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Abstract 

One of the challenges of any adaptive system is to ensure that users can understand how and why the behaviour of the 

system changes at runtime. This is particularly important for adaptive security behaviours which are essential for 

applications that are used in many different contexts, such as those hosted in the cloud. In this paper, we propose an 

approach for using traceability information, enriched with causality relations and contextual attributes of the deployment 

environment, when providing feedback to the users. We demonstrate, using a cloud storage-as-a-service environment, how 

our approach provides users of cloud applications better information, explanations and assurances about the security 

decisions made by the system. This enables the user to understand why a certain security adaptation has occurred, how the 

adaptation is related to current context of use of the application, and a guarantee that the application still satisfies its 

security requirements after an adaptation. 
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1. Introduction

Many software applications are now deployed as 

Cloud Services in order to allow users to access them 

from a variety of devices, wherever they happen to be. 

This requires that these applications be able to adapt their 

behaviour, in order to ensure that requirements continue 

to be satisfied even when the context of use changes. 

This is particularly important for critical quality 

requirements such as security requirements. 

For example we may want a cloud application to 

change its security behaviour depending on where 

(location) it is used, who (subject) is using it, or when 

(time) it is being used. We call this Adaptive Information 

Security (AIS). As a result of dynamic context, the assets, 

their values, and attack scenarios can change easily from 

one situation to another, increasing the challenge of 

finding out what the information assets are, who their 

owners are, where in the system vulnerabilities lie, and 

the extent to which the security requirements are satisfied. 

One of the challenges of any adaptive security system 

is to ensure that users can understand how and why the 

security behaviour of the system changes at runtime. For 

example, a doctor may be able to edit a medical record 

stored on a cloud server using one device but only able to 

read the same medical record when it is accessed from a 

different device. This is because an access control policy 

for maintaining confidentiality and integrity of medical 

records may dictate that the doctor is able to gain access 

to edit rights only when he is on duty. Sensors in the 

device used when accessing a record determine the 

contextual property of whether the doctor is on duty. As a 

result, when using a device with limited capabilities the 

access control mechanism may not be able to determine 

that the doctor is on duty resulting in limited access to the 

http://creativecommons.org/licenses/by/3.0/


EAI Endorsed Transactions on 
Self-Adaptive Systems 

01-2015 | Volume 1 | Issue 1 | e2 

 
A. Nhlabatsi et. al.  

2 

record. In this situation, the doctor needs to understand 

why his access rights appear to change in a seemingly 

arbitrary way.   

The example illustrates that there is a relationship 

between the security requirement to maintain the integrity 

of the medical record and the granting/revoking of access 

rights. The doctor gets certain privileges when his 

contextual attributes say that he is on duty and gets a 

different set of privileges otherwise. In effect, the 

privileges the doctor gets are indirectly determined by the 

properties of the device he is using. As such if we know 

the properties of the device, at the time an access control 

decision is made, then we can determine which privileges 

the doctor gets. In this way we can relate the security 

requirement to a particular set of permitted privileges via 

device properties. This illustrates the role the context 

plays in relating requirements and security policies. We 

call such relationships traceability, a well-established 

concept in the software engineering literature. 

Traceability is generally defined as the ability to establish 

and keep track of the relationships between requirements, 

design artefacts, source code, test cases, etc [1][2].  Users 

of adaptive applications may not always have detailed 

knowledge on how security decisions are determined with 

respect to their context of use. This may lead to loss of 

confidence and trust in the adaptive application when its 

behaviour deviates from the user’s expectations. 

The main contribution of the paper is an approach to 

providing users of cloud applications information, 

explanations, and assurances about the security decisions 

made by an adaptive information security system. This 

enables the user to understand why a certain adaptation 

has occurred, how the adaptation is related to current 

context of use of the application, and steps they (users) 

may take to guarantee that the application satisfies its 

security requirements after an adaptation. Our approach is 

rooted in the well established concepts of entailment [3], 

traceability [4], and causality [5] as used in the software 

engineering literature.  

The entailment relationship is a framework that relates 

requirements, domain properties, and specification [3][6] 

of a software system. We use this framework for 

establishing traceability relationships relevant to adaptive 

information security systems and as a means of evaluating 

satisfaction of security requirements at runtime. Our 

traceability relationships are augmented with causality 

relations, namely, the effect of different actions or events 

on the state of the system. In our example, one can state 

the causality relation that the event of the doctor arriving 

at the hospital results in him being on duty and the event 

of him leaving the hospital results in him being off duty 

(i.e. not on duty). We enrich such causality relations with 

contextual attributes of the deployment environment as a 

means to providing information about the behaviour of an 

adaptive application to the user. Our proposed approach is 

demonstrated through an example of a cloud storage as-a-

service application. 

With the exception of Bencomo et. al. [7], as far as we 

are aware, we are the first to propose mechanisms for 

helping the user understand security decisions made by an 

adaptive application. While Bencomo et. al.’s approach to 

self-explanation in adaptive applications provides a 

general framework for explaining adaptive behaviour, in 

our approach we focus more on explaining security 

decisions, a task that requires additional treatment. For 

instance, the explanations must satisfy confidentiality 

requirements such that they are not exploitable by a 

potential attacker pretending to be the legitimate user. Our 

proposed rich traceability links help in making 

explanations more accurate to the user’s context, an 

important prerequisite for explaining security decisions.   

The paper is organized as follows: §2 presents an 

access control example we use to motivate and explain the 

problem we are solving. §3 presents background on 

concepts our approach builds on and notations we use. §4 

brings together the concepts and notations from §3 and 

shows how we use them for representing traceability 

through an example. §5 describes algorithms we use for 

tracing security decisions using the traceability 

information from §4 and we evaluate and discuss the 

limitations of our approach in §6.  In §7 we review related 

literature and, finally, §8 concludes the paper and 

discusses pointers to further work. 

2. Motivating Example: An Adaptive 
Access Control Application 

Consider a hospital that uses a cloud-based electronic 
patient record (EPR) system. Bob is a doctor at the 
hospital and medical records of his patients are stored on 
the EPR system. The policy of the hospital is that Bob 
should only be able to access the medical records when he 
is on duty. Assuming that the EPR system has already 
authenticated Bob’s identity, whether he is on duty or not 
is based on a combination of three contextual attributes, 
namely his location, time of day, and the identity of the 
network he is using when accessing the medical records. 
We use the values of the attributes to determine the truth-
value of a Boolean variable isOnDuty. However, the 
availability of these attributes will depend on Bob’s 
context when he attempts to access certain medical 
records.  Therefore we use the availability of the attributes 
to determine a confidence level for the computed truth-
value.  

Because of variations in the features available in 
different devices Bob may use when accessing a medical 
record, the confidence level on his on duty status varies. 
The confidence level can be very low, low, medium, or 
high. The combination of the truth-value and confidence 
level is used to determine whether Bob is granted access to 
perform Read, Write, or Share operations on the medical 
record. Adam is the policy administrator who specifies the 
policies that control the behavior of the EPR application.  
One policy he specifies is that if the confidence level of 
isOnDuty is very low the user is not allowed to perform 
any of the operations. If it is low he can only read and if it 
is medium, he can Read and Write a medical record. If it is 
high he can perform Read, Write and Share operations.  
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As a user Bob has limited knowledge on why the EPR 
system behaves in certain ways at runtime as his context of 
use changes. Sometimes certain operations are permitted 
and sometimes they are denied. He only knows that when 
he is on duty the system should grant him full access rights 
on a medical record. He is not aware of the details of how 
the system determines that he is on duty, i.e., he does not 
know that his isOnDuty status depends on the three 
contextual variables.  

