
EAI Endorsed Transactions on
Self-Adaptive Systems

01-2015 | Volume 1 | Issue 1 | e2

EAI Endorsed Transactions
on Self-Adaptive Systems Research Article

1

“Why can’t I do that?”:

Tracing Adaptive Security Decisions

Armstrong Nhlabatsi
1
, Thein Tun

2
, Niamul Khan

1
, Yijun Yu

2
, Arosha K. Bandara

2
, Khaled M. Khan

1
,

Bashar Nuseibeh
2,3

1
Qatar University, {armstrong.nhlabatsi, niamul.khan, k.khan}@qu.edu.qa

2
The Open University, {t.t.tun, y.yu, a.k.bandara, b.nuseibeh}@open.ac.uk

3
Lero, University of Limerick, bashar.nuseibeh@lero.ie

Abstract

One of the challenges of any adaptive system is to ensure that users can understand how and why the behaviour of the

system changes at runtime. This is particularly important for adaptive security behaviours which are essential for

applications that are used in many different contexts, such as those hosted in the cloud. In this paper, we propose an

approach for using traceability information, enriched with causality relations and contextual attributes of the deployment

environment, when providing feedback to the users. We demonstrate, using a cloud storage-as-a-service environment, how

our approach provides users of cloud applications better information, explanations and assurances about the security

decisions made by the system. This enables the user to understand why a certain security adaptation has occurred, how the

adaptation is related to current context of use of the application, and a guarantee that the application still satisfies its

security requirements after an adaptation.

Keywords: Traceability, Causality, Entailment Relation, Security Requirements, Access Control Policies.

Received on 19 November 2014, accepted on 17 January 2015, published on 28 January 2015

Copyright © 2015 A. Nhlabatsi et al., licensed to ICST. This is an open access article distributed under the terms of the Creative

Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and

reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/sas.1.1.e2

1. Introduction

Many software applications are now deployed as

Cloud Services in order to allow users to access them

from a variety of devices, wherever they happen to be.

This requires that these applications be able to adapt their

behaviour, in order to ensure that requirements continue

to be satisfied even when the context of use changes.

This is particularly important for critical quality

requirements such as security requirements.

For example we may want a cloud application to

change its security behaviour depending on where

(location) it is used, who (subject) is using it, or when

(time) it is being used. We call this Adaptive Information

Security (AIS). As a result of dynamic context, the assets,

their values, and attack scenarios can change easily from

one situation to another, increasing the challenge of

finding out what the information assets are, who their

owners are, where in the system vulnerabilities lie, and

the extent to which the security requirements are satisfied.

One of the challenges of any adaptive security system

is to ensure that users can understand how and why the

security behaviour of the system changes at runtime. For

example, a doctor may be able to edit a medical record

stored on a cloud server using one device but only able to

read the same medical record when it is accessed from a

different device. This is because an access control policy

for maintaining confidentiality and integrity of medical

records may dictate that the doctor is able to gain access

to edit rights only when he is on duty. Sensors in the

device used when accessing a record determine the

contextual property of whether the doctor is on duty. As a

result, when using a device with limited capabilities the

access control mechanism may not be able to determine

that the doctor is on duty resulting in limited access to the

http://creativecommons.org/licenses/by/3.0/

EAI Endorsed Transactions on
Self-Adaptive Systems

01-2015 | Volume 1 | Issue 1 | e2

A. Nhlabatsi et. al.

2

record. In this situation, the doctor needs to understand

why his access rights appear to change in a seemingly

arbitrary way.

The example illustrates that there is a relationship

between the security requirement to maintain the integrity

of the medical record and the granting/revoking of access

rights. The doctor gets certain privileges when his

contextual attributes say that he is on duty and gets a

different set of privileges otherwise. In effect, the

privileges the doctor gets are indirectly determined by the

properties of the device he is using. As such if we know

the properties of the device, at the time an access control

decision is made, then we can determine which privileges

the doctor gets. In this way we can relate the security

requirement to a particular set of permitted privileges via

device properties. This illustrates the role the context

plays in relating requirements and security policies. We

call such relationships traceability, a well-established

concept in the software engineering literature.

Traceability is generally defined as the ability to establish

and keep track of the relationships between requirements,

design artefacts, source code, test cases, etc [1][2]. Users

of adaptive applications may not always have detailed

knowledge on how security decisions are determined with

respect to their context of use. This may lead to loss of

confidence and trust in the adaptive application when its

behaviour deviates from the user’s expectations.

The main contribution of the paper is an approach to

providing users of cloud applications information,

explanations, and assurances about the security decisions

made by an adaptive information security system. This

enables the user to understand why a certain adaptation

has occurred, how the adaptation is related to current

context of use of the application, and steps they (users)

may take to guarantee that the application satisfies its

security requirements after an adaptation. Our approach is

rooted in the well established concepts of entailment [3],

traceability [4], and causality [5] as used in the software

engineering literature.

The entailment relationship is a framework that relates

requirements, domain properties, and specification [3][6]

of a software system. We use this framework for

establishing traceability relationships relevant to adaptive

information security systems and as a means of evaluating

satisfaction of security requirements at runtime. Our

traceability relationships are augmented with causality

relations, namely, the effect of different actions or events

on the state of the system. In our example, one can state

the causality relation that the event of the doctor arriving

at the hospital results in him being on duty and the event

of him leaving the hospital results in him being off duty

(i.e. not on duty). We enrich such causality relations with

contextual attributes of the deployment environment as a

means to providing information about the behaviour of an

adaptive application to the user. Our proposed approach is

demonstrated through an example of a cloud storage as-a-

service application.

With the exception of Bencomo et. al. [7], as far as we

are aware, we are the first to propose mechanisms for

helping the user understand security decisions made by an

adaptive application. While Bencomo et. al.’s approach to

self-explanation in adaptive applications provides a

general framework for explaining adaptive behaviour, in

our approach we focus more on explaining security

decisions, a task that requires additional treatment. For

instance, the explanations must satisfy confidentiality

requirements such that they are not exploitable by a

potential attacker pretending to be the legitimate user. Our

proposed rich traceability links help in making

explanations more accurate to the user’s context, an

important prerequisite for explaining security decisions.

The paper is organized as follows: §2 presents an

access control example we use to motivate and explain the

problem we are solving. §3 presents background on

concepts our approach builds on and notations we use. §4

brings together the concepts and notations from §3 and

shows how we use them for representing traceability

through an example. §5 describes algorithms we use for

tracing security decisions using the traceability

information from §4 and we evaluate and discuss the

limitations of our approach in §6. In §7 we review related

literature and, finally, §8 concludes the paper and

discusses pointers to further work.

2. Motivating Example: An Adaptive
Access Control Application

Consider a hospital that uses a cloud-based electronic
patient record (EPR) system. Bob is a doctor at the
hospital and medical records of his patients are stored on
the EPR system. The policy of the hospital is that Bob
should only be able to access the medical records when he
is on duty. Assuming that the EPR system has already
authenticated Bob’s identity, whether he is on duty or not
is based on a combination of three contextual attributes,
namely his location, time of day, and the identity of the
network he is using when accessing the medical records.
We use the values of the attributes to determine the truth-
value of a Boolean variable isOnDuty. However, the
availability of these attributes will depend on Bob’s
context when he attempts to access certain medical
records. Therefore we use the availability of the attributes
to determine a confidence level for the computed truth-
value.

Because of variations in the features available in
different devices Bob may use when accessing a medical
record, the confidence level on his on duty status varies.
The confidence level can be very low, low, medium, or
high. The combination of the truth-value and confidence
level is used to determine whether Bob is granted access to
perform Read, Write, or Share operations on the medical
record. Adam is the policy administrator who specifies the
policies that control the behavior of the EPR application.
One policy he specifies is that if the confidence level of
isOnDuty is very low the user is not allowed to perform
any of the operations. If it is low he can only read and if it
is medium, he can Read and Write a medical record. If it is
high he can perform Read, Write and Share operations.

EAI Endorsed Transactions on
Self-Adaptive Systems

01-2015 | Volume 1 | Issue 1 | e2

“Why can’t I do that?”: Tracing Adaptive Security Decisions

3

As a user Bob has limited knowledge on why the EPR
system behaves in certain ways at runtime as his context of
use changes. Sometimes certain operations are permitted
and sometimes they are denied. He only knows that when
he is on duty the system should grant him full access rights
on a medical record. He is not aware of the details of how
the system determines that he is on duty, i.e., he does not
know that his isOnDuty status depends on the three
contextual variables.

