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Abstract

Autonomous fault detection represents one approach for reducing operational costs in large-scale computing
environments. However, little empirical evidence exists regarding the implementation or comparison of such
methodologies, or offers proof that such approaches reduce costs. This paper compares the effectiveness of
several types of stochastic primitives using unsupervised learning to heuristically determine the root causes
of faults. The results suggest that self-healing systems frameworks leveraging these techniques can reliably
and autonomously determine the source of an anomaly within as little as five minutes. This finding lays the
foundation for determining the potential these approaches have for reducing operational costs and ultimately
concludes with new avenues for exploring anomaly prediction.
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1. Introduction

The operational costs of large-scale computing environ-
ments are continuing to increase. In order to address
this problem, self-managing systems are being devel-
oped that reduce the need for human oversight. Self-
healing systems are a type of self-managing system
that operates by autonomously detecting then recover-
ing from faults. Although there have been numerous
advances in this area of study, most self-healing systems
continue to require the use of labelled data [8, 9, 18, 22,
28]. This constraint poses challenges for the continued
reduction of costs, and inherently emphasises reactive
over pro-active approaches [7].

This paper discusses the use of Artificial Neural
Network (ANN), Hidden Markov Model (HMM), and
Restricted Boltzmann Machine (RBM) approaches
that use unsupervised learning algorithms for
autonomously generating a fault hypothesis [16]
indicating the source of a fault within a system –
the first step in autonomous fault mitigation. It then
summarises the results of each of these experiments
before presenting a comparison using extrapolated
results. It concludes with lessons learned and a future
research section where new avenues of exploration are
briefly discussed including further testing related to
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the results presented here and an untested approach for
determining feature locality using shared forecasting.

The importance of reducing human oversight in
managing computing environments is multi-faceted.
Although numerous direct benefits exist – such as the
reduction of staff involvement and their associated
operating costs – further achievements can also be
realised. Notably, self-healing systems have properties
that are showing inherent benefits to both change-
control schemas and preserving baseline configurations
[20]. The lack of change control or a baseline
configuration can both introduce faults and present
problems in determining their respective sources.

Self-healing systems methodologies show the capa-
bility to heuristically detect and resolve faults without
human supervision [7, 23, 33]. This is important when
considering costs and time requirements associated
with training technical members of staff. If a system can
find an appropriate recovery solution without the need
for a subject matter expert the associated costs can be
immediately recovered.

How well these approaches operate is not clearly
understood, nor is a solution agreed upon. The
accurate identification of faults, their root causes, and
their solutions have posed notable challenges in both
Machine Learning, and Computational Intelligence.
There is no assurance, for example, that self-healing
systems leveraging heuristic, evolutionary, or search-
space based algorithms will find an appropriate
solution for a given fault – or that the solution
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found will be optimal. Furthermore, computational
costs of approaches that leverage these methodologies
are typically higher than others, and inherently carry
a certain amount of risk of failing to identify or
incorrectly identifying a potential root cause of an
anomaly. There are also considerations that further
complicate these matters such as error accumulation
when forecasting multiple values in a series.

Anecdotal evidence suggests that in professional
computing environments the failure to recognise or
mitigate a service impacting fault is never an acceptable
state – and that false identification of root causes is
to be avoided whenever possible. It is clear, however,
that such circumstances do happen under human
supervision. Moving to a software based approach
poses serious questions regarding accountability in
these situations – currently associated with human
administrators – and liability. Both of these topics are
outside of the scope of this paper, but the preference in
supervised management approaches lends evidence to
the importance of these criteria [4, 17, 19, 25, 31, 35]. It
is possible that greater accuracy in heuristic approaches
can alleviate these issues, however this is an area that
is still to be explored. The question remains: How can
we further the autonomous behaviours of self-healing
systems whilst reducing the operating costs of large-
scale computing environments?

Previous research has shown that it is possible to
autonomously identify anomalies by using stochastic
primitives such as HMMs [29], RBMs [30], and ANNs
[7, 29]. When utilising unsupervised learning, these
approaches can accurately forecast feature behaviour
without human intervention. The combination of these
two factors allows for a shift from reactive to proactive
fault identification – a major advancement in fault
detection.

Supervised learning is limited in that it is constrained
to reactive approaches. By shifting to unsupervised
learning, proactive, prediction-based fault models can
be used to manage faults that have not been seen before.
Accurately performing this task effectively nullifies the
primary advantage of supervised learning techniques.

However, there are challenges in unsupervised
approaches. Understanding how far behaviours can be
predicted and to what level of accuracy remains an
open area of study. In particular, the accumulation
of error in multi-step ahead predictions is not
easily removed [6]. This is a problem that is
also evident when examining relationships between
multiple features where predictions and models
are almost guaranteed to be different. There is
also little practical data available to the public.
A small number of performance evaluations have
been conducted in controlled (i.e. non-production)
computing environments but little empirical evidence
exists for autonomously identifying faults using

unsupervised learning in live systems or under the
specific context of self-contained applications, such as
front-end services or web-applications.

The rest of this paper is organised as follows: Section
2 contains a summary of the latest unsupervised self-
healing methodologies leveraging stochastic primitives.
Section 3 describes their implementation details,
key components, and variables. Section 4 presents
experimental results, whilst Section 5 discusses these
results and open problems. Section 6 concludes and
highlights topics for future research.

2. Methodologies

Unsupervised anomaly detection within self-healing
systems is in a relatively early stage of development.
The use of evolutionary programming techniques have
been present as far back as 2009 [24]. However, recent
studies have emphasised the use of stochastic primitives
[7, 28–30]. In order to quickly understand where
common effort is being placed, a brief overview of these
studies is provided. This includes their implemented
primitive types, learning algorithm(s), and software
suites – which in turn detail how information is
gathered, and what faults are injected. Dividing these
areas into distinct units for evaluation establishes
the groundwork to describe commonalities in their
respective implementations (Section 3) and results
(Section 4).

There are two primary approaches described in this
paper. The first is generically referred to as Anomaly
Detection Frameworks (ADFs). They operate by sampling
information from a system, storing changes in that
information into vectors, and then using those vectors
to train various stochastic primitives to predict future
feature behaviours: ANNs, HMMs, and RBMs. The
second approach is called Unsupervised Behavioural
Learning (UBL) [7]. UBL operates similarly, but uses
a special type of ANN called a self-organising map
(SOM) that reduces relationships between feature sets
into a two-dimensional lattice. These relationships
are used to forecast feature behaviours in a similar
fashion to the ADFs. In both cases the expectation
of actual behaviours are compared to those that have
been forecasted. In both approaches the forecasted
behaviours and a separate set of operational criteria
are used as a fault model to determine when a fault is
present [16].

The UBL and ADF implementations both use
unlabelled data to forecast anomalies by predicting
unexpected changes in feature attributes. Predictions
are made by observing a period of known or assumed-
good states to train primitives in order to recognise
an expected set of behaviours. Once this training is
complete, observed data is then classified heuristically
into one of several states.
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How each of these approaches operates is slightly
different from the other. In UBL relationships are rep-
resented by neural weights that in turn model sys-
tems behaviours. These weights are adjusted and lever-
aged via learning and mapping phases, respectively.
The learning phase executes a series of weight adjust-
ment steps based on Euclidean distance. Each neuron
is measured against an input vector independently
and the lowest distance value returned is selected as
the primary weight to be adjusted. These adjustments
are made through a learning coefficient that manages
how fast (i.e. elastic) the primitive updates its neural
weights.

The mapping phase is what one might expect –
rather than updating the SOM, an evaluation is run
through the already trained primitive to determine
differences between current and expected behaviours.
In this instance an area value is evaluated between two
neurons; larger results indicate a potential anomaly.
This is a shared approach between both the ADF and
UBL implementations – the exigencies of which are
discussed later in Section 5.