As a result of the lack of the detailed understanding of 
the implementation of the system’s adaptive behavior, Bob 
is sometimes confused about certain access control 
decisions. Bob wants a mechanism to help him understand 
why a certain adaptation has occurred and how the 
adaptation is related to the context in which he is using the 
system.  

For example if he is denied the privilege to share a 
medical record when using his laptop while the same 
privilege is available when using his iPad, the mechanism 
could explain why this is the case. When informing Bob, 
the mechanism could say that he is not able to share a 
record because “the system is not sure if you are on duty.” 
If Bob probes further for an explanation on why it is 
uncertain that he is on duty the mechanism would say “a 
GPS sensor is not available in the device you are using. As 
a result, the system is uncertain about your location and 
cannot determine if you are physically at the hospital 
premises. The security policy dictates that you should be at 
the hospital to share a medical record.”  

If Bob needs advice on how he can restore the sharing 
privilege then the assurance mechanism in the EPR 
system could advice Bob to “use the hospital WiFi 
network to gain further privileges”. The explanatory 
messages given to Bob are specific to his context. In this 
case, the message is specific to the nature of the device he 
is using for access. 

Adam writes general policy rules that are instantiated 
for each user. He will not be able understand the specifics 
of each instance of the policy for each of the hundreds of 
users of the EPR system. Therefore Adam would benefit 
from a means of explaining specific security decisions and 
being assured that security requirements will be satisfied in 
specific contexts. By developing a way to relate security 
requirements, policies, and the EPR system’s contexts of 
use, we can provide the information, explanations and 
assurances needed by users and administrators like Bob 
and Adam.  

3. Background and Notations

In supporting our approach to explaining adaptive security 

decisions we use Zave and Jackson’s entailment relation 

[8][9] and causality.  

3.1 The Entailment Relation 

Three sets of properties in Definition 1, namely the 

requirements R, the specifications S and the domain 

properties W are related.  

The set of requirements R describes the properties of 

the software system as desired by its users, customers, and 

other stakeholders. Requirements are optative descriptions 

in that they describe how the world would be once the 

envisioned system is in place. In the EPR system, there is 

a security requirement controlling access to medical 

records that says: ‘The doctor can read, write, or share a 

patient’s medical record only when he is on duty 

depending on confidence level about his status of being on 

duty’. 

The set of domain properties W describes the 

behaviour of the context, which is the environment where 

the software system will be deployed. Attributes of the 

context have values that may determine the behaviour of 

the adaptive application. Unlike requirements, domain 

properties are indicative in that these properties hold both 

before and after the deployment of the software system. In 

the EPR example, an indicative property is: ‘Working 

hours at hospital are from 8am to 5pm.’   

The set of specifications
*
 S describes how the

computer should behave in order to satisfy the domain 

properties described in R, given that the domain 

properties in W hold. The specification for the EPR 

system could be: ‘After a successful authentication, the 

doctor can read, write, or share a patient’s medical 

record only when he is accessing the record within 

working hours’  

In general the problem-solution relationship between 

the three sets of descriptions explained above is given 

below. 

where   is the entailment operator. 

The entailment relation does not prescribe languages 

for expressing the three artefacts.  This has the advantage 

of giving the requirements engineers the freedom to 

choose a language of their choice for representing details 

of the three descriptions. In order to support the 

entailment we need to know the details about the specific 

behaviour of S and W. One way to describe the three 

artefacts (S, W, and R) is in terms of events and fluents.  

A requirements traceability link can be derived from 

explicit requirements problems in Definition 2.  

*
 For purposes of examples presented in this paper we regard 

specification to be equivalent to an access control policy and 

therefore use the two terms interchangeably. 

W, S |- R.
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The entailment relation can also be modelled 

graphically using the Problem Diagram notation [10]. 

Figure 1 shows a problem diagram modelling the medical 

record access control example.  

The machine to be designed is represented by the 

rectangle with double vertical lines. The medical record 

access control (ACM) is an example of a machine. 

Rectangles represent problem domains whose domain 

properties the machine rely in to satisfy the requirement. 

The medical record (MR) is an example of a problem 

domain. An access control specification for the ACM 

relies on properties of the medical record such as the 

ability of the record to be read or written. The access 

control requirement for allowing access when the doctor 

is on duty is represented as the dotted oval.  

 

 
Figure 1: Problem Diagram of the Medical Record Access 

Control Machine. 

 

The three entities in a problem diagram share 

phenomena between them through interfaces (see 

Definition 1). The solid lines a and b are machine 

interfaces. The dotted lines d and e are requirements 

interfaces. Dotted lines with an arrow (e.g. interface e) 

mean that the behaviour of the domain is constrained by 

the requirement. For example the ability of a medical 

record to be read, written, or shared is possible only if the 

doctor is on duty. Phenomena are either observed or 

controlled by one of the domains they link. For example, 

at the interface a, the phenomena readable, writeable, and 

sharable are controlled by the ACM machine. This is 

denoted by the ‘!’ between the domain name and the 

phenomena. The MR domain observes these phenomena. 

The medical record access control machine (ACM) 

represents the software that must implement the security 

requirement and its behaviour is specified using access 

control policies. To satisfy the requirement, the ACM 

interfaces with the medical record (MR) and the user 

device (UD). The medical record is the asset to be secured 

by the ACM by controlling whether the doctor is able to 

read, write, or share it. The authenticated doctor (AD) 

interacts with the user device, through interface c, to issue 

request actions for access to a medical record. 

The truth-value and confidence level of the isOnDuty 

phenomena at interface d are computed by the ACM 

observing the phenomena isWithinGPSRange, 

isCorrectSSID, and isWithinWorkingHours at interface b. 

The phenomena isWithinGPSRange, isCorrectSSID, and 

isWithinWorkingHours are derived from sensors on the 

user device. 

3.2 Causal Relations 

The relationship between the events and state changes in 

domain descriptions can be described using causality 

relations. A causality relation is a way of describing how 

the occurrence of one event e1 leads to the occurrence of a 

second event e2 [5]. Event e2 can be either another event 

or the change of a fluent [11].  In this paper we are 

interested in two types of causality relations: direct and 

transitive causalities. We use the Event Calculus as a 

notation for representing and reasoning about causality. 

 

Direct and Transitive Causality 

 

Direct Causality: The occurrence of event e1 directly 

leads to the occurrence of event e2, expressed as causal 

relations, which can be generalised in Definition 3. 

 

 
 

For example, when the time of day becomes 8am, the 

event isWorkingHours follows. There is a direct causality 

relationship between ClockStrikes8am and 

isWorkingHours. Using Definition 3, this is expressed as: 

 

ClockStrikes8am    isWorkingHours 

 

Note the effect of time in this causality relation. The 

events ClockStrikes8am and isWorkingHours do not 

happen simultaneously but they are consecutive. If event 

ClockStrikes8am happens at some time t0 then, according 

to Definition 3, isWorkingHours becomes true at a later 

time t1.  