As a result of the lack of the detailed understanding of
the implementation of the system’s adaptive behavior, Bob
is sometimes confused about certain access control
decisions. Bob wants a mechanism to help him understand
why a certain adaptation has occurred and how the
adaptation is related to the context in which he is using the
system.

For example if he is denied the privilege to share a
medical record when using his laptop while the same
privilege is available when using his iPad, the mechanism
could explain why this is the case. When informing Bob,
the mechanism could say that he is not able to share a
record because “the system is not sure if you are on duty.”
If Bob probes further for an explanation on why it is
uncertain that he is on duty the mechanism would say “a
GPS sensor is not available in the device you are using. As
a result, the system is uncertain about your location and
cannot determine if you are physically at the hospital
premises. The security policy dictates that you should be at
the hospital to share a medical record.”

If Bob needs advice on how he can restore the sharing
privilege then the assurance mechanism in the EPR
system could advice Bob to “use the hospital WiFi
network to gain further privileges”. The explanatory
messages given to Bob are specific to his context. In this
case, the message is specific to the nature of the device he
is using for access.

Adam writes general policy rules that are instantiated
for each user. He will not be able understand the specifics
of each instance of the policy for each of the hundreds of
users of the EPR system. Therefore Adam would benefit
from a means of explaining specific security decisions and
being assured that security requirements will be satisfied in
specific contexts. By developing a way to relate security
requirements, policies, and the EPR system’s contexts of
use, we can provide the information, explanations and
assurances needed by users and administrators like Bob
and Adam.

3. Background and Notations

In supporting our approach to explaining adaptive security

decisions we use Zave and Jackson’s entailment relation

[8][9] and causality.

3.1 The Entailment Relation

Three sets of properties in Definition 1, namely the

requirements R, the specifications S and the domain

properties W are related.

The set of requirements R describes the properties of

the software system as desired by its users, customers, and

other stakeholders. Requirements are optative descriptions

in that they describe how the world would be once the

envisioned system is in place. In the EPR system, there is

a security requirement controlling access to medical

records that says: ‘The doctor can read, write, or share a

patient’s medical record only when he is on duty

depending on confidence level about his status of being on

duty’.

The set of domain properties W describes the

behaviour of the context, which is the environment where

the software system will be deployed. Attributes of the

context have values that may determine the behaviour of

the adaptive application. Unlike requirements, domain

properties are indicative in that these properties hold both

before and after the deployment of the software system. In

the EPR example, an indicative property is: ‘Working

hours at hospital are from 8am to 5pm.’

The set of specifications
*
 S describes how the

computer should behave in order to satisfy the domain

properties described in R, given that the domain

properties in W hold. The specification for the EPR

system could be: ‘After a successful authentication, the

doctor can read, write, or share a patient’s medical

record only when he is accessing the record within

working hours’

In general the problem-solution relationship between

the three sets of descriptions explained above is given

below.

where is the entailment operator.

The entailment relation does not prescribe languages

for expressing the three artefacts. This has the advantage

of giving the requirements engineers the freedom to

choose a language of their choice for representing details

of the three descriptions. In order to support the

entailment we need to know the details about the specific

behaviour of S and W. One way to describe the three

artefacts (S, W, and R) is in terms of events and fluents.

A requirements traceability link can be derived from

explicit requirements problems in Definition 2.

*
 For purposes of examples presented in this paper we regard

specification to be equivalent to an access control policy and

therefore use the two terms interchangeably.

W, S |- R.

EAI Endorsed Transactions on
Self-Adaptive Systems

01-2015 | Volume 1 | Issue 1 | e2

A. Nhlabatsi et. al.

4

The entailment relation can also be modelled

graphically using the Problem Diagram notation [10].

Figure 1 shows a problem diagram modelling the medical

record access control example.

The machine to be designed is represented by the

rectangle with double vertical lines. The medical record

access control (ACM) is an example of a machine.

Rectangles represent problem domains whose domain

properties the machine rely in to satisfy the requirement.

The medical record (MR) is an example of a problem

domain. An access control specification for the ACM

relies on properties of the medical record such as the

ability of the record to be read or written. The access

control requirement for allowing access when the doctor

is on duty is represented as the dotted oval.

Figure 1: Problem Diagram of the Medical Record Access

Control Machine.

The three entities in a problem diagram share

phenomena between them through interfaces (see

Definition 1). The solid lines a and b are machine

interfaces. The dotted lines d and e are requirements

interfaces. Dotted lines with an arrow (e.g. interface e)

mean that the behaviour of the domain is constrained by

the requirement. For example the ability of a medical

record to be read, written, or shared is possible only if the

doctor is on duty. Phenomena are either observed or

controlled by one of the domains they link. For example,

at the interface a, the phenomena readable, writeable, and

sharable are controlled by the ACM machine. This is

denoted by the ‘!’ between the domain name and the

phenomena. The MR domain observes these phenomena.

The medical record access control machine (ACM)

represents the software that must implement the security

requirement and its behaviour is specified using access

control policies. To satisfy the requirement, the ACM

interfaces with the medical record (MR) and the user

device (UD). The medical record is the asset to be secured

by the ACM by controlling whether the doctor is able to

read, write, or share it. The authenticated doctor (AD)

interacts with the user device, through interface c, to issue

request actions for access to a medical record.

The truth-value and confidence level of the isOnDuty

phenomena at interface d are computed by the ACM

observing the phenomena isWithinGPSRange,

isCorrectSSID, and isWithinWorkingHours at interface b.

The phenomena isWithinGPSRange, isCorrectSSID, and

isWithinWorkingHours are derived from sensors on the

user device.

3.2 Causal Relations

The relationship between the events and state changes in

domain descriptions can be described using causality

relations. A causality relation is a way of describing how

the occurrence of one event e1 leads to the occurrence of a

second event e2 [5]. Event e2 can be either another event

or the change of a fluent [11]. In this paper we are

interested in two types of causality relations: direct and

transitive causalities. We use the Event Calculus as a

notation for representing and reasoning about causality.

Direct and Transitive Causality

Direct Causality: The occurrence of event e1 directly

leads to the occurrence of event e2, expressed as causal

relations, which can be generalised in Definition 3.

For example, when the time of day becomes 8am, the

event isWorkingHours follows. There is a direct causality

relationship between ClockStrikes8am and

isWorkingHours. Using Definition 3, this is expressed as:

ClockStrikes8am isWorkingHours

Note the effect of time in this causality relation. The

events ClockStrikes8am and isWorkingHours do not

happen simultaneously but they are consecutive. If event

ClockStrikes8am happens at some time t0 then, according

to Definition 3, isWorkingHours becomes true at a later

time t1.

Transitive Causality: Transitively, one may want to find a

trace in Definition 4 as the evidence for their causality.

EAI Endorsed Transactions on
Self-Adaptive Systems

01-2015 | Volume 1 | Issue 1 | e2

“Why can’t I do that?”: Tracing Adaptive Security Decisions

5

For example, when the time of day becomes 8am, the

Boolean variable isWorkingHours become true which

leads to Boolean variables canRead, canWrite, and

canShare becoming true. Using Definition 3 this can be

expressed as follows:

isWorkingHours canReadcanWritecanShare

There is a transitive relationship between

ClockStrikes8am and the three events canRead, canWrite,

and canShare. Using Definition 4 this can be expressed

as:

ClockStrikes8am +
 canReadcanWrite,canShare

Our use of these causality symbols in this paper has the

same meaning as the casual relationships used for

deriving specifications from requirements through

problem reduction [11]. We use the Event Calculus (EC)

as a formal language for representing causality. We chose

the EC because: (1) it is expressiveness enough for

representing the properties of causality that are of interest

to the ideas presented in this paper; and (2) it has tool

support for reasoning about causality. The next section

gives a brief introduction to the EC.

Event Calculus Representation

The Event Calculus (EC) is a logic system for reasoning

about how the occurrence of events changes the state of

the world. We use the EC in this paper to express domain

descriptions and to facilitate traceability.

Basic Constructs of the Event Calculus: The EC consists

of three basic sorts: events, fluents, and timepoints [12].

An event represents an action, which may occur to a

problem domain. For example, ClockStrikes8am is an

event in the medical record access control problem. A

fluent is a time-varying property describing the state of a

problem domain, such as isWorkingHours. A timepoint is

a time instant, for example t0 denotes the timepoint 0.

Event Calculus Predicates: A fluent is either true (holds)

or false (does not hold) at a timepoint or over an interval.