Information gathering in UBL primarily occurs via
interfaces to Xenstore. This includes information that
is pulled directly from associated libraries, system files,
and a custom daemon. Once collected the information
is used to train the SOM or to determine the root cause
of a potential anomaly. Training happens either locally
or via a networked virtual machine (VM) instance.

Fault injection in UBL occurs through the use of
existing performance-testing software suites including:
CPUHog, NetHog, CpuLeak, Bottleneck, and HTTPerf.
Injections happen externally against RUBiS, IBM System
S, and Hadoop instances. Notably, the authors of UBL
explain the decision to use these suites as a measure
to ensure a commonality in accepted platform and
software usage.

The second approach has no acronym, but uses
the term Anomaly Detection Framework (ADF) to
denote the primary service in two separate but related
studies for detecting faults [29, 30]. The ADFs collect
information and evaluate potential root causes of a fault
in a method that is similar to UBL, but with fewer
software overlays and with different primitives.

The learning mechanism in these studies varies based
on the expected output. For single point predictions
the HMM utilises Baum-Welch [1, 2], whilst the ANN
leverages Naïve Bayes [21]. Multi-point predictions
produced by the RBM use Contrastive Divergence
Learning (CDL) [5]. The differences between these
approaches are multi-faceted and are superficially
discussed in Section 3.3. Details on these algorithms are
outside of the scope of this paper, however, they can be
summarised as the differences between when learning
updates occur within each primitive: immediately after

an event has occurred, after all events have occurred,
and after a fault has been detected, respectively.

Similar to UBL, all of the ADF approaches compare
expected feature behaviours with their actual perfor-
mance. Specifically, differences between the expected
behaviours and their actual behaviours are used to
determine the presence of anomalies by forecast-
ing behaviours using previously observed states. As
expected, each learning mechanism within the ADF
implementation has a different way of achieving this
goal.

Single point prediction algorithms use previously
observed feature behaviours to determine whether
or not the latest set of feature behaviours within a
faulty configuration state are expected. This works by
autonomously classifying the system’s configuration as
either good or bad using a series of high-level fitness
tests. Known Good configurations – those that pass all
of their fitness tests – have their features’ behavioural
data stored in a vector. This vector is then used to train
the primitives implemented by the ADFs. If a fitness
test fails, the resulting faulty configuration undergoes
analysis for unexpected feature behaviours.

Multi-point forecasting in the ADFs operates a little
differently. The system’s configuration data is still
classified in the same manner, but there are two key
differences: The evaluation of the root cause of the
fault is done lazily, and matrices are used rather than
vectors. The use of matrices is a requirement of the
primitive and its associated learning algorithm – but
the overall comparison strategy remains the same. The
RBM categorises vectors holistically within the matrix
as either good or bad, and then uses regression analysis
to forecast κ + 1 values, where κ is the dimension of the
matrix.

The ADF gathers information via the Windows
Management Instrumentation (WMI). Attribute and
feature data is extracted and then examined on a per
feature basis once per minute. Changes in the features’
values are denoted in a binary fashion and then stored
as a vector then input into a matrix. This is an important
distinction from UBL which samples once per second.

Faults were injected using two different methods:
adverse configuration changes (ACCs), and direct fault
injections (DFIs). ACCs included shutting off critical
services and were used to emulate human errors within
systems – such as forgetting to enable a service after
a control change. DFIs included forcibly terminating
critical services and denying access to fundamental
resources – such as disk partitions and volatile memory.

3. Implementations

The methodologies described in section 2 have
varying but similar implementations. Both approaches
adhere loosely to the Monitor, Analyse, Predict, and
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Execute closed control loop using feature ‘Knowledge’
(MAPE+K) [15]. However, because there is an emphasis
on the use of unsupervised learning, the classification
of data before it can be used is paramount. This
classification before analysis represents an extra step
compared to existing approaches.

The technical differences in how these approaches
collect, classify, and analyse information are described
in this section. Specifically, the number and types of
features being monitored, and how the collected data
is used, stored, and evaluated are examined. These
properties are discussed before a traditional analysis of
the self-healing frameworks’ prediction (i.e. planning)
and recovery strategies – including what learning
algorithms have been implemented, and under what
assumptions. Visual representations of these processes
for the ADFs can be found in previous publications
[29, 30].

3.1. Collection

Information collection for all approaches happens
either through the use of local daemons or via API
interfaces. These interfaces act as controlled, authen-
ticated gateways into a host, and as a mechanism for
formatting the returned data. Their implementations
differ, however, in both their fidelity and their use.

UBL leverages interfaces to Xenstore 3.0.3
(libxenstat,libvirt), data pulled directly from
a CentOS /proc file-system, and a custom memory
monitoring daemon. In addition to the expected
memory performance metrics, results include I/O data
for both disk and network devices, CPU usage, and
other properties from the role management interface –
i.e., Domain 0. This information is collected once per
second and is stored ephemerally.

The hardware of the UBL VMs is described as 5
physical servers with 3.0GHz Xeon CPUs with 4GB
RAM using CentOS 5.2 with Xen 3.0.3. The guest VMs
also run 64-bit CentOS 5.2. Each physical host manages
5 VM instances.

Once the sampled information is collected, it is
used to greedily train a SOM either locally or via a
separate VM. Information is continuously fed and thus
is not limited to a specific time-span or window. This
information is either used until an anomaly is predicted
by the SOM, or for training until a convergence is
encountered – a topic that is discussed further in
Section 3.3.

Each ADF is implemented on an identically config-
ured Windows 7 VM running IIS 7.5 that is adminis-
tered via VMWare workstation 10.0.1. VMs consisted of
2GB of RAM, and access to one Intel i7-4770 CPU (2
cores). Feature data was sampled through WMI using
the .NET framework (C#, v.4.5).

The ADFs interface with WMI using the following
WMI classes provided at compile time: BIOS, Com-
puterSystem, DiskDrive, LogicalDisk, NetworkAdapter,
NetworkAdapterConfiguration, OperatingSystem, Phys-
icalMemory, Processor, QuickFixEngineering, Service,
and SystemAccount. Each class consists of approxi-
mately 7,500 features, each with their own associated
attributes. These classes were selected from the more
than 300 existing options in order to limit the volume
of data collected and to avoid overlaps.

In both ADF instances, the features and attributes
within the aforementioned classes are catalogued at
a rate of once per minute then stored locally both
in volatile and non-volatile memory. Each collection
consists of datasets, tables, and tuples parsed into
binary vectors or raw configuration data stored as XML,
respectively. Storing information in XML files is used
for resuming the service when running identical fault
tests under variable conditions, such as using fewer
configuration samples.

All collected data via the ADFs is subject to an
expiration criterion. The maximum number of samples
collected by the ADFs is 30. Once this limit is reached
the oldest datasets are expired. This is a critical factor
in how the ADFs infer behaviours differently from UBL
and is discussed further in sections 3.3 and 4.

3.2. Classification

The information gathered by these approaches consists
of unlabelled performance metrics and configuration
data. However, using this information to decide on the
source of an anomaly first requires that this information
be accurately classified – a non-trivial problem.

The state of the art for autonomously and accurately
classifying unlabelled data is outside of the scope
of this paper. However, exigencies in these areas are
occasionally addressed in their respective solutions.
This includes the strategies implemented by each of
the aforementioned approaches, and their respective
limitations.

UBL has three classifications for state: Normal, Pre-
Failure, and Failure. Each state is determined by
calculating the Manhattan distance of a neighbourhood
area size using individual neurons. This calculation
measures the total geometric distance between two
points–typically on a grid. By analysing the differences
in neighbourhood area sizes, UBL is able to classify the
behaviours of individual features as being in one of
three aforementioned categories.

Smaller changes in area size represent a higher
likelihood of predicted feature activity. Likewise,
progressively larger area thresholds indicate anomalies
in performance – the greater the distance the more
likely the respective feature is in either a pre-failure or
failure state. The distances between these values also
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help sort potential problems by order of significance.
This is an important step when analysing the potential
root cause issues (Sections 3.3, 4).