 

Transitive Causality: Transitively, one may want to find a 

trace in Definition 4 as the evidence for their causality.  
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For example, when the time of day becomes 8am, the 

Boolean variable isWorkingHours become true which 

leads to Boolean variables canRead, canWrite, and 

canShare becoming true. Using Definition 3 this can be 

expressed as follows: 

 
isWorkingHours   canReadcanWritecanShare 

 

There is a transitive relationship between 

ClockStrikes8am and the three events canRead, canWrite, 

and canShare. Using Definition 4 this can be expressed 

as: 

  

ClockStrikes8am  +
 canReadcanWrite,canShare 

  

Our use of these causality symbols in this paper has the 

same meaning as the casual relationships used for 

deriving specifications from requirements through 

problem reduction [11]. We use the Event Calculus (EC) 

as a formal language for representing causality. We chose 

the EC because: (1) it is expressiveness enough for 

representing the properties of causality that are of interest 

to the ideas presented in this paper; and (2) it has tool 

support for reasoning about causality. The next section 

gives a brief introduction to the EC. 

 

Event Calculus Representation 
 

The Event Calculus (EC) is a logic system for reasoning 

about how the occurrence of events changes the state of 

the world. We use the EC in this paper to express domain 

descriptions and to facilitate traceability. 

 

Basic Constructs of the Event Calculus: The EC consists 

of three basic sorts: events, fluents, and timepoints [12]. 

An event represents an action, which may occur to a 

problem domain. For example, ClockStrikes8am is an 

event in the medical record access control problem. A 

fluent is a time-varying property describing the state of a 

problem domain, such as isWorkingHours. A timepoint is 

a time instant, for example t0 denotes the timepoint 0.  

 

Event Calculus Predicates: A fluent is either true (holds) 

or false (does not hold) at a timepoint or over an interval. 

The occurrence of an event at a timepoint may change the 

truth value of a fluent. Below is the domain description of 

a clock used to tell time of day in the medical record 

access problem.  
Initiates (ClockStrikes8am, isWorkingHours, t)         [CD1] 

Terminates (ClockStrikes5pm, isWorkingHours, t)        [CD2] 

Initially (isWorkingHours)   [CD3] 

When an event results in a fluent being true it is said 

to initiate the fluent. For example the time of day event 

ClockStrikes8am results in fluent isWorkingHours being 

true. Hence ClockStrikes8am is said to initiate fluent 

isWorkingHours. If an event causes a fluent to become 

false then that event is said to terminate the fluent. For 

example, time of day event ClockStrikes5pm terminates 

isWorkingHours i.e. when event ClockStrikes5pm occurs 

isWorkingHours become false. These relationships 

between the events and fluents describe the behaviour of a 

clock, which we will use in the medical record access 

control problem.  

A domain description models a real-world domain and 

forms the basis for reasoning about the behaviour of the 

modelled domain. It is therefore important that its 

behaviour is consistent with the actual state of the real-

world problem domain. In the EC all reasoning about 

future states is based on current states. The initial state of 

a fluent f1 is expressed with Initially(f1) clauses. These 

state that fluent f1 holds at time 0. For example, the 

domain description assumes that the clock is initially set 

to a time that is not within working hours. (CD3). All 

other fluents not captured in the initially clause are 

assumed to be (initially) false and changes in their truth 

values are subject to the common sense law of inertia. 

This law states that a fluent remains false until initiated 

and remains true until terminated. Table 1 shows the 

predicates of the EC we will use and their meanings.  

 

Table 1 Event Calculus Predicates 

Fluent Description 
Initiates(e,f,t) Fluent f starts to hold after event e at 

time t. 

Terminates(e,f,t) Fluent f ceases to hold after event e at 

time t. 

Initially(f) Fluent f holds at time 0 

Happens(e,t) Event e occurs at time t. 

HoldsAt(f,t) Fluent f holds at time t. 

Clipped(t1,f,t2) Fluent f is terminated between times 

t1 and t2. 

 

Event Calculus Meta-Rules: Based on initial conditions, 

events that have happened, and rules that state how 

fluents are changed when events happen (domain 

descriptions), it is possible to determine which fluents 

hold. This is summarised in the EC rules below. 

 
Clipped(t1,f,t2)  ∃ a,t1 [ Happens(a,t) /\ Terminates(a, f, t1) /\ (t1<t<t2)]   [EC1] 
 

HoldsAt(f,t1)  Initially(f) /\ ￢Clipped(0,f,t1)              [EC2] 

 
HoldsAt(f,t2)   Happens(a,t1) /\ Initiates(a,f,t1) /\ (t1 < t2) /\ ¬Clipped(t1,f,t2)   
      [EC3] 

 
EC1 states that if an event happens in the period 

between t1 and t2, and that event terminates fluent f 

during that period, the fluent is said to be clipped in the 

period. EC2 states that a fluent holds if it held initially 

and no event has occurred to stop it holding. EC3 captures 

the common sense law of inertia described above. These 
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three rules are referred to as meta-rules since they form 

the foundation of all reasoning about occurrence of events 

and resulting effects in the Event Calculus language. 

4. Traceability in Context 
 
As illustrated by our example, the traceability between 

requirements and policies can be established through the 

context. Sections 3 explained the concepts of entailment 

and causality and we now bring them together in this 

section to describe how traceability is established. We 

also illustrate causal relations in our example.  

 
4.1 Traceability Representation 

Policies and Requirements are expressed at different 

levels of abstraction using different forms of language. At 

a higher level of abstraction, requirements are expressed 

in terms of the conditions to be fulfilled by the 

application. Meanwhile at a lower level of abstraction, 

policies specify the actions that need to be performed by 

an application in order to make the conditions stated in 

the requirements true. The difference in the way the 

requirements and policies are expressed makes the task of 

relating them less obvious. 

Relating Problem and Solution Entities Through 
Context 
 

The entailment relation relates requirements (R), context 

(W), and specifications (S). Our approach leverages this 

representation to relate security requirements to policies. 

We assume that policies are in the solution space as their 

behaviour satisfies the requirements: in other words, we 

regard them as specifications. We can think about context 

as the traceability link between requirement and policy 

which we propose can be represented through the domain 

properties. Figure 2 presents the general framework of our 

approach. The figure shows how we propose to relate 

entities in the problem space to those in the solution space 

through facts in the context. Requirements and policies 

are in the problem and solution spaces, respectively. 

 

 
Figure 2: Relating Requirements and Policies through 

Domain Assumptions in the Context 

 

We can think of the traceability link between 

requirements and policies in terms of the two links. The 

first link is between the problem and context domains – 

indicated by the dotted line between R and W in Figure 2. 

The second link is between the context and solution 

domain – indicated by the solid line between W and S. An 

interesting question is what specific attributes to consider 

in the requirement, context, and solution domains in order 

to establish these links. The next two sections address this 

question. 

 
Traceability Link Between Requirements and 
Context 
According to the entailment relation a requirement is 

defined as some property that must be exhibited by an 

application in order to solve some problem in the real 

world. For this reason we express a requirement in terms 

of the conditions we would like to be true in the context 

once the system is in place. The expression of a 

requirement references some attributes of the context. For 

example a requirement could say a doctor should have 

access to a medical record only when he is on duty. But 

what does being ‘on duty’ mean? We may say the doctor 

is on duty if he is within certain GPS coordinates, he is 

using the hospital WiFi for connection, and the time of 

day between 8am and 5pm. The explanation of what on 

duty means is derived from properties of the context.  