The occurrence of an event at a timepoint may change the

truth value of a fluent. Below is the domain description of

a clock used to tell time of day in the medical record

access problem.
Initiates (ClockStrikes8am, isWorkingHours, t) [CD1]

Terminates (ClockStrikes5pm, isWorkingHours, t) [CD2]

Initially (isWorkingHours) [CD3]

When an event results in a fluent being true it is said

to initiate the fluent. For example the time of day event

ClockStrikes8am results in fluent isWorkingHours being

true. Hence ClockStrikes8am is said to initiate fluent

isWorkingHours. If an event causes a fluent to become

false then that event is said to terminate the fluent. For

example, time of day event ClockStrikes5pm terminates

isWorkingHours i.e. when event ClockStrikes5pm occurs

isWorkingHours become false. These relationships

between the events and fluents describe the behaviour of a

clock, which we will use in the medical record access

control problem.

A domain description models a real-world domain and

forms the basis for reasoning about the behaviour of the

modelled domain. It is therefore important that its

behaviour is consistent with the actual state of the real-

world problem domain. In the EC all reasoning about

future states is based on current states. The initial state of

a fluent f1 is expressed with Initially(f1) clauses. These

state that fluent f1 holds at time 0. For example, the

domain description assumes that the clock is initially set

to a time that is not within working hours. (CD3). All

other fluents not captured in the initially clause are

assumed to be (initially) false and changes in their truth

values are subject to the common sense law of inertia.

This law states that a fluent remains false until initiated

and remains true until terminated. Table 1 shows the

predicates of the EC we will use and their meanings.

Table 1 Event Calculus Predicates

Fluent Description
Initiates(e,f,t) Fluent f starts to hold after event e at

time t.

Terminates(e,f,t) Fluent f ceases to hold after event e at

time t.

Initially(f) Fluent f holds at time 0

Happens(e,t) Event e occurs at time t.

HoldsAt(f,t) Fluent f holds at time t.

Clipped(t1,f,t2) Fluent f is terminated between times

t1 and t2.

Event Calculus Meta-Rules: Based on initial conditions,

events that have happened, and rules that state how

fluents are changed when events happen (domain

descriptions), it is possible to determine which fluents

hold. This is summarised in the EC rules below.

Clipped(t1,f,t2)  ∃ a,t1 [Happens(a,t) /\ Terminates(a, f, t1) /\ (t1<t<t2)] [EC1]

HoldsAt(f,t1)  Initially(f) /\ ￢Clipped(0,f,t1) [EC2]

HoldsAt(f,t2)  Happens(a,t1) /\ Initiates(a,f,t1) /\ (t1 < t2) /\ ¬Clipped(t1,f,t2)
 [EC3]

EC1 states that if an event happens in the period

between t1 and t2, and that event terminates fluent f

during that period, the fluent is said to be clipped in the

period. EC2 states that a fluent holds if it held initially

and no event has occurred to stop it holding. EC3 captures

the common sense law of inertia described above. These

EAI Endorsed Transactions on
Self-Adaptive Systems

01-2015 | Volume 1 | Issue 1 | e2

A. Nhlabatsi et. al.

6

three rules are referred to as meta-rules since they form

the foundation of all reasoning about occurrence of events

and resulting effects in the Event Calculus language.

4. Traceability in Context

As illustrated by our example, the traceability between

requirements and policies can be established through the

context. Sections 3 explained the concepts of entailment

and causality and we now bring them together in this

section to describe how traceability is established. We

also illustrate causal relations in our example.

4.1 Traceability Representation

Policies and Requirements are expressed at different

levels of abstraction using different forms of language. At

a higher level of abstraction, requirements are expressed

in terms of the conditions to be fulfilled by the

application. Meanwhile at a lower level of abstraction,

policies specify the actions that need to be performed by

an application in order to make the conditions stated in

the requirements true. The difference in the way the

requirements and policies are expressed makes the task of

relating them less obvious.

Relating Problem and Solution Entities Through
Context

The entailment relation relates requirements (R), context

(W), and specifications (S). Our approach leverages this

representation to relate security requirements to policies.

We assume that policies are in the solution space as their

behaviour satisfies the requirements: in other words, we

regard them as specifications. We can think about context

as the traceability link between requirement and policy

which we propose can be represented through the domain

properties. Figure 2 presents the general framework of our

approach. The figure shows how we propose to relate

entities in the problem space to those in the solution space

through facts in the context. Requirements and policies

are in the problem and solution spaces, respectively.

Figure 2: Relating Requirements and Policies through

Domain Assumptions in the Context

We can think of the traceability link between

requirements and policies in terms of the two links. The

first link is between the problem and context domains –

indicated by the dotted line between R and W in Figure 2.

The second link is between the context and solution

domain – indicated by the solid line between W and S. An

interesting question is what specific attributes to consider

in the requirement, context, and solution domains in order

to establish these links. The next two sections address this

question.

Traceability Link Between Requirements and
Context
According to the entailment relation a requirement is

defined as some property that must be exhibited by an

application in order to solve some problem in the real

world. For this reason we express a requirement in terms

of the conditions we would like to be true in the context

once the system is in place. The expression of a

requirement references some attributes of the context. For

example a requirement could say a doctor should have

access to a medical record only when he is on duty. But

what does being ‘on duty’ mean? We may say the doctor

is on duty if he is within certain GPS coordinates, he is

using the hospital WiFi for connection, and the time of

day between 8am and 5pm. The explanation of what on

duty means is derived from properties of the context.

The example illustrates that the requirement contains

references to domain assumptions in the context. It is

through such references that we relate the requirement to

the context. The relationship between the requirement and

context is captured by traceability link L1 in Figure 3.

X represents the attribute in the context that is

referenced by the requirement. In our example isOnDuty

is a concept in the requirements, whereas GPS, WiFi, and

Time-of-Day are attributes in the context. We can

therefore distinguish between two types of the attribute x:

x1 in the requirement and x2 in the context. x1 being the

variable isOnDuty and x2 being the GPS, WiFi, and Time

of Day.

Using domain knowledge, the context (x2) qualifies

what isOnDuty (x1) means by stating how it is

determined. Such reference provides a concrete

relationship between the requirement and context thus

forming a traceability link.

Traceability Link Between Context and Policies

Link L2 in Figure 4, represents a traceability link between

the context and policies. Similar to entities in the problem

space, solution space entities also make assumptions

EAI Endorsed Transactions on
Self-Adaptive Systems

01-2015 | Volume 1 | Issue 1 | e2

“Why can’t I do that?”: Tracing Adaptive Security Decisions

7

about the behaviour of the context. The solution uses

these assumptions to implement behaviour that satisfies

the requirements. For instance the policies in our example

implement access control mechanisms that determines

who can or cannot access a medical record and the

circumstances under which access should be granted or

denied. Hence policies also references some attributes of

the context. Again, we take advantage of these references

to establish the traceability link between policies and

context.

In our example a policy could state that if a doctor is

on duty then he should be allowed to read, write, and

share a medical record. The policy assumes that some

machinery is available for determining that the doctor is

on duty or not. An example of such machinery is a

location sensing equipment. In our example the location

sensing is performed by a GPS component in the user

device, which we assume the doctor carries with him. We

use the reliance of the policy on properties of the context

to establish a traceability relationship between the two.

In our example, the value of y is the data that has been

read from the GPS component that is interpreted through

the context to determine if the doctor is on duty or not.

The relationship between x and y established via the facts

given in the context is the traceability link that relates the

y in the policy to the x in the requirement. Worth noting

in this example is that even though y is part of the policy

it is not an action. It is a piece of data that qualifies the

condition isOnDuty stated on the requirements side.

Hence the traceability information on the policy side is

not necessarily expressed as actions but can also be any

fact that helps us qualify the conditions stated by the

requirement.

Required, Observed, and Designed Causality

The distinction between requirements-to-context and

context-to-specifications traceability links does not say

anything about the boundary of the access control system.

By separating events in the identified causality relations

based on whether the event belongs to the machine,

requirement or domain, it is possible to further enrich the

traceability relations. There are three types of phenomena

[10]: required, observed, and designed.

It also follows that there are three types of causality

events: (1) required causality; (2) observed causality; and

(3) designed causality in Definition 5.

Required Causality: These are causality events at the

requirements interfaces d and e. The user will observe the

phenomena that he can read, write, or share a medical

record as a result of events initiated by the access control

machine in changing the access rights on the medical

record. Required causality is captured by link L1 in

Figure 3.