Expected feature behaviours are determined by using
a bootstrap phase. Once UBL is instantiated a pre-
determined training phrase is executed based on direct
observation of the system’s features. This stage occurs
for as long as it takes to update every neuron in the SOM
a total of ten times. The significance of using the value
ten is not described in the original work, however the
average time to train the SOM is mentioned as ranging
between 42 seconds to 7 minutes. The time to fully
train a SOM is dependant in these instances on what
percentage of the CPU is exclusively dedicated to this
purpose.

The ADFs classify information into only two states:
Good or Faulty. However, rather than labelling the
behaviours of individual features, the entirety of a
system’s configuration is given a classification before
looking for feature changes. Once a classification is
made, the data is then parsed in either a greedy [29]
or lazy fashion [30], respectively.

Classification of a system’s overall state is provided
through the use of fitness tests. These tests supply
high-level insight into the health of the system by
performing basic tasks associated with a system’s role –
e.g., the status of associated web services if the role is a
web server. Fitness tests include network connectivity,
service availability (IISAdmin/w3svc), and volatile and
non-volatile memory availability tests including free
memory and hard-disk accessibility. If the system
passes all of its fitness tests its entire configuration is
assumed to be good.

If any of the fitness tests fail then information from
previously validated (Good) configuration samples are
converted to binary vectors based on changes in their
attributes. Afterwards the vectors are used to train
primitives – one per feature – before being used to
analyse the the root cause of a fault – further details of
this are discussed in Section 3.3.

Like UBL a training interval is required once
a fault is suspected to be present. The ADFs are
fully trained after initial anomaly detection between
1,000 and 8,000 ElapsedTicks1 in lazy instances. This
measurement translates roughly between two and 16
seconds, respectively. In greedy instances training is
completed before anomaly detection occurs and results
are displayed between 1,000 and 2,000 ElapsedTicks –
about two to four seconds (Figure 8).

There are a number of differences in how the UBL and
ADF approaches classify data – from how much data is

1ElapsedTicks: This measurement is used to ensure greater reproducibility.
Using measurements based strictly upon timing produces issues including
minute differences in machine configurations and operating systems.
Further reading on this topic can be found here: http://bit.ly/1n6VOpQ.

utilised, at what point the information is classified, and
both how and when data is processed. These differences
are associated with the relative uses of each framework
although some properties are based on assumptions.

For example, the training phase for UBL was tested
in situ before being applied. Using a training phase
provides an advantage in that it does not require a
specific set of fitness tests or roles to be provided before
classifying data. However, using fitness tests follows a
common tenet in self-managing systems research – the
ability to provide high-level policies to systems as a
primary form of administration. It also allows for the
specification of specific areas of interest – an approach
that can reduce false positives.

How long the data is stored and how it is ingested also
play roles in classification. Using a windowed approach
for information parsing allows for the avoidance of
convergence in training data, and greater adaptivity
to changing environmental variables. Both of these
properties represent advantages in implementation but
they come with a cost. Windowing necessitates more
memory and post-processing requirements as purely
additive measures are no longer sufficient. As such, the
expectation is for windowed information to take longer
to classify and process.

The way data is ingested impacts when and
how classification occurs. WMI provides attributes
associated with features in a semi-structured, non-
uniquely identified tuple. In order to address removals
of devices and multiple features that share a similar
name-space this exigency must first be addressed. The
ADFs use a dictionary indicating a shared column
between all features sampled within a specific WMI
class as a unique identifier, such as serial number, ID
number, or other immutable property. This information
is then stored along with an autonomously synthesised
schema. Xen samples metric data from a number of
different features. As the values within these samples
have multiple ranges, their relative performance and
consequent classifications can become difficult. UBL’s
solution is to normalise this information to unilaterally
use the same evaluation techniques across all features.
This reduces the fidelity of the content, but lowers the
programmatic overhead needed to classify the sampled
data.

The classification of data happens at the feature and
system levels for UBL and the ADFs, respectively. This
distinction impacts other aspects such as frequency
of data collection and the number of features and
attributes sampled. It also effects how the data is
analysed: There is an implied relationship between the
number of observations and what predictions, if any,
can be made. However, a larger number of observations
does not always provide for more accurate results.
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Figure 1. Summary of UBL & ADF Framework Attributes

UBL ADFs
Primitives ANN (SOM) ANN, HMM RBM
Classes 3 2 2
Learning
Algorithms

Euclidean,
Manhattan

Naïve Bayes,
Baum-Welch

CDL

Training
Cycles

Conditional:
All neurons
updated x10

5–30 system samples

Windowed No Yes Yes
Polling
Interval
(Sec)

1 60 60

Forecasting
Capabilities

Multi-point Single-point Both

Ingest Type Greedy Greedy Lazy

3.3. Analysis

In order for a self-healing system to correctly
identify the potential cause of an anomaly, it must
first determine that a fault is present. As such,
anomaly detection in self-healing systems occurs after
data has been collected, but typically during either
categorisation or, in more reactive implementations,
when collected data is being parsed. In either case
the categorisation behaviours must occur before an
analysis can be made. It is the accuracy of the collective
categorisation, parsing, and post-processing behaviours
that determine their effectiveness.

To measure the accuracy of these predictions each
of the respective experiments used a series of tests
where the general source of the fault was known to
the administrator but not known to the framework.
Each result was then validated to ensure that the
correct number of true and false positives or negatives,
respectively, had been attributed. Although their
goals are similar, the UBL and ADF experiments
categorise information differently at a number of
levels. This makes a direct comparison of the analysis
methodologies challenging but not impossible.

UBL primarily focuses on understanding changes in
feature attribute data. These changes are analysed for
behavioural deviations from expected norms and then
investigated based on severity. If a feature is determined
to be operating sufficiently outside of the norm, it is
labelled as in either a pre-failure or failure state –
what constitutes as sufficient depends on the relative
neighbourhood area size.

Using the aforementioned bootstrap phase, an
expected set of behaviours are established for a
collection of features. Each individual feature that
is sampled is mapped using a combination of κ-fold
cross-validated, randomised initial weights and input

vectors which are updated into the SOM. As previously
mentioned, this process repeats until each input vector
has been updated ten times at which point the SOM is
considered trained and ready for use.

Once the SOM is trained it begins periodically
sampling the system for further data via Xen’s ‘Domain
0’ interface. The data is then either updated into the
SOM or a differential analysis is performed using the
Euclidean distance of an input measurement vector
against each neuron’s weight vectors, respectively.

The weights in the SOM can be updated incremen-
tally or every time a sample is provided. A sample
contains information about the system’s performance
and behaviours as discussed in Section 3.1 every 60
seconds. If an update occurs, each neuron in the SOM
has its weights validated via a neighbourhood area size
calculation using the summed Manhattan distance of
each of its neighbours.

The total Manhattan distance metric is the primary
indicator of both fault presence and source. Neurons
that have a small area mapping are assumed to be
operating normally. Those neurons with larger distance
spreads are indicators of either precursors to potential
or existing anomalies depending on severity. The
threshold for making these determinations are not
explicitly given in the original work, but a 50% increase
over the example value is given as an indicator of a pre-
failure neuron.

The source of an anomaly is determined using
the preserved geometric positions of each of the
neurons within the SOM. Mapping neurons’ expected
behaviours with those near to the neurons suspected to
be in an anomalous state provide an updated distance
measurement from which to evaluate the cause. The
inference between the feature and its associated
neurons provides an avenue for identification.

UBL’s low level analysis provides an agnostic
approach to determining the source of a fault. It has
advantages in that it does not require roles or additional
pre-requisites to be supplied outside of the bootstrap
phase before becoming operational. However, there are
some constraints and implementation details that differ
from the ADF instances that are worth mentioning
explicitly.

The SOM within UBL can update its weight
incrementally but not indefinitely. In the current
implementation there is no way to expire old data as it
is immediately incorporated within the SOM and then
the sample is expired. Since the information cannot be
expired the SOM’s weights will eventually converge.
This eventually creates an inability to perform the
differential methods needed for classification and
analysis.

