., Piessens, F.: Fides: Selectively hardening
software application components against kernel-level or
process-level malware. In: Proceedings of the 19th ACM

14 EAI Endorsed Transactions on

 01 2015 | Volume 2 | Issue 3 | e1
EAI for Innovation

European Alliance Security and Safety

Salus: Kernel Support for Secure Process Compartments

conference on Computer and Communications Security.
CCS’12, New York, NY, USA, ACM (October 2012) 2–13

[9] McCune, J.M., Parno, B., Perrig, A., Reiter, M.K., Isozaki,
H.: Flicker: An execution infrastructure for TCB
minimization. In: Proceedings of the ACM European
Conference in Computer Systems. EuroSys’08, New
York, NY, USA, ACM (April 2008) 315–328

[10] Azab, A., Ning, P., Zhang, X.: SICE: a hardware-
level strongly isolated computing environment for x86
multi-core platforms. In: Proceedings of the 18th ACM
conference on Computer and communications security.
CCS’11, New York, NY, USA, ACM (2011) 375–388

[11] Strackx, R., Piessens, F., Preneel, B.: Efficient Isolation
of Trusted Subsystems in Embedded Systems. In
Jajodia, S., Zhou, J., eds.: Security and Privacy in
Communication Networks (SecureComm’10). Volume 50
of Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications
Engineering., Springer Berlin Heidelberg (2010) 344–
361

[12] Noorman, J., Agten, P., Daniels, W., Strackx, R., Her-
rewege, A.V., Huygens, C., Preneel, B., Verbauwhede, I.,
Piessens, F.: Sancus: Low-cost trustworthy extensible
networked devices with a zero-software trusted com-
puting base. In: 22nd USENIX Security Symposium.
SSYM’13, USENIX Association (August 2013)

[13] Owusu, E., Guajardo, J., McCune, J., Newsome, J., Perrig,
A., Vasudevan, A.: OASIS: on achieving a sanctuary
for integrity and secrecy on untrusted platforms. In:
Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security. CCS’13, New
York, NY, USA, ACM (2013) 13–24

[14] Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative
technology for CPU based attestation and sealing. In:
Proceedings of the 2nd International Workshop on
Hardware and Architectural Support for Security and
Privacy. Volume 13 of HASP’13., New York, NY, USA,
ACM (2013)

[15] Hoekstra, M., Lal, R., Pappachan, P., Phegade, V.,
Del Cuvillo, J.: Using innovative instructions to
create trustworthy software solutions. In: Proceedings
of the 2nd International Workshop on Hardware
and Architectural Support for Security and Privacy.
HASP’13, New York, NY, USA, ACM (2013) 11

[16] McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C.V.,
Shafi, H., Shanbhogue, V., Savagaonkar, U.R.: Innovative
instructions and software model for isolated execution.
In: Proceedings of the 2nd International Workshop on
Hardware and Architectural Support for Security and
Privacy. HASP’13, New York, NY, USA, ACM (2013) 8

[17] Singaravelu, L., Pu, C., Härtig, H., Helmuth, C.: Reduc-
ing TCB complexity for security-sensitive applications:
three case studies. In: Proceedings of the 1st ACM
SIGOPS/EuroSys European Conference on Computer
Systems. EuroSys’06, New York, NY, USA, ACM (2006)
161–174

[18] Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh,
D.: Terra: A virtual machine-based platform for trusted
computing. In: Operating Systems Review. Volume 37 of
OSR’03., New York, NY, USA, ACM (2003) 193–206

[19] Hoogstraten, H., Prins, R., Niggebrugge, D., Heppener,
D., Groenewegen, F., Wettinck, J., Strooy, K., Arends,
P., Pols, P., Kouprie, R., Moorrees, S., van Pelt, X., Hu,
Y.Z.: Black Tulip - report of the investigation into the
DigiNotar certificate authority breach. Technical report,
FoxIT (2012)

[20] Saltzer, J., Schroeder, M.: The protection of information
in computer systems. In: Proceedings of the IEEE.
Volume 63., IEEE (1975) 1278–1308