The example illustrates that the requirement contains 

references to domain assumptions in the context. It is 

through such references that we relate the requirement to 

the context. The relationship between the requirement and 

context is captured by traceability link L1 in Figure 3.  

 
 

X represents the attribute in the context that is 

referenced by the requirement. In our example isOnDuty 

is a concept in the requirements, whereas GPS, WiFi, and 

Time-of-Day are attributes in the context. We can 

therefore distinguish between two types of the attribute x: 

x1 in the requirement and x2 in the context. x1 being the 

variable isOnDuty and x2 being the GPS, WiFi, and Time 

of Day. 

Using domain knowledge, the context (x2) qualifies 

what isOnDuty (x1) means by stating how it is 

determined. Such reference provides a concrete 

relationship between the requirement and context thus 

forming a traceability link. 

Traceability Link Between Context and Policies 

Link L2 in Figure 4, represents a traceability link between 

the context and policies. Similar to entities in the problem 

space, solution space entities also make assumptions 
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about the behaviour of the context. The solution uses 

these assumptions to implement behaviour that satisfies 

the requirements. For instance the policies in our example 

implement access control mechanisms that determines 

who can or cannot access a medical record and the 

circumstances under which access should be granted or 

denied. Hence policies also references some attributes of 

the context. Again, we take advantage of these references 

to establish the traceability link between policies and 

context. 

 
 

In our example a policy could state that if a doctor is 

on duty then he should be allowed to read, write, and 

share a medical record. The policy assumes that some 

machinery is available for determining that the doctor is 

on duty or not. An example of such machinery is a 

location sensing equipment. In our example the location 

sensing is performed by a GPS component in the user 

device, which we assume the doctor carries with him. We 

use the reliance of the policy on properties of the context 

to establish a traceability relationship between the two.  

In our example, the value of y is the data that has been 

read from the GPS component that is interpreted through 

the context to determine if the doctor is on duty or not. 

The relationship between x and y established via the facts 

given in the context is the traceability link that relates the 

y in the policy to the x in the requirement. Worth noting 

in this example is that even though y is part of the policy 

it is not an action. It is a piece of data that qualifies the 

condition isOnDuty stated on the requirements side. 

Hence the traceability information on the policy side is 

not necessarily expressed as actions but can also be any 

fact that helps us qualify the conditions stated by the 

requirement. 

Required, Observed, and Designed Causality  

The distinction between requirements-to-context and 

context-to-specifications traceability links does not say 

anything about the boundary of the access control system. 

By separating events in the identified causality relations 

based on whether the event belongs to the machine, 

requirement or domain, it is possible to further enrich the 

traceability relations. There are three types of phenomena 

[10]: required, observed, and designed.  

It also follows that there are three types of causality 

events: (1) required causality; (2) observed causality; and 

(3) designed causality in Definition 5. 

 
Required Causality: These are causality events at the 

requirements interfaces d and e. The user will observe the 

phenomena that he can read, write, or share a medical 

record as a result of events initiated by the access control 

machine in changing the access rights on the medical 

record. Required causality is captured by link L1 in 

Figure 3. 

Observed Causality: These are events describing the 

behavior of a problem domain. The interaction between 

the doctor and the device, and the internal behaviour of 

the device that affects the phenomena 

isWithinWorkingHours, isWithinGPSRange, and 

isCorrectSSID are examples of observed causality. In 

Figure 1 interface c and any events internal to domains 

MR, UD, and AD are observed causality. 

Designed Causality: These are causality events at the 

machine interface. Such causality events are said to be 

‘designed’ because they come about as a result of 

behaviour of the machine specification. Machine 

interfaces a and b contain designed causality events. This 

corresponds to link L2 in Figure 4. 

 

Refining Traceability Links through Causality 
 

As stated earlier, when establishing traceability relations 

between requirements and policies we use causal links. 

However, there are important differences between 

traceability and causality links, which we explain in this 

section. Traceability links relate artefacts at different 

levels of abstraction. For example relating security 

requirements in the problem space to security policies in 

the solution space or relating a requirement to a section of 

source code that implements the requirement. On the 

other hand causal links relate events at the same level of 

abstraction such as the events that describe a domain. 

Definition 6 shows how causality can be used to refine the 

requirements traceability links. 

 

 
As an illustration, consider the GPS device for 

determining the doctor’s location. Its domain description 

could say: A GPS device gives its location in terms of 

latitude and longitude coordinates. In this statement 

latitude and longitude are numbers that, on their own, do 

not have any meaning. The description gives these 

numbers a meaning by stating they are a location. We can 

go further and enrich this description by stating that these 

coordinates are the location of the hospital. Similarly, 

location of the hospital would be meaningless unless we 

can say exactly what geometric reference system are we 

using to locate it. The links between the GPS coordinates 

and the location of the doctor are causal.  

The fact that location of the hospital is assigned to 

certain coordinates enables us to derive further facts such 
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as whether or not the condition isOnDuty holds. This is a 

traceability link as it relates the isOnDuty concept at the 

requirements level to contextual attributes (GPS 

coordinates, SSID, and time of day). Variables x and y are 

dependent on each other through causality. We exploit 

this dependency to define traceability within the context 

through domain descriptions. As stated earlier, x 

represents the Boolean variable isOnDuty while y 

represents the actual data that helps an access control 

machine to a medical record determine whether the value 

of isOnDuty should be true or false. In this case y is a 

combination of the GPS coordinates, WiFi SSID, and 

TimeOfDay.  

In summary, using causal links enriched with 

contextual information we are able to trace between 

entities in the problem space to entities in the solution 

space. We achieve this in two stages: (1) relating 

requirements to context; and (2) relating the context to 

policies. The relationship is established through facts in 

the context that are referenced by both the requirement 

and policy. Our approach assumes that the domain 

assumptions (facts) about the context already exist and we 

use these to establish the traceability relationship of 

requirements with policies. The domain assumptions are 

the relations between x and y in the context that binds a 

requirement to a corresponding policy. 

4.2. An Illustration of Causality 

The traceability links established through the entailment 

relation is not rich enough to support the process of 

tracing security decisions. In order to make the tracing 

process feasible we enrich the traceability links with 

additional contextual information on causality. After 

presenting an example of requirement, domain properties, 

and policies we discuss the type of contextual information 

needed for tracing access control decisions. 

 

Requirements, Policies, and Domain Properties  
 

The requirement, context, policy specifications from the 

architecture in Figure 2 and problem diagram in Figure 1 

can be instantiated through a refined version of the 

example presented in section 2 as follows: 

 

Requirements: 

 R: If the doctor isOnDuty then allow him to perform 

certain operations depending on the level of 

confidence of the determination of isOnDuty. 