Observed Causality: These are events describing the

behavior of a problem domain. The interaction between

the doctor and the device, and the internal behaviour of

the device that affects the phenomena

isWithinWorkingHours, isWithinGPSRange, and

isCorrectSSID are examples of observed causality. In

Figure 1 interface c and any events internal to domains

MR, UD, and AD are observed causality.

Designed Causality: These are causality events at the

machine interface. Such causality events are said to be

‘designed’ because they come about as a result of

behaviour of the machine specification. Machine

interfaces a and b contain designed causality events. This

corresponds to link L2 in Figure 4.

Refining Traceability Links through Causality

As stated earlier, when establishing traceability relations

between requirements and policies we use causal links.

However, there are important differences between

traceability and causality links, which we explain in this

section. Traceability links relate artefacts at different

levels of abstraction. For example relating security

requirements in the problem space to security policies in

the solution space or relating a requirement to a section of

source code that implements the requirement. On the

other hand causal links relate events at the same level of

abstraction such as the events that describe a domain.

Definition 6 shows how causality can be used to refine the

requirements traceability links.

As an illustration, consider the GPS device for

determining the doctor’s location. Its domain description

could say: A GPS device gives its location in terms of

latitude and longitude coordinates. In this statement

latitude and longitude are numbers that, on their own, do

not have any meaning. The description gives these

numbers a meaning by stating they are a location. We can

go further and enrich this description by stating that these

coordinates are the location of the hospital. Similarly,

location of the hospital would be meaningless unless we

can say exactly what geometric reference system are we

using to locate it. The links between the GPS coordinates

and the location of the doctor are causal.

The fact that location of the hospital is assigned to

certain coordinates enables us to derive further facts such

EAI Endorsed Transactions on
Self-Adaptive Systems

01-2015 | Volume 1 | Issue 1 | e2

A. Nhlabatsi et. al.

8

as whether or not the condition isOnDuty holds. This is a

traceability link as it relates the isOnDuty concept at the

requirements level to contextual attributes (GPS

coordinates, SSID, and time of day). Variables x and y are

dependent on each other through causality. We exploit

this dependency to define traceability within the context

through domain descriptions. As stated earlier, x

represents the Boolean variable isOnDuty while y

represents the actual data that helps an access control

machine to a medical record determine whether the value

of isOnDuty should be true or false. In this case y is a

combination of the GPS coordinates, WiFi SSID, and

TimeOfDay.

In summary, using causal links enriched with

contextual information we are able to trace between

entities in the problem space to entities in the solution

space. We achieve this in two stages: (1) relating

requirements to context; and (2) relating the context to

policies. The relationship is established through facts in

the context that are referenced by both the requirement

and policy. Our approach assumes that the domain

assumptions (facts) about the context already exist and we

use these to establish the traceability relationship of

requirements with policies. The domain assumptions are

the relations between x and y in the context that binds a

requirement to a corresponding policy.

4.2. An Illustration of Causality

The traceability links established through the entailment

relation is not rich enough to support the process of

tracing security decisions. In order to make the tracing

process feasible we enrich the traceability links with

additional contextual information on causality. After

presenting an example of requirement, domain properties,

and policies we discuss the type of contextual information

needed for tracing access control decisions.

Requirements, Policies, and Domain Properties

The requirement, context, policy specifications from the

architecture in Figure 2 and problem diagram in Figure 1

can be instantiated through a refined version of the

example presented in section 2 as follows:

Requirements:

 R: If the doctor isOnDuty then allow him to perform

certain operations depending on the level of

confidence of the determination of isOnDuty.

Context:

 W1: if the doctor is within hospital GPS

coordinates, using hospital WiFi, and within

working hour, then the doctor is on duty with high

confidence level.
[(latitude=X,longitude=Y)AND(8am<timeOfDay<5pm) AND

(WiFiSSID=HospitalWiFi)]

{isOnDuty=True,ConfidenceLevel=HIGH}

 W2: if the doctor is not within hospital GPS

coordinates, using hospital WiFi, and within

working hours, then the doctor is on duty with

medium confidence level.
[(latitude!=X,longitude!=Y)AND(8am<timeOfDay<5pm)AND

(WiFiSSID=HospitalWiFi)]

{isOnDuty=True,ConfidenceLevel=MEDIUM}

 W3: if the doctor is not within hospital GPS

coordinates, using hospital WiFi, and not within

working hours, then the doctor is on duty with low

confidence level.
[(latitude!=X,longitude!=Y)AND(8am>timeOfDay>5pm)AND

(WiFiSSID=HospitalWiFi)]

{isOnDuty=True,ConfidenceLevel=LOW}

 W4: if the doctor is not within hospital GPS

coordinates, not using hospital WiFi, and not within

working hours, then the doctor is not on duty and

level of confidence is very low.
[(latitude!=X,longitude!=Y)AND(8am>timeOfDay>5pm)AND

(WiFiSSID!=HospitalWiFi)]

{isOnDuty=False,ConfidenceLevel=VERYLOW}

Policies:

 P1:
if ((isDoctor(subject)=TRUE) AND
 (confidenceLevel=HIGH) AND
 (isOnDuty(subject)=TRUE)) then

EnableRead() = True;
EnableWrite() = True;
EnableShare() = True;

 P2:

if ((isDoctor(subject)=TRUE) AND
 (confidenceLevel=MEDIUM) AND

 (isOnDuty(subject)=TRUE)) then
EnableRead() = True;
EnableWrite() = True;
EnableShare() = False;

 P3:

if ((isDoctor(subject)=FALSE) OR
 (isOnDuty=TRUE) OR
 (confidenceLevel=LOW)) then

EnableRead() = True;
EnableWrite() = False;
EnableShare() = False;

 P4:

if ((isDoctor(subject)=FALSE) OR
 (isOnDuty=FALSE) OR
 (confidenceLevel=VERYLOW)) then

EnableRead() = False;
EnableWrite() = False;
EnableShare() = False;

The requirement describes what is to be achieved by the

access control machine. It states that if the doctor is on

duty and based on confidence level about his on duty

status then he will be able to perform certain operations

on a medical record. The policies are more specific than

the requirement as they state what access rights will be

granted to the doctor under different contextual

conditions. Both the requirement and policies refer to the

isOnDuty and confidenceLevel variables but they do not

say how these variables are to be determined. The context

EAI Endorsed Transactions on
Self-Adaptive Systems

01-2015 | Volume 1 | Issue 1 | e2

“Why can’t I do that?”: Tracing Adaptive Security Decisions

9

relates the conditions stated in the requirements to the

actions stated in the policies by showing how the entities

referenced in both requirements and specifications are

derived from contextual attributes. This provides a rich

traceability between the requirements and policies. For

instance, the domain knowledge provided by context is

necessary in order to explain what isOnDuty means in

terms of causality for both the requirement and policy.

Therefore, we need to make the context explicit as a way

of linking requirements to their policies.

Causality Links, Logs, Domain Assumptions

In order to provide information, explanations and

assurance to the user, we collect three types of

information: causality links, data logs, and domain

assumptions. Using our running example we illustrate the

nature of these pieces of information.

Causality Links: The value of the Boolean variable

isOnDuty and its confidenceLevel is determined by a

combination of the values of three contextual variables

GPS, WiFi, and TimeOfDay with varying levels of

confidence for each combination as shown in Table 2.

The confidence level can be VERYLOW, LOW,

MEDIUM, or HIGH. The confidence level indicates the

trust we have in the truth-value of the isOnDuty variable.

This reflects the uncertainity we may have on the context.

The confidence in the isOnDuty variable depends of

which sensors are available. For example, according to

Table 2, if the GPS sensor is providing accurate

coordinates and the doctor is connected to the hospital

WiFi but not during working hours the confidence level is

assign to HIGH. However, if none of the three sensors are

available confidence level is assigned VERYLOW. Note

that the ratings in Table 2 about confidence level would

typically be formulated with the help of a domain expert.

We convert the data in Table 2 into the EC causality links

shown in Listing 1.

Table 2: Variable Confidence Determination from

Context Variable Values
isWithin-

GPSRange
isCorrect-

SSID
isWorking-

Hours
isOnDuty Confidence

Level

0 0 0 F VERYLOW

0 0 1 T LOW

0 1 0 T LOW

0 1 1 T MEDIUM

1 0 0 T MEDIUM

1 0 1 T HIGH

1 1 0 T HIGH

1 1 1 T HIGH

0  False / 1  True

The levels of confidence are mapped to three

operations on a medical record: Read, Write, and Share as

shown in Table 2. If the confidence level is very low the

doctor is not allowed to perform any of the three actions.