[21] Carter, N.P., Keckler, S.W., Dally, W.J.: Hardware support
for fast capability-based addressing. In: Proceedings
of the Sixth International Conference on Architectural
Support for Programming Languages and Operating
Systems. ASPLOS’94, New York, NY, USA, ACM (1994)
319–327

[22] Woodruff, J., Watson, R.N.M., Chisnall, D., Moore, S.W.,
Anderson, J., Davis, B., Laurie, B., Neumann, P.G.,
Norton, R., Roe, M.: The CHERI capability model:
Revisiting RISC in an age of risk. In: Proceedings
of the 41st International Symposium on Computer
Architecture. ISCA’14 (2014)

[23] Dennis, J.B., Van Horn, E.C.: Programming semantics
for multiprogrammed computations. Communications
of the ACM 9 (March 1966) 143–155

[24] Avonds, N., Strackx, R., Agten, P., Piessens, F.: Salus:
Non-hierarchical memory access rights to enforce the
principle of least privilege. In Zia, T., Zomaya, A.,
Varadharajan, V., Mao, M., eds.: Security and Privacy
in Communication Networks (SecureComm’13). Volume
127 of Lecture Notes of the Institute for Computer Sci-
ences, Social Informatics and Telecommunications Engi-
neering., Springer International Publishing (September
2013) 252–269

[25] Dolev, D., Yao, A.C.: On the security of public key
protocols. In: IEEE Transactions on Information Theory.
Volume 29., Piscataway, NJ, USA, IEEE Press (September
1983) 198–208

[26] Watson, R.N., Anderson, J., Laurie, B., Kennaway,
K.: Capsicum: practical capabilities for UNIX. In:
Proceedings of the 19th USENIX Security symposium.
SSYM’10, Berkeley, CA, USA, USENIX Association
(2010)

[27] Agten, P., Strackx, R., Jacobs, B., Piessens, F.: Secure
compilation to modern processors. In: Proceedings of
the 25th Computer Security Foundations Symposium.
CSF’12, Los Alamitos, CA, USA, IEEE Computer Society
(2012) 171–185

[28] Patrignani, M., Clarke, D.: Fully abstract trace semantics
of low-level isolation mechanisms. In: Proceedings of the
29th Annual ACM Symposium on Applied Computing.
SAC’14, ACM (March 2014) 1562–1569

[29] Patrignani, M., Agten, P., Strackx, R., Jacobs, B., Clarke,
D., Piessens, F.: Secure compilation to protected
module architectures. In: Accepted for publication in
Transactions on Programming Languages and Systems
(TOPLAS), New York, NY, USA, ACM

[30] Patrignani, M., Clarke, D., Piessens, F.: Secure Com-
pilation of Object-Oriented Components to Protected
Module Architectures. In Shan, C.c., ed.: Proceedings of
the 11th Asian Symposium on Programming Languages
and Systems (APLAS’13). Volume 8301 of Lecture Notes

15
EAI Endorsed Transactions on

 01 2015 | Volume 2 | Issue 3 | e1
EAI for Innovation

European Alliance Security and Safety

R. Strackx et al

in Computer Science., Springer International Publishing
(2013) 176–191

[31] Bittau, A., Marchenko, P., Handley, M., Karp, B.: Wedge:
Splitting applications into reduced-privilege compart-
ments. In: Proceedings of the 5th USENIX Symposium
on Networked Systems Design and Implementation.
NSDI’08, Berkeley, CA, USA, USENIX Association (2008)
309–322

[32] Longley, D., Rigby, S.: An automatic search for security
flaws in key management schemes. Computers &
Security 11(1) (1992) 75–89

[33] Younan, Y., Philippaerts, P., Cavallaro, L., Sekar, R.,
Piessens, F., Joosen, W.: Paricheck: an efficient pointer
arithmetic checker for c programs. In: Proceedings of
the 5th ACM Symposium on Information, Computer and
Communications Security. ASIACCS ’10, New York, NY,
USA, ACM (2010) 145–156