Context:  

 W1: if the doctor is within hospital GPS 

coordinates, using hospital WiFi, and within 

working hour, then the doctor is on duty with high 

confidence level.  
[(latitude=X,longitude=Y)AND(8am<timeOfDay<5pm) AND 

(WiFiSSID=HospitalWiFi)]    

{isOnDuty=True,ConfidenceLevel=HIGH} 

 W2: if the doctor is not within hospital GPS 

coordinates, using hospital WiFi, and within 

working hours, then the doctor is on duty with 

medium confidence level.  
[(latitude!=X,longitude!=Y)AND(8am<timeOfDay<5pm)AND 

(WiFiSSID=HospitalWiFi)]    

{isOnDuty=True,ConfidenceLevel=MEDIUM} 

 W3: if the doctor is not within hospital GPS 

coordinates, using hospital WiFi, and not within 

working hours, then the doctor is on duty with low 

confidence level.  
[(latitude!=X,longitude!=Y)AND(8am>timeOfDay>5pm)AND 

(WiFiSSID=HospitalWiFi)]    

{isOnDuty=True,ConfidenceLevel=LOW} 

 W4: if the doctor is not within hospital GPS 

coordinates, not using hospital WiFi, and not within 

working hours, then the doctor is not on duty and 

level of confidence is very low.  
[(latitude!=X,longitude!=Y)AND(8am>timeOfDay>5pm)AND 

(WiFiSSID!=HospitalWiFi)]    

{isOnDuty=False,ConfidenceLevel=VERYLOW} 

Policies: 

 P1:  
if ((isDoctor(subject)=TRUE) AND  
    (confidenceLevel=HIGH) AND 
    (isOnDuty(subject)=TRUE)) then  

EnableRead() = True; 
EnableWrite() = True; 
EnableShare() = True; 

 P2:   

if ((isDoctor(subject)=TRUE) AND  
              (confidenceLevel=MEDIUM) AND 

              (isOnDuty(subject)=TRUE)) then 
EnableRead() = True; 
EnableWrite() = True; 
EnableShare() = False; 

 P3:  

if ((isDoctor(subject)=FALSE) OR  
               (isOnDuty=TRUE) OR  
               (confidenceLevel=LOW)) then 

EnableRead() = True; 
EnableWrite() = False; 
EnableShare() = False; 

 P4:  

if ((isDoctor(subject)=FALSE) OR  
               (isOnDuty=FALSE) OR  
               (confidenceLevel=VERYLOW)) then 

EnableRead() = False; 
EnableWrite() = False; 
EnableShare() = False; 

 

The requirement describes what is to be achieved by the 

access control machine. It states that if the doctor is on 

duty and based on confidence level about his on duty 

status then he will be able to perform certain operations 

on a medical record. The policies are more specific than 

the requirement as they state what access rights will be 

granted to the doctor under different contextual 

conditions. Both the requirement and policies refer to the 

isOnDuty and confidenceLevel variables but they do not 

say how these variables are to be determined. The context 
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relates the conditions stated in the requirements to the 

actions stated in the policies by showing how the entities 

referenced in both requirements and specifications are 

derived from contextual attributes. This provides a rich 

traceability between the requirements and policies. For 

instance, the domain knowledge provided by context is 

necessary in order to explain what isOnDuty means in 

terms of causality for both the requirement and policy. 

Therefore, we need to make the context explicit as a way 

of linking requirements to their policies. 

 

Causality Links, Logs, Domain Assumptions 
 

In order to provide information, explanations and 

assurance to the user, we collect three types of 

information: causality links, data logs, and domain 

assumptions. Using our running example we illustrate the 

nature of these pieces of information. 

  
Causality Links: The value of the Boolean variable 

isOnDuty and its confidenceLevel is determined by a 

combination of the values of three contextual variables 

GPS, WiFi, and TimeOfDay with varying levels of 

confidence for each combination as shown in Table 2. 

The confidence level can be VERYLOW, LOW, 

MEDIUM, or HIGH. The confidence level indicates the 

trust we have in the truth-value of the isOnDuty variable. 

This reflects the uncertainity we may have on the context.  

The confidence in the isOnDuty variable depends of 

which sensors are available. For example, according to 

Table 2, if the GPS sensor is providing accurate 

coordinates and the doctor is connected to the hospital 

WiFi but not during working hours the confidence level is 

assign to HIGH. However, if none of the three sensors are 

available confidence level is assigned VERYLOW. Note 

that the ratings in Table 2 about confidence level would 

typically be formulated with the help of a domain expert. 

We convert the data in Table 2 into the EC causality links 

shown in Listing 1.  

 

Table 2: Variable Confidence Determination from 

Context Variable Values 
isWithin-

GPSRange 
isCorrect-

SSID 
isWorking-

Hours 
isOnDuty Confidence 

Level 

0 0 0 F VERYLOW 

0 0 1 T LOW 

0 1 0 T LOW 

0 1 1 T MEDIUM 

1 0 0 T MEDIUM 

1 0 1 T HIGH 

1 1 0 T HIGH 

1 1 1 T HIGH 

0  False / 1  True 

 

The levels of confidence are mapped to three 

operations on a medical record: Read, Write, and Share as 

shown in Table 2. If the confidence level is very low the 

doctor is not allowed to perform any of the three actions. 

If the confidence level is low, the doctor is allowed to 

read medical record. If the confidence level is medium, he 

can only Read and Write a medical record. If the 

confidence level is high, he can perform all the 

operations. 

 

Listing 1: isOnDuty Variable Causality Links 

 
1.1 (!HoldAt(IsWithinGPSRange(),time) 

&!HoldAt(IsCorrectSSID(),time)&!HoldAt(IsWorkingHours(), 

time))  Happens(E1(),time). 
1.2 Terminates(E1(), IsOnDuty, time). 
1.3 (HoldsAt(IsWithinGPSRange(),time) | 

HoldsAt(IsCorrectSSID(),time) | HoldsAt(IsWorkingHours(),time)) 

 Happens(E2(), time). 
1.4 Initiates(E2(), IsOnDuty, time). 

 
Listing 2: Confidence Level Causality Links 
 
2.1 Initiates (E1(), VeryLowConfidenceLevel(), time). 
2.2 HoldsAt(IsWithinGPSRange(),time)&(HoldsAt(IsCorrectSSID(),time)  

      HoldsAt(IsWorkingHours(),time))HappensAt(E2(),time). 
2.3 Initiates(E2(), LowConfidenceLevel(), time). 

2.4 HoldsAt(IsWithinGPSRange(),time)HoldsAt(IsCorrectSSID(),time)  

       HoldsAt(IsWorkingHours(),time)Happens(E3(),time). 
2.5 Initiates(E3(), MediumConfidenceLevel(),time). 
2.6 HoldsAt(IsWithinRange(),time)&(HoldsAt(IsCorrectSSID(),time)|  

      HoldsAt(IsWorkingHours(),time)Happens(E4(),time). 
2.7 Initiates(E4(), HighConfidenceLevel(), time). 
 

WHERE  is the XOR logical operator 

 

Table 3: Matching Confidence Level to Operations 
Confidence Level Operations/Rights 

 CanRead CanWrite CanShare 

VERYLOW 0 0 0 

LOW 1 0 0 

MEDIUM 1 1 0 

HIGH 1 1 1 

0  Operation Not Allowed / 1  Operation Allowed 

 
Listing 3: Access Rights Causality Links 

3.1 Happens(CanRead(), time)   
      !HoldsAt(VeryLowConfidenceLevel(),  time). 

3.2 Happens(CanWrite(), time)   
      HoldsAt(MediumConfidenceLevel(),time)&    
      HoldsAt(HighConfidenceLevel(),time). 