If the confidence level is low, the doctor is allowed to

read medical record. If the confidence level is medium, he

can only Read and Write a medical record. If the

confidence level is high, he can perform all the

operations.

Listing 1: isOnDuty Variable Causality Links

1.1 (!HoldAt(IsWithinGPSRange(),time)

&!HoldAt(IsCorrectSSID(),time)&!HoldAt(IsWorkingHours(),

time))  Happens(E1(),time).
1.2 Terminates(E1(), IsOnDuty, time).
1.3 (HoldsAt(IsWithinGPSRange(),time) |

HoldsAt(IsCorrectSSID(),time) | HoldsAt(IsWorkingHours(),time))

 Happens(E2(), time).
1.4 Initiates(E2(), IsOnDuty, time).

Listing 2: Confidence Level Causality Links

2.1 Initiates (E1(), VeryLowConfidenceLevel(), time).
2.2 HoldsAt(IsWithinGPSRange(),time)&(HoldsAt(IsCorrectSSID(),time)

  HoldsAt(IsWorkingHours(),time))HappensAt(E2(),time).
2.3 Initiates(E2(), LowConfidenceLevel(), time).

2.4 HoldsAt(IsWithinGPSRange(),time)HoldsAt(IsCorrectSSID(),time)

  HoldsAt(IsWorkingHours(),time)Happens(E3(),time).
2.5 Initiates(E3(), MediumConfidenceLevel(),time).
2.6 HoldsAt(IsWithinRange(),time)&(HoldsAt(IsCorrectSSID(),time)|

 HoldsAt(IsWorkingHours(),time)Happens(E4(),time).
2.7 Initiates(E4(), HighConfidenceLevel(), time).

WHERE  is the XOR logical operator

Table 3: Matching Confidence Level to Operations
Confidence Level Operations/Rights

 CanRead CanWrite CanShare

VERYLOW 0 0 0

LOW 1 0 0

MEDIUM 1 1 0

HIGH 1 1 1

0  Operation Not Allowed / 1  Operation Allowed

Listing 3: Access Rights Causality Links

3.1 Happens(CanRead(), time) 
 !HoldsAt(VeryLowConfidenceLevel(), time).

3.2 Happens(CanWrite(), time) 
 HoldsAt(MediumConfidenceLevel(),time)&
 HoldsAt(HighConfidenceLevel(),time).

3.3 Happens(CanShare(), time) 
 HoldsAt(HighConfidenceLevel(), time).

The encoding of the data in the tables to EC is done by

taking the input of the tables as the ‘causing’ event and

the output of the table as the effect. For example in Table

2 the states of the three sensors are the inputs and the

outputs are isOnDuty and confidence level. The first row

in Table 2 says that if all three sensors are not available

then isOnDuty is false and the confidence level is very

low. To encode this condition in EC we first define e1 -

an event that gets triggered when all sensors are not

available. As long as the conjunction of the inputs

indicated in row 1 (all sensors not available) is true then

the event e1 keeps happening. The occurrence of e1 is

indicated by 1.1 in Listing 1 and 1.2 says that the

occurrence of event e1 results in isOnDuty being false. In

EAI Endorsed Transactions on
Self-Adaptive Systems

01-2015 | Volume 1 | Issue 1 | e2

A. Nhlabatsi et. al.

10

Listing 2, 2.1 says that the occurrence of e1 initiates the

fluent LowConfidenceLevel. The rest of the rows in the

tables are encoded in a similar way.

Tables 1 and 2 are relatively easier to read compared

to their EC translations in Listings 1 and 2, respectively.

Although this is the case we still have to do the encoding

into causality links because they (causality links) are more

amenable to automated reasoning with some of the

existing tools of the EC.

Data Logs: In our approach, values of contextual

attributes and policy decisions made are logged at

runtime. A log of contextual attributes records the state of

availability of the three sensors at a particular time

instant. Policy decisions log is a record of which access

rights were granted or denied at a given time instant.

Table 4: Policy Decisions Data Log
TimeStamp Access Rights Granted

CanRead CanWrite CanShare

13:45:21 0 0 0

16:09:21 1 1 0

18:33:21 1 1 1

20:57:21 0 1 0

23:21:21 1 0 0

25:45:21 0 1 1

28:09:21 1 1 1

30:33:21 1 1 1

32:57:21 0 0 0

35:21:21 0 0 0

37:45:21 0 1 1

40:09:21 0 1 1

42:33:21 1 0 0

44:57:21 1 0 1

……. …… …… ……

0  Operation Allowed / 1  Operation Not Allowed

Table 5: Contextual Attributes State Data Log

Time Stamp

Contextual Attributes

isWithinGP
S Range

isCorrect
SSID

isWorking
Hours

13:45:21 0 0 0

16:09:21 0 1 1

18:33:21 1 1 1

20:57:21 1 1 1

23:21:21 1 1 1

25:45:21 0 0 1

28:09:21 0 0 1

30:33:21 0 1 0

32:57:21 0 1 0

35:21:21 0 1 1

37:45:21 0 1 1

40:09:21 1 0 0

44:57:21 1 0 1

………. …………. ……….. ……….

0  False / 1  True

Policy Decisions: When a policy decision is made either

to permit or deny certain access rights we log this

information in a policy decisions table. Table 4 is an

example of a policy decisions table. According to this

table at 16:09:21 the doctor was given the permission to

Read and Write a medical record but was not allowed to

share it.

Contextual Attributes: The log of contextual attributes

keeps information about sensors that were available at

different times. In our example the contextual attribute

values are the state of the three sensors which can be used

in determining the value of the isOnDuty variable and its

confidence level. A sample sensor data log table is shown

in Table 5. According to this table at 16:09:21 the GPS

coordinates indicate that the doctor was in the hospital

and he was also connected to hospital WiFi. But the time

of day was not working hours.

Domain Assumptions: These are conditions that are

assumed to be true for the relationship between W, S, and

R in the entailment relationship to hold. The argument

that the entailment relation holds depends on domain

assumptions. These assumptions are assumed to be

correct for the correct functioning of the machine

specified by the behaviour in S because their control is

not within the power of the machine. The assumptions in

our example are as follows:

A1: The GPS device is well calibrated to give a correct and valid
reading about the location of the doctor.
A2: The doctors always carry the GPS device.
A3: The hospital WiFi has a unique identifier, which makes it possible
to uniquely identify it among other WiFi networks.
A4: The authentication device reads the doctor’s credentials correctly.
A5: The file system where the medical record is kept has features for
reading, writing, and sharing operations.
A6: The clock is set to the correct time of the day corresponding to its
time zone
A7: The WiFi router has a unique serial number that enables the
access control machine to verify that it is indeed the one that belongs to
the hospital.

In the next section we illustrate how we use the causality

links, data logs, and domain assumption to derive

information for informing, explaining, and assuring the

user about access control decisions at runtime.

5. Tracing Policy Decisions to Security
Requirements

The tracing process includes three related processes for

tracing policy decisions to security requirements, namely,

informing, explaining, and assuring. Our approach

includes a set of algorithms that take the different types of

contextual data collected in section 4 to trace security

decisions.

Starting with the denial of the security requirement rs,

at time t0, a user u (e.g., Bob) wants to understand what's

happening. The process includes three kinds of answers in

different level of details. Firstly, the informing step (see

Algorithm 1) classifies the traces into two categories, WR

and W!R, depending on whether security requirement can

or cannot be satisfied by these contexts. Using the causal

traceability between the current policies s and the security

EAI Endorsed Transactions on
Self-Adaptive Systems

01-2015 | Volume 1 | Issue 1 | e2

“Why can’t I do that?”: Tracing Adaptive Security Decisions

11

requirement rs. we trace what events in s could lead to a

the phenomena observed in rs.

There are many possible ways to solve this

classification problem, e.g., by using the inductive

learning procedure for deterministic classification, or

using the statistical machine learning on supervised

dataset for probabilistic classification. The informing

contexts may help narrow the scope of search in the

following explaining step.

For example, according to Table 3, if confidence level

is LOW, one might not be able to READ, WRITE or

SHARE the document. Using Table 3, the LOW

confidence level is further traced to three possible

situations for the three contextual variables

(isWithinRangeGPS, isCorrectSSID, isWorkingHours):

(0, 0, 1) and (0, 1, 0). Note that in both cases

isWithinRangeGPS is false, which indicates that W!R =

!isWithinRangeGPS and either !isCorrectSSID or

!isWorkingHour. In fact, because !isWithinRangeGPS is

false in both cases, it is more informative to tell user

whether isCorrectSSID or isWorkingHours is true or

false. After knowing which contexts W!R may cause

problems in satisfying rs the system further fetches from

the user the relevant domain properties Wu(t0) at the time

t0 from the data log, see Algorithm 2.