The feature data examined by UBL is normalised
into a range from 0 to 100. By examining both the
minimum and maximum possible values of a feature
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before executing the number of neurons required drops
substantially. Specifically, the SOM is implemented as a
32x32 matrix containing 1024 neurons. Normalisation
of values may produce a drop in the fidelity of
information. For example, if the change in the neuron’s
actual value represents less than 1% of its total possible
value, then the change may not occur within the
SOM. In some instances the original work states that
normalisation values have also been reported to be
over 100. These incidents are claimed to be non-
impacting, but are not completely understood in terms
of implementation or how they might influence the
analysis of anomalies.

Using randomised weights ensures more stable
results by avoiding bias in knowing the initial weight
vectors. In this case, UBL instantiates them individually
per neuron to avoid only partial map training when
a bad seed value is encountered. Notably, the ADF
approaches uses a similar technique by randomising
learning weights in hidden neurons.

The ADF approaches operate under similar condi-
tions and principles to UBL. However, instead of focus-
ing exclusively on feature behaviours, a combination
of systems validation (i.e. fitness) tests are used to
provide context to changes in attribute data. Contextual
information offers clues as to what shifts in attribute
behaviours are expected or unexpected by attributing
their values with service-level objectives (SLOs). If all
SLOs are successfully being met, then the configuration
is given a context of being in the aforementioned Good
state. In this case, SLOs are incorporated into and
represented by fitness tests.

Whilst the system is in a Good state information
is sampled via WMI then saved to both volatile and
non-volatile memory. In the first ADF experiment, this
information was greedily learned by the respective
primitives for each feature set at the time of ingest –
either an ANN or an HMM. In the second experiment
this approach was adjusted to a lazy operation in order
to optimise memory usage and minimise the impact to
the system whilst under operating conditions.

Initially all primitives were retrained upon every
sample. Since the samples were stored in memory, a
complete vector could be regenerated at each polling
interval relatively quickly, if not somewhat expensively.
This allowed for windowed training for each detected
feature and associated attribute by destroying, re-
instantiating, and re-training the primitive. The shift to
a lazy approach removes the high computational costs
of the previous approach, but increases the delay in
returning the ordered list of potential root causes (i.e.
‘leads’). This is because each primitive (i.e. RBM) must
be fully trained before the list can be generated – a
process that can only be started once one or more fitness
tests have failed.

Samples are additively saved until a maximum
number of specimens is reached, or a fault is
encountered – whichever occurs first. If a maximum
number of samples is reached, the oldest sample
is expired before the current system’s configuration
is added to the ADF’s collection of data-sets. If a
fault is encountered the existing samples are used to
generate vectors which then instantiate and train their
respective primitives. As previously mentioned, the
ADF’s maximum sample count is 30 in all instances.

Vectors of length κ − 1 are produced – where κ is the
number of samples that are stored after passing their
respective fitness tests. As a comparison must be done
to provide the values in each point in the vector, there
is always one value missing. Training for either ANN,
HMM, or RBM primitives occurs via either Naïve Bayes,
Baum-Welch, or CDL, respectively.

Once the primitives are trained they can forecast
either single (ANN, HMM) or multiple points of
behaviour (RBM). This ability is gained from the
predictive reasoning capabilities of the algorithm along
with the physical structure of the primitive(s). In the
case of RBMs, for example, an undirected graphical
model uses an approximated gradient for the log-
likelihood of a specific behaviour. This is sampled using
a Markov chain which is weighted towards the last
observed state.

For reasons of scope and complexity, the functional
and operational aspects of the respective learning
algorithms are not addressed here in detail. The
details of these algorithms are generally agreed to
be well documented and readily available. However,
CDL remains an evolving and not entirely understood
methodology [5, 10, 32].

Each vector that displays a change in its last Good
sample is marked for forecasting. If the forecasted
behaviour from the primitive does not match the actual
behaviour of the feature then it is added to the list
of leads and given a confidence value. The confidence
value represents the inverse likelihood that an event
should have been seen using the last κ-1 samples based
on the respective learning algorithm. Those behaviours
determined least likely to have occurred are placed at
the top of the list before being returned.

The ADFs emphasise a high-level approach to
determining both the presence and source of an
anomaly. They are designed to automate alerting
procedures and operate as independent services
running in large-scale, centrally managed computing
environments. However, requiring a set of role-based
fitness tests means that they operate less agnostically
than UBL.

Like UBL, the ADFs have some unique constraints,
advantages, and disadvantages. In particular, training
time, polling intervals, and a higher degree of initial
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human oversight are major points of difference in
implementation.

A minimum of two Good samples must be provided
before a failure can be analysed by the ADFs. This is
similar to UBL’s 10-update pre-requisite, but with the
added difference that the polling intervals are done at
fixed time differences. This allows for some measure
of prediction as to when training will be complete
and allows for a greater volume of data collection,
but it also presumably requires a much longer training
period. This coincides with the aforementioned polling
attributes being once per minute for the ADFs, and 60
times per minute with UBL.

Forecasting behaviours is not an exact process.
In each instance the abilities of the primitives are
constrained by the usual problems but also the
additional restrictions of their learning algorithms. This
includes accepted and expected error in probabilistic
learning, and numerous other factors.

Using fitness tests may have some advantages
in specificity, but it requires greater initial human
oversight. By looking for general areas where problems
may exist it stands to reason that correctly detecting
a fault that is associated within such an area is more
likely – so long as the tests and analysis logic use
the same points of reference. For example, a network
connectivity fitness test may help indicate which
features are more likely to be the source of the anomaly
assuming the context of the test is incorporated into the
analysis logic.

Training RBMs is relatively expensive. Compared
to the iterative updates of UBL and the first
ADF framework, the second ADF approaches are
particularly intensive. Each RBM requires 5,000
training cycles (i.e. epochs) before being utilised. If
there are a large number of differences in attribute
states between the last known good and fault
configuration samples, it could take several minutes for
a potential root cause to be proffered by the application.

There is a certain amount of elasticity in the ADFs
ability to forecast feature behaviours. The size of the
training sets – both with respect to the number of
features being monitored and the total number of
observed configurations – influences the processing
time, adaptivity, and accuracy metrics. By increasing
the frequency of the polling interval, the ADFs
maximum window is constrained to a shorter time
period. Once the maximum number of samples is
reached, old data is discarded. Consequently, the ability
to forecast data becomes restricted to a small subset
of information. Increasing the maximum number of
observed samples used for parsing comes with higher
resource constraints, but more stable predictions and
less sensitivity to outliers. Expiring old information
helps to retain the correct scope from which to draw

conclusions and avoids problems in over-training and
convergence.

Lastly, different learning algorithms provide different
results – which is both why they are interesting and
why they are difficult to compare. It is not always clear
as to how factors impact each other, or if there are
relationships between attributes either in the learning
algorithm or the data when a fault is detected. However,
some of the results suggest that it should be possible to
help determine the existence of such relationships.

4. Results

The UBL and ADF experiments successfully demon-
strate the ability to accurately predict and detect
anomalies whilst identifying their respective sources.
This result comes with varying degrees of success but
overall represents a milestone in the autonomous miti-
gation of errors. By analysing the source of a fault, self-
healing systems continue to develop more advanced
recovery strategies and techniques and provide one
avenue for the reduction of operating costs.

This section presents a summarised version of the
original results from each of the aforementioned
studies. The original findings are first presented and
then compared using synthesised data from each
approach. A discussion of these findings is presented
afterwards in the following section.

4.1. Summary of Findings

UBL’s results can be summarised as being able to
accurately predict the onset of performance anomalies
within a system using a SOM. The success of this
claim is contrasted against two additional unsupervised
learning schemes which are outperformed: Principle
Component Analysis (PCA) and κ-Nearest Neighbour; (κ-
NN). Findings are reported primarily using graphical
representations with the most successful results being
further explained textually. Graphics consist primarily
of receiver operating characteristic (ROC) curves and bar
charts that contain averages from “30 to 40” iterations
of a specific experiment. Experiments are run using a
multitude of stress testing suites (Section 2) and well
known infrastructure applications including RUBiS,
IBM System S, and Hadoop.