3.3 Happens(CanShare(), time)   
      HoldsAt(HighConfidenceLevel(),  time). 
 

The encoding of the data in the tables to EC is done by 

taking the input of the tables as the ‘causing’ event and 

the output of the table as the effect. For example in Table 

2 the states of the three sensors are the inputs and the 

outputs are isOnDuty and confidence level. The first row 

in Table 2 says that if all three sensors are not available 

then isOnDuty is false and the confidence level is very 

low. To encode this condition in EC we first define e1 -  

an event that gets triggered when all sensors are not 

available. As long as the conjunction of the inputs 

indicated in row 1  (all sensors not available) is true then 

the event e1 keeps happening. The occurrence of e1 is 

indicated by 1.1 in Listing 1 and 1.2 says that the 

occurrence of event e1 results in isOnDuty being false. In 
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Listing 2, 2.1 says that the occurrence of e1 initiates the 

fluent LowConfidenceLevel. The rest of the rows in the 

tables are encoded in a similar way. 

Tables 1 and 2 are relatively easier to read compared 

to their EC translations in Listings 1 and 2, respectively. 

Although this is the case we still have to do the encoding 

into causality links because they (causality links) are more 

amenable to automated reasoning with some of the 

existing tools of the EC. 

 
Data Logs: In our approach, values of contextual 

attributes and policy decisions made are logged at 

runtime. A log of contextual attributes records the state of 

availability of the three sensors at a particular time 

instant. Policy decisions log is a record of which access 

rights were granted or denied at a given time instant. 

 

Table 4: Policy Decisions Data Log 
TimeStamp Access Rights Granted 

CanRead CanWrite CanShare 

13:45:21 0 0 0 

16:09:21 1 1 0 

18:33:21 1 1 1 

20:57:21 0 1 0 

23:21:21 1 0 0 

25:45:21 0 1 1 

28:09:21 1 1 1 

30:33:21 1 1 1 

32:57:21 0 0 0 

35:21:21 0 0 0 

37:45:21 0 1 1 

40:09:21 0 1 1 

42:33:21 1 0 0 

44:57:21 1 0 1 

……. …… …… …… 

0  Operation Allowed / 1  Operation Not Allowed 

 

Table 5: Contextual Attributes State Data Log 
 
Time Stamp 

Contextual Attributes 

isWithinGP
S Range 

isCorrect 
SSID 

isWorking 
Hours 

13:45:21 0 0 0 

16:09:21 0 1 1 

18:33:21 1 1 1 

20:57:21 1 1 1 

23:21:21 1 1 1 

25:45:21 0 0 1 

28:09:21 0 0 1 

30:33:21 0 1 0 

32:57:21 0 1 0 

35:21:21 0 1 1 

37:45:21 0 1 1 

40:09:21 1 0 0 

44:57:21 1 0 1 

………. …………. ……….. ………. 

0  False / 1  True 
 

Policy Decisions: When a policy decision is made either 

to permit or deny certain access rights we log this 

information in a policy decisions table. Table 4 is an 

example of a policy decisions table. According to this 

table at 16:09:21 the doctor was given the permission to 

Read and Write a medical record but was not allowed to 

share it. 

 

Contextual Attributes: The log of contextual attributes 

keeps information about sensors that were available at 

different times. In our example the contextual attribute 

values are the state of the three sensors which can be used 

in determining the value of the isOnDuty variable and its 

confidence level. A sample sensor data log table is shown 

in Table 5. According to this table at 16:09:21 the GPS 

coordinates indicate that the doctor was in the hospital 

and he was also connected to hospital WiFi. But the time 

of day was not working hours. 

 
Domain Assumptions: These are conditions that are 

assumed to be true for the relationship between W, S, and 

R in the entailment relationship to hold. The argument 

that the entailment relation holds depends on domain 

assumptions. These assumptions are assumed to be 

correct for the correct functioning of the machine 

specified by the behaviour in S because their control is 

not within the power of the machine. The assumptions in 

our example are as follows:  
 

A1: The GPS device is well calibrated to give a correct and valid 
reading about the location of the doctor.  
A2: The doctors always carry the GPS device.  
A3: The hospital WiFi has a unique identifier, which makes it possible 
to uniquely identify it among other WiFi networks.  
A4: The authentication device reads the doctor’s credentials correctly.  
A5: The file system where the medical record is kept has features for 
reading, writing, and sharing operations. 
A6: The clock is set to the correct time of the day corresponding to its 
time zone 
A7: The WiFi router has a unique serial number that enables the 
access control machine to verify that it is indeed the one that belongs to 
the hospital. 
 

In the next section we illustrate how we use the causality 

links, data logs, and domain assumption to derive 

information for informing, explaining, and assuring the 

user about access control decisions at runtime. 

5. Tracing Policy Decisions to Security 
Requirements 

The tracing process includes three related processes for 

tracing policy decisions to security requirements, namely, 

informing, explaining, and assuring. Our approach 

includes a set of algorithms that take the different types of 

contextual data collected in section 4 to trace security 

decisions.  

Starting with the denial of the security requirement rs, 

at time t0, a user u (e.g., Bob) wants to understand what's 

happening. The process includes three kinds of answers in 

different level of details. Firstly, the informing step (see 

Algorithm 1) classifies the traces into two categories, WR 

and W!R, depending on whether security requirement can 

or cannot be satisfied by these contexts. Using the causal 

traceability between the current policies s and the security 
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requirement rs. we trace what events in s could lead to a 

the phenomena observed in rs. 

 
 

There are many possible ways to solve this 

classification problem, e.g., by using the inductive 

learning procedure for deterministic classification, or 

using the statistical machine learning on supervised 

dataset for probabilistic classification. The informing 

contexts may help narrow the scope of search in the 

following explaining step. 

For example, according to Table 3, if confidence level 

is LOW, one might not be able to READ, WRITE or 

SHARE the document. Using Table 3, the LOW 

confidence level is further traced to three possible 

situations for the three contextual variables 

(isWithinRangeGPS, isCorrectSSID, isWorkingHours): 

(0, 0, 1) and (0, 1, 0). Note that in both cases 

isWithinRangeGPS is false, which indicates that W!R = 

!isWithinRangeGPS and either !isCorrectSSID or 

!isWorkingHour. In fact, because !isWithinRangeGPS is 

false in both cases, it is more informative to tell user 

whether isCorrectSSID or isWorkingHours is true or 

false. After knowing which contexts W!R may cause 

problems in satisfying rs the system further fetches from 

the user the relevant domain properties Wu(t0) at the time 

t0 from the data log, see Algorithm 2. 

 
For example, by the time when all the permissions are 

denied in Table 4, i.e., 35h21m21s, the corresponding 

context domain properties in Table 5 concerning user Bob 

before that (at 32h57m21s) was !isCorrectSSID and 

isWorkingHour. Therefore, it is more informative to the 

user about the denial of access. 

Knowing the situation, the user could react by 

changing his or her contexts in the next timestamp t1. This 

leads to the new context relevant to the change Wu(t1). To 

provide assurance that it is possible to satisfy the security 

requirement rs in the new context w1, the system relies on 

a reasoning tool that evaluates the entailment relation.  

 

 
For example, we can use an event calculus reasoning 

tool to compute the abduction of the event sequences that 

may lead to this.  

6. Evaluation and Discussion 

The data collected in Section 4 helps us inform and 

explain adaptive behaviour as well as give assurance that 

their requirements are still being satisfied after an 

adaptation. The difference between informing and 

explaining is in the level of information provided. 