For example, by the time when all the permissions are

denied in Table 4, i.e., 35h21m21s, the corresponding

context domain properties in Table 5 concerning user Bob

before that (at 32h57m21s) was !isCorrectSSID and

isWorkingHour. Therefore, it is more informative to the

user about the denial of access.

Knowing the situation, the user could react by

changing his or her contexts in the next timestamp t1. This

leads to the new context relevant to the change Wu(t1). To

provide assurance that it is possible to satisfy the security

requirement rs in the new context w1, the system relies on

a reasoning tool that evaluates the entailment relation.

For example, we can use an event calculus reasoning

tool to compute the abduction of the event sequences that

may lead to this.

6. Evaluation and Discussion

The data collected in Section 4 helps us inform and

explain adaptive behaviour as well as give assurance that

their requirements are still being satisfied after an

adaptation. The difference between informing and

explaining is in the level of information provided.

Informing tells the user why a particular access control

decision has been taken. Meanwhile, explaining tries

justifies the security decision by giving the reasons why it

was denied with reference to the context of the user.

Finally, assurance tells the user steps they can take to

rectify the problem. We explain how each of these

functions is fulfilled using the algorithms from Section 5

through an evaluation of hypothetical scenarios from the

access control example presented in Section 2. We also

discuss some of the limitations of our approach.

6.1 Evaluation

Informing: Recall in the motivating example that Bob

has two devices: a laptop and an iPad. He always uses his

iPad when accessing medical record in the hospital

because it is portable to carry while attending to patients.

The iPad has all three sensors GPS, WiFi, and a clock as a

result Bob always get full access rights on medical

records using his iPad. Due to a malfunction on his iPad

Bob decides to use his laptop instead. On his laptop he is

not able to share medical records with his fellow doctors.

The access time is 16:09:21. He is not sure why this is the

case.

The causality links in Listing 3 suggest that the

sharing right is revoked if confidence level is

VERYLOW, LOW, or MEDIUM. This information is

derived from causality link 3.3, which says that it is only

EAI Endorsed Transactions on
Self-Adaptive Systems

01-2015 | Volume 1 | Issue 1 | e2

A. Nhlabatsi et. al.

12

possible to share a medical record when confidence level

is high.

From the three causality links the doctor can be

informed that the reason he is being denied sharing a

record:

“You are not able to share the record because the system

is not sure that you are on duty.”

Explaining: As shown above, there are three possible

reasons why Bob is being denied the right to share a

record. To narrow down to the exact reason we look at the

time the access control decision was taken and identity

what was the state of the sensors at that time. According

to Table 5 at 16:09:21 Bob was using the hospital WiFi,

accessing the record within working hours, but was not

within hospital premises according to his GPS device.

According to 2.4 in Listing 2 this combination of sensors

result into a MediumConfidenceLevel about his isOnDuty

status.

This contextual attribute results in an event e3 whose

occurrence makes confidence level to be medium.

2.4 HoldsAt(isWithinGPSRange,t)HoldsAt(isCorrectSSID,t)

 HoldsAt(isWorkingHours,t)HappensAt(e3,t)
2.5 Initiates(e3, MediumConfidenceLevel,t)

Hence, an explanation message to the doctor could be

something like:

“You are not allowed to share this medical record

because you are currently not within hospital premises.”

Using a combination of causality links and log data

accurate information can be provided to the user on why a

particular access control decision has been taken. When

tracing a policy decision that involves a fluent being made

false we inspect all terminates causality links involving

the fluent. This helps in identifying all the possible

events/causes that can make the fluent false. Similarly,

when tracing why a fluent is true we inspect all the

initiates causality links involving the fluent and identify

all the events that make it true.

When there are multiple possibilities of events/causes

log data is used to identify the time at which a policy

decision was made and link this to the status of contextual

attributes at the time. This eliminates causality links that

do not apply and provides a more precise explanation of

the security adaptation performed by the system.

Assurance: The traceability links can also be used to

derive information on what steps the user can take to

change the outcome of the behaviour of the adaptive

application and in particular restore satisfaction of the

requirement. The user may be interested to know what he

needs to do for the application to grant certain access

rights which are currently being denied or vice versa. In

our example Bob wants to be advised on what he needs to

do in order to regain the rights to share medical records.

Through the traceability links we have established that

Bob is unable to share medical records because he is not

in the right context, that is, he currently not within

hospital premises according to his GPS device. To remedy

this situation the system can advice Bob to change his

context by relocating to the hospital. The assurance

mechanism also needs to advice Bob to make sure that

relevant domain assumptions are valid. For example, he

needs to make sure that while changing location to the

hospital he is still carrying (A2) a well calibrated GPS

device (A1).

Changing context triggers an adaptive application to

change its behaviour by invoking policies appropriate for

the context. For adaptive applications for information

security the user may be interested in the question of

whether the application still satisfies its requirements after

an adaptation. The traceability links are based on the

entailment relationship. By (re-) evaluating the entailment

relationship we can provide assurance that the

applications still satisfies its requirements after an

adaptation.
While the analysis and refinement of policies can

ensure that policies correctly implement behavior that
satisfies the user’s security requirements, the highly
dynamic contexts in which cloud services are used mean
that their policies might not capture all possible security
threats. To ensure that the adaptive application can detect
when its security requirements are no longer being
satisfied at runtime our approach includes requirements
satisfaction information as part of the traceability links.
Using the entailment relation, we can express the
relationship between the requirements, context, and
policies as Ws, Ss Rs. This states that the behavior of the
policy Ss satisfies the requirement Rs given that some
assumptions about the context Ws holds.

In our running example the security requirement is

satisfied if the doctor supplies his credentials, a GPS

device (carried by the doctor) supplies the correct location

of the doctor, he is connected to the office WiFi, and the

policy Ps behaves according to its specification. Provided

the doctor has supplied valid credentials, his location

according to the GPS device is such that he is within the

premises of the hospital (i.e. he is on-site), then he should

be allowed to read, write, and share the patients’ medical

record. Otherwise access must be denied. The argument

that the security requirement will be satisfied is the

satisfaction argument.

For our medical record access control problem, the

satisfaction argument can informally and generally stated

as follows:

“If the doctor supplies valid credentials, the doctor is

carrying a GPS device, the coordinates from the GPS

device are valid and say that the his location is within the

premises of the hospital, he is accessing through hospital

WiFi, the time of the day falls within working hours, then

allow him to read, write, and share a medical record.

Also allow the user to read, write, and share a medical

record if he authenticates himself with credentials for an

emergency procedure. Otherwise deny the access.”

EAI Endorsed Transactions on
Self-Adaptive Systems

01-2015 | Volume 1 | Issue 1 | e2

“Why can’t I do that?”: Tracing Adaptive Security Decisions

13

If the above argument is correct we can say that the

security requirement is satisfied. The correctness or

validity of the argument depends on a number of

assumptions we make about the context and the ACM

machine. The assumptions are stated in Section 4.

6.2 Discussion

Currently, our reasoning system is implemented on the

Event Calculus reasoning tool where the rules are

encoded systematically from the domain properties

established from the monitors implemented and deployed

on the target system. The general procedure proposed in

Algorithm 1 needs to be made more efficient at runtime if

the domain knowledge is to be exploited for the adaptive

systems.

For example, the Informing step can be made more

efficient by incrementally developing the causal

relationships, or by statistical classifications. Incremental

update of the data or knowledge structures is feasible

because the changes to the physical contextual situations

of a given user usually have some degree of continuity. In

addition, when the size of the data log may be

accumulated to exceed the capacity, it is possible to

discard the earliest data logs as long as the learned

classification structures are kept. However, statistical

classification requires some training and collecting

additional logs may help improve the accuracy.

The Explaining procedure may be enhanced further by

preprocessing and customizing the contexts for individual

users’ attributes. For example as Bob’s normal office

locations are known beforehand, we can save the memory

consumption for the domain properties and relationships.

For example, condensing the consequent events that are in

fact causing no changes to the fluents would not cause

any loss to the capability of reasoning about the abnormal

events. Therefore, providing abstract events to summarize

these similar concrete events through a preprocessing step

can help with the scalability of the reasoning algorithm.