The graphs demonstrate supporting evidence for sev-
eral advancements in unsupervised anomaly detection.
This evidence is divided by suite and application in the
original paper [7] but can be broadly summarised in
terms of accuracy metrics, achieved lead time, and the
effects smoothing has on anomaly identification.

Lead time generated by the forecasting capabilities of
the SOM varied between 3 and 50 seconds. How much
lead time is generated depends heavily upon what test
was being examined, how fast the anomaly manifested,
and the level of noise in the respective dataset. Average
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lead times were reported along with maximum values
in the original works and are summarised as follows:

Hadoop System S RUBiS
Testing Suite Avg Max Avg Max Avg Max
Bottleneck 5 6
CpuHog 3 4 3 4
CpuLeak 40
MemLeak 24 25 47 50 7 50
NetHog 7 7

Figure 2. Lead Times: UBL. This chart represents the number
of seconds UBL identified a failure before it reached a terminal
threshold; higher values are better. Blank = No Data.

Use of smoothing was shown to be most effec-
tive for generating higher true positives in noisy
datasets and where anomalies appear quickly. Results
showed an increase in true positive rates under these
circumstances although they were accompanied by
the expected caveat of potentially removing valuable
fidelity within the data. Highlights are provided in the
following section to illustrate some characteristics of
the reported results.

Notably, not every experiment in UBL used the
same testing suites or the same types of evaluation
criteria. In the case of Hadoop, for example, a 50-point
moving average smoothing test is uniquely executed to
illustrate improved true positive rates on noisy datasets.
However, in some instances using smoothing caused
UBL to exhibit low specificity. This was particularly
evident in the MemLeak and CPUHog tests for Hadoop
and IBM System S, respectively. Although the former
was attributed to noise, the IBM System S false positives
are explained due to the rapidity in which CPU spikes
appear.

A summary of tests and their results are provided to
the reader for ease of reference (Figure 3):

Hadoop System S RUBiS
Testing Suite TP FP TP FP TP FP
Bottleneck G G
CpuHog G G 93% 0.5%
CpuLeak G G
MemLeak G G 98% 1.7% 97% 2.0%
NetHog 87% 4.7%

Figure 3. Summary of Results: UBL. Some results are presented
textually, graphically, or not at all. G = Data via Graph Only,
Blank = No Data, TP = True Positives, FP = False Positives.

The ADF findings came from two separate studies –
one using an ANN and an HMM, and another using
an RBM. As previously mentioned each primitive has
an associated learning algorithm – either -Naïve Bayes,
Baum-Welch, and CDL, respectively. The ADF collected

information over a period of time between 5 and 30
minutes via WMI about the system before it was then
injected with either an ACC or DFI. The faults were
injected in the ADFs exactly 30 times.

Results from these studies were contrasted using
performance metrics such as Total Leads, Confidence,
Fault Position, Time-Taken, and Precision. These aspects
represented the number of paths for investigation, their
unsupervised predicted likelihood for being the correct
source of the anomaly, where the lead appeared in the
descending ordered list of leads, how long it took to
complete list generation, and a manual account for the
number of correctly and incorrectly identified sources
of anomalies, respectively.

Preliminary results positively demonstrated the
ability to autonomously and accurately identify the
source of a fault based on feature changes. This
was achieved by training a stochastic primitive using
the frequency in which a specific feature attributed
changed within a time-window. It was also possible
to predict the likelihood of behavioural changes in
properties. The subsequent study expanded upon this
approach by improving the accuracy and precision
metrics, lowering resource requirements, and setting
the groundwork for establishing further anomaly
detection studies via stacked RBMs (i.e. ‘deep-learning’)
approaches. It also came with the added cost of longer
wait times for results, higher variability within those
results, and – although the experiment was run using
the same amount of data – the acknowledgement
that under ideal circumstances the RBM primitive
requires larger training periods than the ANN or HMM
approaches. Lastly, the ability to leverage multi-step
ahead forecasting of feature behaviour – something
UBL was able to demonstrate a year prior – is
incorporated.

Results in the ADF approaches were presented
via line charts that referenced the aforementioned
evaluation criteria either by total time the ADF had
been running or the number of configuration samples
(Figure 4). Additionally, textual information – including
source code and results gathered during the experiment
– are provided publicly at the end of Section 4. A VM
containing the ADFs is available upon request.

Overall UBL’s performance is shown to be faster
and more precise than the ADF’s baseline study with
ANNs and HMMs – but this does not appear to be the
case when it used RBMs. Similarly, the fault position
metric was most consistent with the ANN. The reasons
for these results seem likely to do with how the
learning algorithm is implemented, and the degree of
randomisation in the ANN primitive.

A direct comparison in these respects is somewhat
challenging to implement. Whilst the two approaches

9  EAI Endorsed Transactions on
Self-Adaptive Systems  

01-2015 | Volume 1 | Issue 1 | e3



are useful for front-end systems and IaaS infrastruc-
tures, their methods centre on different types of infor-
mation analysis and some information is not publicly
available. UBL focuses on performance metrics pro-
duced and analysed once a second, where as the ADFs
examine changes in feature behaviours over a specified
period of time – up to 30 minutes. The differences
in analysing feature performance versus changes and
the frequency in which this data is examined impacts
several other assumptions within the respective frame-
works.

4.2. Synthesis

Differences in the approaches of both the UBL and
the ADFs make direct comparison difficult. To mitigate
this issue a common baseline between each approach
is synthesised using similar performance metrics and
criteria whilst also acknowledging their fundamental
distinctions.

There are a number of differences between UBL and
the ADF approaches. In addition to sampling frequency,
major distinctions include: The type and volume of
data being sampled, forecasting capabilities, pro-active
versus reactive behaviours, and classification criteria.
The resultant data for each of these studies is presented
differently.

The majority of results associated with the UBL
approach are presented using the aforementioned ROC
curves. These graphs are described as displaying the
"anomaly prediction accuracy" of UBL via the true
positive rate (1) and false positive rate (2) metrics.

UBL provided two consistent sets of results for
each ROC curve – a non-smoothed series and 5
point moving average smoothed series. These datasets
were labelled as UBL-NS and UBL-5PtS, respectively.
Although other data was provided it was not included
in the synthesised results due the period nature in
which it was provided. Using this information, and the
publicly provided ADF results for fault position, total
time taken, precision, confidence, and total leads, the

ANN HMM RBM
Avg Max Avg Max Avg Max

Leads 15 16 18 27 225 767
Confidnc 81.2 91.8 99.9 99.9 97.0 99.8
Position 3.58 9 2.41 5 1.87 19
Time(s) 2.12 2.36 1.19 1.75 12.1 30.9
Precision 24.06 34 21.6 36 86.1 100

Figure 4. Summary of Results: ADFs. A switch between greedy
and lazy algorithms manifested as both a large time increase
between when a fault was found and an ordered list of fault
hypothesises (i.e. leads) was returned and improved accuracy.

Figure 5. Anomaly Prediction Accuracy Formulas: UBL.

AT =
Ntp

Ntp + Nf n
(1)

AF =
Nf p

Nf p + Ntn
(2)

Figure 6. Precision Measurements for UBL & the ADFs. The
precision of both approaches drops as more data is added. This
may be due to a confirmed convergence problem (UBL) or over-
training the primitives (ADFs/UBL).

following metrics were generated: Precision, Prediction
Time, and Fault Position.

The precision data was generated by taking true
positive rates and averaging the values of all relevant
experiments at key time intervals (Figure 6). In the
case of the ADFs this meant using values for tests that
leveraged the same primitives in 5 minute intervals.
Each interval represented a sixth of the total results.
Similarly, the UBL data used both the NS and 5PtS sets
to generate the precision data points at intervals that
matched a sixth of the volume of data.