Informing tells the user why a particular access control 

decision has been taken. Meanwhile, explaining tries 

justifies the security decision by giving the reasons why it 

was denied with reference to the context of the user. 

Finally, assurance tells the user steps they can take to 

rectify the problem.  We explain how each of these 

functions is fulfilled using the algorithms from Section 5 

through an evaluation of hypothetical scenarios from the 

access control example presented in Section 2.  We also 

discuss some of the limitations of our approach.  

 

6.1 Evaluation 
 

Informing: Recall in the motivating example that Bob 

has two devices: a laptop and an iPad. He always uses his 

iPad when accessing medical record in the hospital 

because it is portable to carry while attending to patients. 

The iPad has all three sensors GPS, WiFi, and a clock as a 

result Bob always get full access rights on medical 

records using his iPad. Due to a malfunction on his iPad 

Bob decides to use his laptop instead. On his laptop he is 

not able to share medical records with his fellow doctors. 

The access time is 16:09:21. He is not sure why this is the 

case.  

The causality links in Listing 3 suggest that the 

sharing right is revoked if confidence level is 

VERYLOW, LOW, or MEDIUM. This information is 

derived from causality link 3.3, which says that it is only 
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possible to share a medical record when confidence level 

is high.  

From the three causality links the doctor can be 

informed that the reason he is being denied sharing a 

record:  

“You are not able to share the record because the system 

is not sure that you are on duty.” 

 
Explaining: As shown above, there are three possible 

reasons why Bob is being denied the right to share a 

record. To narrow down to the exact reason we look at the 

time the access control decision was taken and identity 

what was the state of the sensors at that time. According 

to Table 5 at 16:09:21 Bob was using the hospital WiFi, 

accessing the record within working hours, but was not 

within hospital premises according to his GPS device. 

According to 2.4 in Listing 2 this combination of sensors 

result into a MediumConfidenceLevel about his isOnDuty 

status.  

 

This contextual attribute results in an event e3 whose 

occurrence makes confidence level to be medium.  
 

2.4 HoldsAt(isWithinGPSRange,t)HoldsAt(isCorrectSSID,t)  

      HoldsAt(isWorkingHours,t)HappensAt(e3,t) 
2.5 Initiates(e3, MediumConfidenceLevel,t) 
 

Hence, an explanation message to the doctor could be 

something like:  

 

“You are not allowed to share this medical record 

because you are currently not within hospital premises.” 

 

Using a combination of causality links and log data 

accurate information can be provided to the user on why a 

particular access control decision has been taken. When 

tracing a policy decision that involves a fluent being made 

false we inspect all terminates causality links involving 

the fluent. This helps in identifying all the possible 

events/causes that can make the fluent false. Similarly, 

when tracing why a fluent is true we inspect all the 

initiates causality links involving the fluent and identify 

all the events that make it true.  

When there are multiple possibilities of events/causes 

log data is used to identify the time at which a policy 

decision was made and link this to the status of contextual 

attributes at the time. This eliminates causality links that 

do not apply and provides a more precise explanation of 

the security adaptation performed by the system.  

 

Assurance: The traceability links can also be used to 

derive information on what steps the user can take to 

change the outcome of the behaviour of the adaptive 

application and in particular restore satisfaction of the 

requirement. The user may be interested to know what he 

needs to do for the application to grant certain access 

rights which are currently being denied or vice versa. In 

our example Bob wants to be advised on what he needs to 

do in order to regain the rights to share medical records. 

Through the traceability links we have established that 

Bob is unable to share medical records because he is not 

in the right context, that is, he currently not within 

hospital premises according to his GPS device. To remedy 

this situation the system can advice Bob to change his 

context by relocating to the hospital. The assurance 

mechanism also needs to advice Bob to make sure that 

relevant domain assumptions are valid. For example, he 

needs to make sure that while changing location to the 

hospital he is still carrying (A2) a well calibrated GPS 

device (A1). 

Changing context triggers an adaptive application to 

change its behaviour by invoking policies appropriate for 

the context. For adaptive applications for information 

security the user may be interested in the question of 

whether the application still satisfies its requirements after 

an adaptation. The traceability links are based on the 

entailment relationship. By (re-) evaluating the entailment 

relationship we can provide assurance that the 

applications still satisfies its requirements after an 

adaptation. 
While the analysis and refinement of policies can 

ensure that policies correctly implement behavior that 
satisfies the user’s security requirements, the highly 
dynamic contexts in which cloud services are used mean 
that their policies might not capture all possible security 
threats. To ensure that the adaptive application can detect 
when its security requirements are no longer being 
satisfied at runtime our approach includes requirements 
satisfaction information as part of the traceability links. 
Using the entailment relation, we can express the 
relationship between the requirements, context, and 
policies as Ws, Ss   Rs. This states that the behavior of the 
policy Ss satisfies the requirement Rs given that some 
assumptions about the context Ws holds.  

In our running example the security requirement is 

satisfied if the doctor supplies his credentials, a GPS 

device (carried by the doctor) supplies the correct location 

of the doctor, he is connected to the office WiFi, and the 

policy Ps behaves according to its specification. Provided 

the doctor has supplied valid credentials, his location 

according to the GPS device is such that he is within the 

premises of the hospital (i.e. he is on-site), then he should 

be allowed to read, write, and share the patients’ medical 

record. Otherwise access must be denied. The argument 

that the security requirement will be satisfied is the 

satisfaction argument. 

For our medical record access control problem, the 

satisfaction argument can informally and generally stated 

as follows: 

 

“If the doctor supplies valid credentials, the doctor is 

carrying a GPS device, the coordinates from the GPS 

device are valid and say that the his location is within the 

premises of the hospital, he is accessing through hospital 

WiFi, the time of the day falls within working hours, then 

allow him to read, write, and share a medical record. 

Also allow the user to read, write, and share a medical 

record if he authenticates himself with credentials for an 

emergency procedure. Otherwise deny the access.” 
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If the above argument is correct we can say that the 

security requirement is satisfied. The correctness or 

validity of the argument depends on a number of 

assumptions we make about the context and the ACM 

machine. The assumptions are stated in Section 4. 

 
6.2 Discussion 
 
Currently, our reasoning system is implemented on the 

Event Calculus reasoning tool where the rules are 

encoded systematically from the domain properties 

established from the monitors implemented and deployed 

on the target system. The general procedure proposed in 

Algorithm 1 needs to be made more efficient at runtime if 

the domain knowledge is to be exploited for the adaptive 

systems.  

For example, the Informing step can be made more 

efficient by incrementally developing the causal 

relationships, or by statistical classifications. Incremental 

update of the data or knowledge structures is feasible 

because the changes to the physical contextual situations 

of a given user usually have some degree of continuity. In 

addition, when the size of the data log may be 

accumulated to exceed the capacity, it is possible to 

discard the earliest data logs as long as the learned 

classification structures are kept. However, statistical 

classification requires some training and collecting 

additional logs may help improve the accuracy.  

The Explaining procedure may be enhanced further by 

preprocessing and customizing the contexts for individual 

users’ attributes. For example as Bob’s normal office 

locations are known beforehand, we can save the memory 

consumption for the domain properties and relationships. 

For example, condensing the consequent events that are in 

fact causing no changes to the fluents would not cause 

any loss to the capability of reasoning about the abnormal 

events. Therefore, providing abstract events to summarize 

these similar concrete events through a preprocessing step 

can help with the scalability of the reasoning algorithm. 