The information presented by Tables 2 and 3

demonstrate a significant concept in the philosophy of our

proposed approach to traceability. It demonstrates that in

establishing traceability we need refinement in problem,

context, and solution spaces. In the problem space, the

requirement about Boolean variable isOnDuty has been

refined to different confidence levels: VERYLOW, LOW,

MEDIUM, and HIGH. The context has been refined to

three variables isWithinGPSRange,

isWithinWorkingHours, and isCorrectSSID. In the

solution space the action of access to a medical record has

been refined to operations for reading, writing, and

sharing a medical record. Causality links are then

established by relating the phenomena in each of the three

(problem, context, and solution) sets of descriptions. It is

these causality links that makes traceability from

requirements to policies possible.

7. Related Work

The novelty of our work is in the use of rich traceability

for self-explanation of security decisions in adaptive

systems. We review the key related literature in these

areas and compare with our work.

Self-Explanation and Diagnosis: With notable

exceptions, such as Bencomo et. al.[7], we are not aware

of any other approach to providing mechanisms for self-

explaining the behaviour of an adaptive system to the

user. While Bencomo et. el. propose a general approach to

explaining emergent behaviour in adaptive systems, our

approach focuses on explaining security decisions in

adaptive systems. The focus on explaining security

decisions brings with it several additional challenges. One

of these challenges is that we need to make explicit the

assets to be protected and make the explanations precise

to the context of the user. For confidentiality reasons we

also need to be careful about the content of our

explanations to ensure that the system does not

unnecessarily reveal information that may aid a potential

attacker in breaching security. In order to address these

challenges our approach uses traceability enriched with

causality as a mechanism for establishing and reasoning

about the relationship between requirements and policies

to help understand system behaviour.

Our use of traceability as a tool to explain adaptation

decision has similarities with the works on requirements

monitoring [13], fault diagnosis [14], and root cause

analysis [15]. Our approach to informing, explaining, and

assuring is motivated by techniques developed from these

areas of research. While these approaches are mainly

designed for explaining why a particular fault, problem or

emergent behaviour occurs, our approached goes a step

further by providing assurance that a requirement is still

being satisfied after an adaptation and suggesting ways in

which requirements satisfaction can be restored.

Traceability Representation: Traditionally, traceability

has been used as tool for supporting software maintenance

activities [16][17][18][19]. In this tradition use of

traceability, traceability links connect information

contained between the artifacts being traced [20]. The

links are often based on common keywords [18] between

artifacts or numbering systems, such as requirement

traceability matrixes [21][22], which are used to associate

one artifact with another. While these links are effective

in maintaining general explicit relationships between

artefacts, they do not contain adequate semantic

information that can be used for reasoning about the

relationship between requirements (problems) and

policies (solutions). For example, when using existing

traceability links it is not possible to reason about whether

a requirement is still satisfied by a given policy after a

change in context. As our links are based on the

entailment relation we are able to reason about

requirements satisfaction using satisfaction arguments

EAI Endorsed Transactions on
Self-Adaptive Systems

01-2015 | Volume 1 | Issue 1 | e2

A. Nhlabatsi et. al.

14

[23][24]. The links we proposed can also be generalized

into traceability rules in the same style as the requirement-

to-object-model rules [25].

Attempts have been made to establish semantically

rich traceability links [26][27]. However such links are

not sufficient for explaining adaptive system behaviour.

The links we have proposed in this paper involve

capturing domain-specific and intrinsic information

relating security requirements to policies through

causality [11][5]. This representation of links has been

motivated by the observations that security requirements

are stated in terms of the conditions that need to be true to

protect assets from harm, and security policies are

expressed in terms of the actions that need to be

performed in order to satisfy the conditions stated by

security requirements [6][28]. Based on these

observations we specify traceability links in terms of

causality relationships between conditions stated in the

requirements and the actions expressed in policies. This

provides richer traceability links.

The problem of relating a security requirement, to

policies, and the contextual conditions in which those

policies should be enforced is similar to the traceability

problem in software product lines [29][30][31]. While for

software product lines traceability is about how to relate

the various documents produced for the different product

variants, our approach for traceability in adaptive

applications involves explicitly exposing the contextual

conditions that an application depends on as part of the

traceability between the requirements and policies.

Explicit expression of the contextual conditions/attributes

in traceability links is useful for adaptive applications as it

helps in reasoning and deriving explanation of adaptive

behaviour.

Our representation of traceability links with

entailment relations is similar to the idea of knowledge

representation for self-adaptive system behaviour [32].

Reasoning on the knowledge is used to establish

connection between knowledge, perception, and actions

that realize self-adaptive behaviour. Their approach aims

at logging execution traces so that the adaptive system can

remember where it failed. Our approach is aimed at

reasoning on the model representation of an adaptive

system in order to explain its behaviour to the user. We

are not the first to use the Event Calculus for representing

and reasoning about causality. Galton [33] used the EC in

causal reasoning for alert generation in smart homes. In

our approach we use the EC in a similar way – as

formalism for handling the manner in which certain

conjunctions of independent states (such as readings from

sensors) can be used as trigger of dependent states.

 Bruni et. al. [34] proposed a causality framework for

allocating new events and relating their causes. They

achieve this by modelling relationship between processes

and causal relations among the processes’ events. Their

cause-effect relation approach can be useful in future

development of our approach to establish previously

undefined causality relations. The causality relations we

use in our approach are predefined. The dynamic

definition of the causality relations can make the goal of

run-time traceability more feasible.

For software maintenance bi-directional

transformations [35] have been proposed as a means to

establishing and maintaining traceability [36]. With these

transformations separate traceability links are required for

forward and reverse traces. With our approach a single

traceability link can be used for both forward and reverse

trace tasks. This is made possible by the fact that our

traceability links contain references to entities in the

requirements, context, and policies. The satisfaction

arguments [23] explicitly relate the requirements to the

policies through domain assumptions in context. In this

way regardless of what changes occur in the context, the

relationship between the requirements and policies is

maintained. Our approach also has the potential to allow

for a ‘live’ validation of this relationship by providing the

capability of re-evaluating entailment relationships at run-

time.

8. Conclusions and Further Work

Information security for applications used in varying
contexts need to be adaptive in order maintain satisfaction
of security requirements. With such adaptive information
security the applications need to give assurance about the
security requirements they are satisfying as well as
information about and explanation of the access control
decisions taken at runtime. We proposed traceability as a
mechanism for enabling adaptive applications to provide
information, explanations, and assurance about access
control decisions taken at runtime. We used traceability as
a way of understanding the relationship between security
requirements and the policies that enforce those
requirements. Our traceability links are rooted in
entailment relations – capturing the links with causal
relationships described in domain descriptions. Through
our traceability links we were able to explain the rationale
for access control decisions and reason about what access
control decisions would result from a change in contextual
attributes at runtime.

We plan to investigate how traceability can be further
improved for better self-explanation. In particular, the
content of the messages given by our approach for helping
the user understand adaptive behavior needs to be crafted
with great caution. We believe that traceability can be used
as a mechanism for scoping policies to be selected for
adaptation to a context that was not completely understood
at design time. The feasibility of this idea is being
investigated. We plan to capture the runtime event traces
of a real-world access control application and map each
event in a trace to its effect using causality information. By
so doing we hope to identify abnormal behavior that leads
to the violation of a security requirement. Using
supervised learning mechanisms [37] the adaptive
application may then be trained on new behaviors that can
be applied to either weaken the requirement or strengthen
it to prevent further violation. We may use techniques such
as inductive learning procedures [38] to generate

EAI Endorsed Transactions on
Self-Adaptive Systems

01-2015 | Volume 1 | Issue 1 | e2

“Why can’t I do that?”: Tracing Adaptive Security Decisions

15

explanations of how the system may be changed to comply
with user requests.

Acknowledgements.
We thank Michael Jackson for his insightful review that

enriched the ideas in this paper. This work was made possible by

the support of a grant (NPRP 05-079-1-018) from the Qatar

National Research Fund (QNRF). The statements made herein

are solely the responsibility of the authors.

References

[1] O. Gotel, J. Cleland-Huang, J. H. Hayes, A. Zisman, A.

Egyed, P. Grunbacher, and G. Antoniol, “The quest for

Ubiquity: A roadmap for software and systems

traceability research,” presented at the Requirements

Engineering Conference (RE), 2012 20th IEEE

International, 2012, pp. 71–80.

[2] I. Santiago, Á. Jiménez, J. M. Vara, V. De Castro, V. A.

Bollati, and E. Marcos, “Model-Driven Engineering as a

new landscape for traceability management: A systematic

literature review,” Inf. Softw. Technol., vol. 54, no. 12,

pp. 1340–1356, Dec. 2012.