After comparing the results a drop in precision was
noted for both UBL and the ADFs over time. The one
exception to this was an experiment that leveraged
HMMs which continued to improve – a situation
that could be explained by possible over-training. As
more data is received by the primitives and learned,
their sensitivity to new information is reduced. This
effectively causes a bias towards more extreme outliers.

A lack of sensitivity appears to be more evident in
situations where learned information is not expired.
UBL lists a known convergence problem after too many
learning updates to the SOM – this effectively limits the
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Figure 7. Average Position of Faults Based on Approach.
UBL and the ADFs prioritise potential sources of faults. Correct
recommendations are represented as an average of all tests based
on primitive type. Lower values signify better recommendations.

maximum operating time of this approach. Conversely,
the ADF experiments keep a window of information
created by user specified values of polling frequency (in
milliseconds), and total number of samples. Although
both incur degradation, UBL’s appears to be much more
rapid – however the variability in the RBM data makes
it difficult to be certain in all cases.

Using true positive rates demonstrated if the correct
solution was discovered, however in many instances
multiple potential faults were provided. In UBL
neurons ‘voted’ between possible root causes, whilst
the ADFs used confidence values to build an ordered
list of leads. Both systems can be seen as basic
recommendation engines with solutions being ordered
or weighted in some fashion. By understanding where
the correct fault was within those engines (either
by weight or by position) a demonstrable type of
effectiveness is provided for each approach (Figure
7). In this instance, the fault position of the correct
root cause is evaluated against the total number of
recommendations. The lower the value, the sooner the
engine selects the correct root cause. ANN is the most
consistent technique, but is equalled by both RBM and
HMM given sufficient data volume.

However, accuracy in predictions are often directly
related to resource availability. Therefore, the balance
between how fast an application returns a result and
its level of accuracy is paramount. Fault position was
contrasted with resource utilisation by examining the
total amount of time a framework took to indicate the
source of a fault – collectively referred to as Prediction
Time. Prediction Time was based on the total number of

milliseconds from when a fault was first suspected and
when the results were fully produced by the primitive.

In instances where greedy algorithms were used the
amount of time it took to predict a fault was fairly
static. This was an expected result as the systems
in question processed the same amount of data in
the same fashion at regular intervals. However, the
ADF’s lazy implementation of RBMs showed a varying
amount of time to process information (Figure 8). UBL
reported a static 490ms requirement per minute of
data gathered to update the SOM before generating a
prediction. Using this value the total amount of time
per sample was plotted out in minutes. The ADF’s
initially followed the same pattern as UBL – although
due to the complexity differences of their respective
learning algorithms they executed much faster. CDL
required nearly the same amount of time as the SOM
required to update its neurons.

Implementation played a role in the evaluation of
time-based metrics. The two primitives used in the first
ADF experiment leveraged a greedy implementation
using a windowed collection of datasets. This meant
that once a minute all primitives would be discarded
and retrained – an action requiring 50% of the
total CPU activity on the VM for about 15 seconds.
By processing this data upfront the system was
able to return results relatively quickly – between
500ms and 4,500ms. However, the impact to the
system’s performance was clearly a disadvantage.
UBL’s linear training and fast prediction times were
impressive. They illustrated an effective approach for
determining errant feature behaviours within 2,450ms
and 14,700ms (Figures 2,8) ± 2.5ms. As UBL’s primary
goal was to pro-actively predict anomalies this time
was particularly important. Faults that were identified
quickly enough could ideally be addressed before
fully manifesting. This was a fundamental difference
from the ADF approaches which emphasised reactive
behaviour by updating future iterations of VMs.

RBMs in the ADF approach compared similarly to
UBL time-wise when predicting the root cause of a
fault. A substantial increase in time was noted between
the two ADF experiments – the latter was based on a
lazy implementation for data ingest. This accounted for
both the increase and difference between the processing
times for the same volume of data in the other ADF
experiments. Times ranged from 1,217ms to 14,198ms
based on the number of samples provided to the ADF.
However, as the data is windowed, prediction times
were expected to stop increasing after the maximum
number (i.e. 30) samples was reached.

Prediction Time shares a relationship with training
time. If the majority of training comes before the
prediction takes place, then the prediction time is
reduced. Notably, training time for the primitives
varies based on a number of characteristics including
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Figure 8. Total Training Time Based on Volume. The training
time for each approach is impacted by how much data is present
and when data is processed. Faster training times are particularly
critical in ensuring lead times for proactive anomaly mitigation.

required epochs, neurons per primitive, volume of data,
type of data, and of course which learning algorithm
was being utilised. Of the two instances where lazy
algorithms were implemented training times appeared
to be similar.

Neuron count totaled 1,024 and ~7,200 in the SOM
and various ADF approaches, respectively. Primitives
incorporating these neurons required up to 6,000
training epochs for UBL, and 5,000 per primitive
when RBMs were in place. In other ADF instances
training periods used as few as 5 epochs per primitive.
Depending upon which learning algorithm was in
place, the time for completing training in a primitive
varied. Clearly different learning algorithms had
different rates of success, but their overall effectiveness
was also bounded by resource constraints. Given a
greater number of resources – such as time, memory,
and clock cycles – the accuracy of the predictions
increased, but only to a point.

The data sampled from UBL is approximated.
The ROC curves were sampled at high fidelity to
approximate their original metrics (e.g. precision). This
allowed for the comparison of UBL’s performance
values with those from the ADF experiments. In some
instances values overlapped or are otherwise illegible –
on those occasions an educated guess is made. Lastly,
the number of samples in the ROC curves is not
explicitly listed. However, based on the number of fault
injections reported in the original work, each graph is

assumed to span at least 30 samples. All associated data
is made public2.

5. Discussion

By analysing changes in performance metrics and
feature attributes it is possible in many cases to
accurately determine the presence and cause of a
fault using stochastic primitives. The results from
these studies show a shift from reactive to predictive
measures, and that specific attributes can be correctly
associated with a fault using abnormal variations in
either performance metrics or frequency in feature
changes. However, there is room for improvement
in these approaches – particularly in noisy datasets,
feature locality, and distributed learning.

5.1. Observations

Some of the discovered results are surprising. Due to
the volume of data, the ADF approaches were expected
to take longer to find a solution than UBL. Instead, the
time values are similar but the accuracy values are not.
Two things are gained from this: Firstly, it is clear that
resource utilisation does impact a framework’s ability
to accurately generate a fault hypothesis. Preliminary
data shows that by increasing the number of training
epochs it is possible to achieve better results. However,
some algorithms appear to be more efficient than others.
Secondly, by comparing the precision (Figure 6) and
fault position (Figure 7) metrics, it is evident that the
RBM approach demonstrates far fewer false positives
than UBL. This is beneficial in environments seeking to
reduce type I errors, but it might be optimised by using
fewer neurons. However, other types of primitives may
yield stronger results – a topic discussed later in this
section.

Training periods are necessary for both approaches
before operating. Whilst an improvement over prior
research in their ability to use unlabelled data,
the existence of these requirements represent a
fundamental problem: How to balance instantiating
a framework that can accurately detect faults and
reducing the initial training period. Several problems
have emerged in trying to balance these two factors.
However, there may be a solution to this problem using
an evolutionary approach.

SLOs and fitness tests can provide measures of a
system’s health, but more importantly they offer a way
to administer a system from a higher administrative
level. This is one of the primary goals of self-managing
and self-adaptive systems research [12, 14]. In each of
the aforementioned studies, progress in this area was

2Results sampled from UBL, along with the latest ADF source code and a
subset of results, can be acquired here: http://bit.ly/1oGBX67.
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apparent. However, not all SLOs are created equal and
during normal use variance needs to be accounted for.

In each case the use of presumed or verified ‘known-
good’ datasets were used to help classify sampled
information. The ADFs’ use of fitness tests to determine
the general health for the system allowed for faster
training, but did not take into account individual
feature changes until after a fault was detected. This
could make feature locality more difficult to determine
in its current form. Similarly, UBL used a vetted series
of inputs to resolve a number of factors associated with
SOM instantiation and training. The use of a static
training mechanism is, arguably, a potential source of
problems for dynamic fault detection, a priori.