[34] Akritidis, P., Costa, M., Castro, M., Hand, S.: Baggy
bounds checking: An efficient and backwards-
compatible defense against out-of-bounds errors.
In: Proceedings of the 18th conference on USENIX
security symposium. SSYM’09, USENIX Association
(2009) 51–66

[35] Shacham, H.: The geometry of innocent flesh on the
bone: return-into-libc without function calls (on the
x86). In: Proceedings of the 14th ACM conference on
Computer and communications security. CCS ’07, New
York, NY, USA, ACM (2007) 552–561

[36] Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi,
A.R., Shacham, H., Winandy, M.: Return-oriented
programming without returns. In: Proceedings
of the 17th ACM Conference on Computer and
Communications Security. CCS’10, New York, NY, USA,
ACM (2010) 559–572

[37] Bhatkar, S., DuVarney, D.C., Sekar, R.: Address
obfuscation: An efficient approach to combat a broad
range of memory error exploits. In: Proceedings
of the 12th USENIX security symposium. Volume 12
of SSYM’03., Berkeley, CA, USA, USENIX Association

(2003) 105–120
[38] Jacobs, B., Piessens, F.: The verifast program verifier.

CW Reports CW520, Department of Computer Science,
K.U.Leuven (August 2008)

[39] Liedtke, J.: Toward Real Microkernels. Communications
of the ACM 39(9) (1996) 77

[40] Provos, N., Friedl, M., Honeyman, P.: Preventing
privilege escalation. In: Proceedings of the 12th
Conference on USENIX Security Symposium. SSYM’03,
Berkeley, CA, USA, USENIX Association (2003)

[41] Brumley, D., Song, D.: Privtrans: Automatically
partitioning programs for privilege separation. In:
Proceedings of the 13th Conference on USENIX Security
Symposium. Volume 13 of SSYM’04., Berkeley, CA, USA,
USENIX Association (2004)

[42] Provos, N.: Improving host security with system call
policies. In: Proceedings of the 12th Conference on
USENIX Security Symposium. SSYM’03, Berkeley, CA,
USA, USENIX Association (2003)

[43] Miller, M., Yee, K.P., Shapiro, J.S.: Capability myths
demolished. Technical Report SRL2003-02, Johns
Hopkins University (2003)

[44] Yee, B., Sehr, D., Dardyk, G., Chen, J.B., Muth, R.,
Ormandy, T., Okasaka, S., Narula, N., Fullagar, N.:
Native client: A sandbox for portable, untrusted x86
native code. In: Proceedings of the 30 IEEE Symposium
on Security and Privacy. S&P’09, IEEE (2009) 79–93

[45] Sehr, D., Muth, R., Biffle, C., Khimenko, V., Pasko, E.,
Schimpf, K., Yee, B., Chen, B.: Adapting software
fault isolation to contemporary CPU architectures. In:
Proceedings of the 19th USENIX Security Symposium.
SEC’10 (2010)

[46] Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L.:
Efficient software-based fault isolation. In: Proceedings
of the fourteenth ACM symposium on Operating systems
principles. SOSP ’93, New York, NY, USA, ACM (1993)
203–216

16
EAI Endorsed Transactions on

 01 2015 | Volume 2 | Issue 3 | e1
EAI for Innovation

European Alliance Security and Safety

	1 Introduction
	2 Attacker Model & Security Properties
	3 Overview of the Approach
	3.1 Compartments of Least Privilege
	Structure of a Compartment
	Restriction of Privileges

	3.2 Provided Services
	3.3 Life Cycle of a Compartmentalized Application
	Creation of Compartments
	Destruction of Compartments

	3.4 Secure Communication
	Security Report
	Authentication of Called Compartments
	Authentication of Calling Compartments

	3.5 Unforgeable references
	3.6 Writing Compartmentalized Applications

	4 Implementation
	4.1 Program Counter-Based Access Control
	4.2 System Call API
	4.3 Conflicting System Calls
	4.4 Unforgeable references

	5 Evaluation
	5.1 Security Evaluation
	5.2 Performance Evaluation
	System-wide impact
	Microbenchmarks
	Secure Web Server
	Compartmentalized parser

	6 Related Work
	7 Conclusion