[3] M. Jackson and P. Zave, “Deriving Specifications from

Requirements: an Example,” presented at the 17th

International Conference on Software Engineering, 1995.

ICSE 1995, 1995, pp. 15–15.

[4] O. C. Z. Gotel and A. C. W. Finkelstein, “An analysis of

the requirements traceability problem,” in , Proceedings

of the First International Conference on Requirements

Engineering, 1994, 1994, pp. 94–101.

[5] R. Scherl and G. Shafer, “A logic of action, causality, and

the temporal relations of events,” in Fifth International

Workshop on Temporal Representation and Reasoning,

1998. Proceedings, 1998, pp. 89–96.

[6] P. Zave and M. Jackson, “Four Dark Corners of

Requirements Engineering,” ACM Trans Softw Eng

Methodol, vol. 6, no. 1, pp. 1–30, Jan. 1997.

[7] N. Bencomo, K. Welsh, P. Sawyer, and J. Whittle, “Self-

Explanation in Adaptive Systems,” in 2012 17th

International Conference on Engineering of Complex

Computer Systems (ICECCS), 2012, pp. 157–166.

[8] P. Zave and M. Jackson, “Four Dark Corners of

Requirements Engineering,” ACM Trans Softw Eng

Methodol, vol. 6, no. 1, pp. 1–30, Jan. 1997.

[9] M. A. Jackson, Problem frames and methods: structuring

and analyzing software development problems. Harlow:

Addison-Wesley, 2000.

[10] M. Jackson, Problem Frames: Analyzing and Structuring

Software Development Problems. Boston, MA, USA:

Addison-Wesley Longman Publishing Co., Inc., 2001.

[11] L. Rapanotti, J. G. Hall, and Z. Li, “Deriving

specifications from requirements through problem

reduction,” Softw. IEE Proc. -, vol. 153, no. 5, pp. 183–

198, Oct. 2006.

[12] E. T. Mueller, “Event calculus and temporal action logics

compared,” Artif. Intell., vol. 170, no. 11, pp. 1017 –

1029, 2006.

[13] M. S. Feather, S. Fickas, A. van Lamsweerde, and C.

Ponsard, “Reconciling system requirements and runtime

behavior,” in Ninth International Workshop on Software

Specification and Design, 1998. Proceedings, 1998, pp.

50–59.

[14] G. Carrozza, D. Cotroneo, and S. Russo, “Software Faults

Diagnosis in Complex OTS Based Safety Critical

Systems,” in Dependable Computing Conference, 2008.

EDCC 2008. Seventh European, 2008, pp. 25–34.

[15] M. Leszak, D. E. Perry, and D. Stoll, “A case study in

root cause defect analysis,” in Proceedings of the 2000

International Conference on Software Engineering, 2000,

2000, pp. 428–437.

[16] M. . Hirzalla, A. Zisman, and J. Cleland-Huang, “Using

Traceability to Support SOA Impact Analysis,” in 2011

IEEE World Congress on Services (SERVICES), 2011,

pp. 145–152.

[17] M. Mirakhorli and J. Cleland-Huang, “Using tactic

traceability information models to reduce the risk of

architectural degradation during system maintenance,”

presented at the 2011 27th IEEE International Conference

on Software Maintenance (ICSM), 2011, pp. 123–132.

[18] G. Bavota, A. De Lucia, R. Oliveto, and G. Tortora,

“Enhancing software artefact traceability recovery

processes with link count information,” Inf. Softw.

Technol., vol. 56, no. 2, pp. 163–182, Feb. 2014.

[19] K. Welsh and P. Sawyer, “Requirements Tracing to

Support Change in Dynamically Adaptive Systems,” in

Requirements Engineering: Foundation for Software

Quality, M. Glinz and P. Heymans, Eds. Springer Berlin

Heidelberg, 2009, pp. 59–73.

[20] O. C. Z. Gotel and A. C. W. Finkelstein, “An analysis of

the requirements traceability problem,” presented at the ,

Proceedings of the First International Conference on

Requirements Engineering, 1994, 1994, pp. 94–101.

[21] S. Soonsongtanee and Y. Limpiyakorn, “Enhancement of

requirements traceability with state diagrams,” in 2010

2nd International Conference on Computer Engineering

and Technology (ICCET), 2010, vol. 2, pp. V2–248–V2–

252.

[22] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor,

“Software traceability with topic modeling,” in 2010

ACM/IEEE 32nd International Conference on Software

Engineering, 2010, vol. 1, pp. 95–104.

[23] E. Kang and D. Jackson, “Dependability Arguments with

Trusted Bases,” in Requirements Engineering Conference

(RE), 2010 18th IEEE International, 2010, pp. 262–271.

[24] C. B. Haley, R. Laney, J. D. Moffett, and B. Nuseibeh,

“Security Requirements Engineering: A Framework for

Representation and Analysis,” IEEE Trans. Softw. Eng.,

vol. 34, no. 1, pp. 133–153, Jan. 2008.

[25] G. Spanoudakis, A. Zisman, E. Pérez-Miñana, and P.

Krause, “Rule-based generation of requirements

traceability relations,” J. Syst. Softw., vol. 72, no. 2, pp.

105–127, Jul. 2004.

[26] H. Schwarz, J. Ebert, J. Lemcke, T. Rahmani, and S.

Zivkovic, “Using Expressive Traceability Relationships

for Ensuring Consistent Process Model Refinement,” in

2010 15th IEEE International Conference on

Engineering of Complex Computer Systems (ICECCS),

2010, pp. 183–192.

[27] A. Marcus and J. I. Maletic, “Recovering documentation-

to-source-code traceability links using latent semantic

indexing,” in 25th International Conference on Software

Engineering, 2003. Proceedings, 2003, pp. 125–135.

[28] W. Pieters, T. Dimkov, and D. Pavlovic, “Security Policy

Alignment: A Formal Approach,” IEEE Syst. J., vol. 7,

no. 2, pp. 275–287, Jun. 2013.

[29] S. . Ajila and A. Kaba, “Using traceability mechanisms to

support software product line evolution,” in Proceedings

of the 2004 IEEE International Conference on

EAI Endorsed Transactions on
Self-Adaptive Systems

01-2015 | Volume 1 | Issue 1 | e2

A. Nhlabatsi et. al.

16

Information Reuse and Integration, 2004. IRI 2004, 2004,

pp. 157–162.

[30] L. C. Lamb, W. Jirapanthong, and A. Zisman,

“Formalizing Traceability Relations for Product Lines,”

in Proceedings of the 6th International Workshop on

Traceability in Emerging Forms of Software

Engineering, New York, NY, USA, 2011, pp. 42–45.

[31] W. Jirapanthong and A. Zisman, “XTraQue: traceability

for product line systems,” Softw. Syst. Model., vol. 8, no.

1, pp. 117–144, Feb. 2009.

[32] E. Vassev, M. Hinchey, and B. Gaudin, “Knowledge

Representation for Self-adaptive Behavior,” in

Proceedings of the Fifth International C* Conference on

Computer Science and Software Engineering, New York,

NY, USA, 2012, pp. 113–117.

[33] A. Galton, “Causal Reasoning for Alert Generation in

Smart Homes,” in Designing Smart Homes, J. C. Augusto

and C. D. Nugent, Eds. Springer Berlin Heidelberg, 2006,

pp. 57–70.

 [34] R. Bruni, U. Montanari, and M. Sammartino, “Revisiting

causality, coalgebraically,” Acta Inform., pp. 1–29, Oct.

2014.

[35] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and K.

Nakano, “Bidirectionalizing Graph Transformations,” in

Proceedings of the 15th ACM SIGPLAN International

Conference on Functional Programming, New York,

NY, USA, 2010, pp. 205–216.

[36] Y. Yu, Y. Lin, Z. Hu, S. Hidaka, H. Kato, and L.

Montrieux, “Maintaining invariant traceability through

bidirectional transformations,” in 2012 34th International

Conference on Software Engineering (ICSE), 2012, pp.

540–550.

[37] C. S. G. Lee and C.-T. Lin, “Supervised and unsupervised

learning with fuzzy similarity for neural-network-based

fuzzy logic control systems,” in , IEEE International

Conference on Systems, Man and Cybernetics, 1992,

1992, pp. 688–693 vol.1.

[38] A. S. d’ Avila Garcez, A. Russo, B. Nuseibeh, and J.

Kramer, “Combining abductive reasoning and inductive

learning to evolve requirements specifications,” Softw.

IEE Proc. -, vol. 150, no. 1, pp. 25–38, Feb. 2003.