The use of a layered approach towards classification
is one of the primary differences between the aforemen-
tioned studies. The UBL study ignored so-called ‘con-
stant’ metrics – those values that changed very infre-
quently – in favour of minimising resource usage whilst
focusing on metric changes simultaneously. However,
the ADF approaches did exactly the opposite; they rein-
forced non-changing attributes as nominal behaviours
and used this information to update confidence values
when changes occurred and only when necessary.

Not having to write independent policies is one
advantage that UBL has over other approaches: No
policies need to be written explicitly outlining the
purpose of the machine. Normalising all values and
providing a static minimum and maximum allows for
autonomous evaluation of the system regardless of
role. This means faster provisioning but perhaps less
targeted behavioural adjustments after instantiation.

UBL tested centralised versus localised training
benefits. UBL focused on identifying and resolving an
anomaly within a specific window or ‘lead time’. The
time to transfer data to and from a training VM and
implement a solution often exceeded the lead time that
was generated by the SOM.

5.2. Lessons

Ultimately the UBL study deemed the centralised train-
ing approach too slow for practical use, however it
may be the way forward depending on environmental
conditions. Rather than requiring greater lead time, the
solution may be to offer a temporary fix whilst aug-
menting future VMs against similar faults. Evolution-
ary methodologies have already been shown capable of
synthesising new, valid systems configurations under
similar circumstances [23]. The next step may be to
use directed training techniques to augment the accu-
racy of these approaches and to reduce their respective
resource costs.

Fidelity is an issue that appeared several times in
each study. Greater fidelity often came with longer
collection times, higher noise ratios, and longer training

periods. However, it also provided more opportunities
for inference. Finding a balance between how much
information is necessary is an open problem – both
contextually and otherwise.

It is clear that depth of fidelity is a property that
changes based on what problem is being assessed –
although the layered approach of general classification
of systems’ health metrics then analysis provided
positive initial results. UBLs approach to handling
noise is to use smoothing and normalisation techniques.
In several instances smoothing produces a notable
increase in false positives, but it also correctly identifies
faults in some of the noisier datasets.

Using stored data provides a way to resume analysis
in the ADFs, but this feature is notably absent in UBL.
Drift – the gradual change in a system’s configuration
and state from one time interval to the next – makes
direct comparisons difficult when resuming from a
previously saved state. However, saving information
rather than using it directly provides some key
advantages including the live cloning of VMs to
do multi-point analysis, and the use of multiple-
concurrent training sessions under very similar (if not
identical) assumptions.

UBL’s predictive approach provides unique advan-
tages via the potentially immediate mitigation of
anomalies. The use of an additional pre-failure state
provides a window for mitigation that is absent in the
ADF experiments. It would be interesting to see if the
aforementioned lead times generated by UBL are faster
than current VM replacement techniques in IaaS, PaaS,
and SaaS infrastructures. If not, then replacement may
be a better option. Likewise, the use of simple success
or failure states is too binary to match the gradual
emergence of some faults. The ADF experiments could
leverage gradients in SLO or fitness violations to deter-
mine stronger confidence values when generating leads.

It is suspected that UBL’s results could be improved
by using a windowed data-set. Despite its otherwise
positive results, the over-training of the SOM appeared
to critically inhibit anomaly detection at large. Adding
this feature may not only improve their results, but
would presumably allow for greater resiliency to
changing operational circumstances such as increases
and decreases in service usage and associated resource
availability.

6. Conclusion

The UBL and ADF experiments demonstrate that it
is possible to accurately identify both the presence
and potential cause of a fault in a short amount of
time using unlabelled data. This comes directly from a
system’s observed behaviours under normal load within
virtualised computing environments, using stochastic
primitives such as ANNs, HMMs, and RBMs. However,
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accuracy and balancing resource utilisation in these
approaches remain core challenges, as well as the lack
of human-subject studies demonstrating the potential
for reducing for costs.

7. Future Work

There are a number of different areas in which
autonomous fault prediction could benefit from future
research. Continuing to further understand the differ-
ences behind the aforementioned approaches and why
results have varied remains an obvious first avenue.
Although a baseline has been established and some
expectations on performance have been observed, the
variables involved and their relationships could be
further investigated. Doing so would ideally allow for
more concrete conclusions as to the exact reasons why
Precision metrics differ between UBL and the ADFs, and
why ANNs show more consistent Fault Positions.

Additionally, new avenues for fault detection may
prove useful to the field – including the combination
of fault localisation and evolutionary techniques,
understanding multi-step ahead prediction using
multiple points of inference, fidelity studies – how
much is enough data – , public studies involving human
subjects and error detection, and efficiencies in learning
algorithms used in stochastic primitives.

With regard to the latter, the advancement of
autonomous fault prediction would benefit from more
efficient learning algorithms, a comparison of a greater
number of stochastic primitives, and integration with
evolutionary programming techniques. By combining
these areas of study local minima in search-space
based approaches may be reduced, and optimisation in
implementation could be further achieved.

How anomalies are inferred in these approaches does
not currently take into account feature locality. Each
methodology has the ability to forecast feature or per-
formance metrics using observations from known good
states. However, linking relationships between multiple
features remains unexplored. By understanding where
relationships exist between features, the solutions pro-
vided by self-healing frameworks could avoid problems
with deterministic solutions. Additionally, combining
multi-step ahead prediction and feature locality studies
could yield stronger recovery strategies.

Although no experiments have yet been performed,
the ability to retroactively forecast attribute behaviours
via the RBM already exists. It operates by synthesising
vectors given an input for a specific feature once
learning has been completed. These vectors are of κ
length, with each point representing a specific time-
interval. Instances where predicted changes diverge
may be indicators of problems, particularly if paired
regularly with other synthesised vectors at the same
time-interval.

In addition to evolutionary techniques, layering
RBMs could improve the accuracy of fault cause
identification. Layered (i.e. stacked) RBMs provide a
vetted system for using probabilistic models to infer
relationships between features in a variety of fields
[11, 13, 26, 27]. RBMs also have an impressive ability to
provide contextual inference in noisy datasets, however
an alternative is to use Generative Stochastic Networks
(GSNs). This is a new type of stochastic primitive that
uses advances in the backward propagation of errors
[3].

Efficiency in learning algorithms, particularly for
fully recurrent neural networks, remains a critical
stumbling block and is one aspect that could directly
and positively impact future studies.

Lastly, there are no public studies comparing self-
healing software and human subjects. Without this
information, determining if a proposed solution is
able to reduce costs and if the solution meets the
minimum criteria for accuracy and speed does not seem
attainable. A study in this area would be immensely
useful to the field.

Acknowledgements. This research was partially supported
by the Scottish Informatics and Computer Science Alliance
(SICSA). The authors would like to thank Saleem Bhatti,
Ildikó Pete, and César Souza [34] for their insights and
technical suggestions.

References

[1] Baum, L. and Petrie, T. (1966) Statistical inference for
probabilistic functions of finite state markov chains. The
Annals of Mathematical Statistics 37(6): 1554–63.

[2] Baum, L. and Petrie, T. (1967) An inequality with
applications to statistical estimation for probabilistic
functions of markov processes and to a model for
ecology. Bulletin of the American Mathematical Society
73(3): 360–3.

[3] Bengio, Y., Thibodeau-Laufer, E. and Yosinski, J.
(2014) Deep generative stochastic networks trainable by
backprop. In Proceedings of the Thirty-one International
Conference on Machine Learning (ICML’14) (Springer).

[4] Cardellini, V., Casalicchio, E., Grassi, V., Iannucci,
S., Lo Presti, F. and Mirandola, R. (2011) Moses:
A framework for qos driven runtime adaptation of
service-oriented systems. IEEE Transactions on Software
Engineering PP(99): 1–23.

[5] Carreira-Perpinan, M. and Hinton, G. (2002) On con-
trastive divergence learning. Department of Computer
Science, University of Toronto.

[6] Cheng, H., Tan, P.N., Gao, J. and Scripps, J. (2006)
Multistep-ahead time series prediction. In Advances in
Knowledge Discovery and Data Mining (New York, NY,
USA: Springer), 765–774.

[7] Dean, D.J., Nguyen, H. and Gu, X. (2012) Ubl: Unsu-
pervised behavior learning for predicting performance
anomalies in virtualized cloud systems. In Proceedings

14

C. Schneider et al.

 EAI Endorsed Transactions on
Self-Adaptive Systems  

01-2015 | Volume 1 | Issue 1 | e3



Unsupervised Fault Detection in Self-Healing Systems

of the 9th international conference on Autonomic comput-
ing, ICAC ’12 (New York, NY, USA: ACM): 181–190.
doi:10.1145 2371536.2371571.

[8] Dobson, S., Sterritt, R., Nixon, P. and Hinchey, M.
(2010) Fulfilling the vision of autonomic computing.
IEEE Computer 43(1): 35–41.

[9] Dobson, S., Denazis, S., Fernández, A., Gaïti, D.,
Gelenbe, E., Massacci, F., Nixon, P. et al. (2006) A
survey of autonomic communications. ACM Transactions
on Autonomous and Adaptive Systems 1: 223–259.
doi:10.1145/1186778.1186782.

[10] Fellows, I.E. (2014) Why (and when and
how) contrastive divergence, ArXiv.org.
Http://arxiv.org/pdf/1405.0602v1.pdf.

[11] Ghoshal, A., Swietojanski, P. and Renals, S. (2013)
Multilingual training of deep neural networks. In
Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on (IEEE): 7319–7323.

[12] Horn, P. (2001) Autonomic computing: IBM’s perspec-
tive on the state of information technology. .

[13] Humphrey, E.J., Bello, J.P. and LeCun, Y. (2012)
Moving beyond feature design: Deep architectures and
automatic feature learning in music informatics. In
Gouyon, F., Herrera, P., Martins, L.G. and Müller, M.
[eds.] ISMIR (FEUP Edições): 403–408. ISBN: 978-972-
752-144-9.

[14] Kephart, J.O. (2011) Autonomic computing: The first
decade. In International Conference on Autonomic Com-
puting (Karlsruhe, Germany: ACM SIGARCH/USENIX):
1–56. New York, NY.

[15] Kephart, J.O. and Chess, D.M. (2003) The vision of
autonomic computing. Computer 36, Issue: 1: 41–50.

[16] Koopman, P. (2003) Elements of the self-healing system
problem space.

[17] Li, G., Liao, L., Song, D., Wang, J., Sun, F. and
Liang, G. (2013) A self-healing framework for qos-
aware web service composition via case-based reasoning.
In Web Technologies and Applications (Springer Berlin
Heidelberg), Lecture Notes in Computer Science 7808,
654–661.

[18] McCann, J. and Huebscher, M. (2004) Evaluation
issues in autonomic computing. In Grid and Cooperatve
Computing - GCC 2004 Workshops (Springer Berlin),
3252, 597–608.

[19] Menasce, D., Gomaa, H., Malek, S. and Sousa,
J. (2011) Sassy: A framework for self-architecting
service-oriented systems. Software, IEEE 28(6): 78–85.
doi:10.1109/MS.2011.22.

[20] Miorandi, D., Lowe, D. and Yamamoto, L. (2010)
Embryonic models for self–healing distributed services.
In Bioinspired Models of Network, Information, and
Computing Systems (Springer Berlin Heidelberg), Lecture
Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering 39, 152–
166.

[21] Pearl, J. (1988) Probabilistic reasoning in intelligent sys-
tems: networks of plausible inference (Morgan Kaufmann).

[22] Psaier, H. and Dustdar, S. (2010) A survey on self-
healing systems: approaches and systems. Computing 91,

Issue: 1: 43–73.
[23] Ramirez, A.J., Knoester, D.B., Cheng, B.H. and

Mckinley, P.K. () Plato: a genetic algorithm approach
to run-time reconfiguration in autonomic computing
systems. Cluster Computing 14(3): 229–244.

[24] Ramirez, A.J., Knoester, D.B., Cheng, B.H. and
McKinley, P.K. (2009) Applying genetic algorithms
to decision making in autonomic computing systems.
In Proceedings of the 6th international conference on
Autonomic computing, ICAC ’09 (New York, NY, USA:
ACM): 97–106.

[25] Rilling, L. (2006) Vigne: Towards a self-healing grid
operating system. In Euro-Par 2006 Parallel Processing
(Springer Berlin / Heidelberg), Lecture Notes in Computer
Science 4128, 437–447.

[26] Sánchez-Gutiérrez, M.E., Albornoz, E.M., Martinez-
Licona, F., Rufiner, H.L. and Goddard, J. (2014) Deep
learning for emotional speech recognition. In Pattern
Recognition (Springer), 311–320.

[27] Schmidhuber, J. (2014) Deep learning in neural
networks: An overview. CoRR abs/1404.7828.
Http://arxiv.org/abs/1404.7828.

[28] Schneider, C., Barker, A. and Dobson, S. (2013) A
survey of self-healing systems frameworks. In Software
Practice and Experience (Wiley).

[29] Schneider, C., Barker, A. and Dobson, S. (2014)
Autonomous fault detection in self-healing systems:
Comparing hidden markov models and artificial neural
networks. In Proceedings of International Workshop on
Adaptive Self-tuning Computing Systems, ADAPT ’14
(New York, NY, USA: ACM): 24:24–24:31.

[30] Schneider, C., Barker, A. and Dobson, S. (2014)
Autonomous fault detection in self-healing systems
using restricted boltzmann machines. In 11th IEEE
International Conference and Workshops on the Engineering
of Autonomic Autonomous Systems, IEEE Computer
Society (Laurel, Maryland: IEEE). Submitted 15 May
2014, Accepted 12 August 2014.

[31] Schuler, C., Weber, R., Schuldt, H. and j. Schek, H.
(2004) Scalable peer-to-peer process management - the
osiris approach. In In: Proceedings of the 2 nd International
Conference on Web Services (ICWS’2004) (San Diego, CA:
IEEE Computer Society): 26–34. Washington DC, USA.

[32] Schulz, H., Müller, A. and Behnke, S. (2010) Inves-
tigating convergence of restricted boltzmann machine
learning. In NIPS 2010 Workshop on Deep Learning and
Unsupervised Feature Learning.

[33] Shehory, O. (2007) A Self-healing Approach to Designing
and Deploying Complex, Distributed and Concurrent
Software Systems (Springer-Verlag), Lecture Notes in
Computer Science 4411, 3–13.

[34] Souza, C.R. (2013) Accord.net framework.
Http://accord-framework.net/.

[35] Stojnic, N. and Schuldt, H. (2012) Osiris-sr: A
safety ring for self-healing distributed composite
service execution. In Software Engineering for Adaptive
and Self-Managing Systems (SEAMS), 2012 ICSE
Workshop on (Zürich, Switzerland: ACM): 21–26.
doi:10.1109/SEAMS.2012.6224387. New York, NY.

15  EAI Endorsed Transactions on
Self-Adaptive Systems  

01-2015 | Volume 1 | Issue 1 | e3

http://dx.doi.org/10.1109/SEAMS.2012.6224387
http://dx.doi.org/10.1109/MS.2011.22
http://dx.doi.org/10.1145/1186778.1186782
http://dx.doi.org/10.1145 2371536.2371571

	1 Introduction
	2 Methodologies
	3 Implementations
	3.1 Collection
	3.2 Classification
	3.3 Analysis

	4 Results
	4.1 Summary of Findings
	4.2 Synthesis

	5 Discussion
	5.1 Observations
	5.2 Lessons

	6 Conclusion
	7 Future Work