The information presented by Tables 2 and 3 

demonstrate a significant concept in the philosophy of our 

proposed approach to traceability. It demonstrates that in 

establishing traceability we need refinement in problem, 

context, and solution spaces. In the problem space, the 

requirement about Boolean variable isOnDuty has been 

refined to different confidence levels: VERYLOW, LOW, 

MEDIUM, and HIGH. The context has been refined to 

three variables isWithinGPSRange, 

isWithinWorkingHours, and isCorrectSSID. In the 

solution space the action of access to a medical record has 

been refined to operations for reading, writing, and 

sharing a medical record. Causality links are then 

established by relating the phenomena in each of the three 

(problem, context, and solution) sets of descriptions. It is 

these causality links that makes traceability from 

requirements to policies possible. 

 
7. Related Work 

The novelty of our work is in the use of rich traceability 

for self-explanation of security decisions in adaptive 

systems. We review the key related literature in these 

areas and compare with our work. 

 

Self-Explanation and Diagnosis: With notable 

exceptions, such as Bencomo et. al.[7], we are not aware 

of any other approach to providing mechanisms for self-

explaining the behaviour of an adaptive system to the 

user. While Bencomo et. el. propose a general approach to 

explaining emergent behaviour in adaptive systems, our 

approach focuses on explaining security decisions in 

adaptive systems. The focus on explaining security 

decisions brings with it several additional challenges. One 

of these challenges is that we need to make explicit the 

assets to be protected and make the explanations precise 

to the context of the user. For confidentiality reasons we 

also need to be careful about the content of our 

explanations to ensure that the system does not 

unnecessarily reveal information that may aid a potential 

attacker in breaching security. In order to address these 

challenges our approach uses traceability enriched with 

causality as a mechanism for establishing and reasoning 

about the relationship between requirements and policies 

to help understand system behaviour. 

Our use of traceability as a tool to explain adaptation 

decision has similarities with the works on requirements 

monitoring [13], fault diagnosis [14], and root cause 

analysis [15]. Our approach to informing, explaining, and 

assuring is motivated by techniques developed from these 

areas of research. While these approaches are mainly 

designed for explaining why a particular fault, problem or 

emergent behaviour occurs, our approached goes a step 

further by providing assurance that a requirement is still 

being satisfied after an adaptation and suggesting ways in 

which requirements satisfaction can be restored.  

 

Traceability Representation: Traditionally, traceability 

has been used as tool for supporting software maintenance 

activities [16][17][18][19]. In this tradition use of 

traceability, traceability links connect information 

contained between the artifacts being traced [20]. The 

links are often based on common keywords [18] between 

artifacts or numbering systems, such as requirement 

traceability matrixes [21][22], which are used to associate 

one artifact with another. While these links are effective 

in maintaining general explicit relationships between 

artefacts, they do not contain adequate semantic 

information that can be used for reasoning about the 

relationship between requirements (problems) and 

policies (solutions). For example, when using existing 

traceability links it is not possible to reason about whether 

a requirement is still satisfied by a given policy after a 

change in context. As our links are based on the 

entailment relation we are able to reason about 

requirements satisfaction using satisfaction arguments 
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[23][24]. The links we proposed can also be generalized 

into traceability rules in the same style as the requirement-

to-object-model rules [25]. 

Attempts have been made to establish semantically 

rich traceability links [26][27]. However such links are 

not sufficient for explaining adaptive system behaviour. 

The links we have proposed in this paper involve 

capturing domain-specific and intrinsic information 

relating security requirements to policies through 

causality [11][5]. This representation of links has been 

motivated by the observations that security requirements 

are stated in terms of the conditions that need to be true to 

protect assets from harm, and security policies are 

expressed in terms of the actions that need to be 

performed in order to satisfy the conditions stated by 

security requirements [6][28]. Based on these 

observations we specify traceability links in terms of 

causality relationships between conditions stated in the 

requirements and the actions expressed in policies. This 

provides richer traceability links.  

The problem of relating a security requirement, to 

policies, and the contextual conditions in which those 

policies should be enforced is similar to the traceability 

problem in software product lines [29][30][31]. While for 

software product lines traceability is about how to relate 

the various documents produced for the different product 

variants, our approach for traceability in adaptive 

applications involves explicitly exposing the contextual 

conditions that an application depends on as part of the 

traceability between the requirements and policies. 

Explicit expression of the contextual conditions/attributes 

in traceability links is useful for adaptive applications as it 

helps in reasoning and deriving explanation of adaptive 

behaviour.  

Our representation of traceability links with 

entailment relations is similar to the idea of knowledge 

representation for self-adaptive system behaviour [32]. 

Reasoning on the knowledge is used to establish 

connection between knowledge, perception, and actions 

that realize self-adaptive behaviour. Their approach aims 

at logging execution traces so that the adaptive system can 

remember where it failed. Our approach is aimed at 

reasoning on the model representation of an adaptive 

system in order to explain its behaviour to the user. We 

are not the first to use the Event Calculus for representing 

and reasoning about causality. Galton [33] used the EC in 

causal reasoning for alert generation in smart homes. In 

our approach we use the EC in a similar way – as 

formalism for handling the manner in which certain 

conjunctions of independent states (such as readings from 

sensors) can be used as trigger of dependent states.  

 Bruni et. al. [34] proposed a causality framework for 

allocating new events and relating their causes. They 

achieve this by modelling relationship between processes 

and causal relations among the processes’ events.  Their 

cause-effect relation approach can be useful in future 

development of our approach to establish previously 

undefined causality relations. The causality relations we 

use in our approach are predefined. The dynamic 

definition of the causality relations can make the goal of 

run-time traceability more feasible. 

For software maintenance bi-directional 

transformations [35] have been proposed as a means to 

establishing and maintaining traceability [36]. With these 

transformations separate traceability links are required for 

forward and reverse traces.  With our approach a single 

traceability link can be used for both forward and reverse 

trace tasks. This is made possible by the fact that our 

traceability links contain references to entities in the 

requirements, context, and policies. The satisfaction 

arguments [23] explicitly relate the requirements to the 

policies through domain assumptions in context. In this 

way regardless of what changes occur in the context, the 

relationship between the requirements and policies is 

maintained. Our approach also has the potential to allow 

for a ‘live’ validation of this relationship by providing the 

capability of re-evaluating entailment relationships at run-

time. 

8. Conclusions and Further Work 

Information security for applications used in varying 
contexts need to be adaptive in order maintain satisfaction 
of security requirements. With such adaptive information 
security the applications need to give assurance about the 
security requirements they are satisfying as well as 
information about and explanation of the access control 
decisions taken at runtime. We proposed traceability as a 
mechanism for enabling adaptive applications to provide 
information, explanations, and assurance about access 
control decisions taken at runtime. We used traceability as 
a way of understanding the relationship between security 
requirements and the policies that enforce those 
requirements. Our traceability links are rooted in 
entailment relations – capturing the links with causal 
relationships described in domain descriptions. Through 
our traceability links we were able to explain the rationale 
for access control decisions and reason about what access 
control decisions would result from a change in contextual 
attributes at runtime.  

We plan to investigate how traceability can be further 
improved for better self-explanation. In particular, the 
content of the messages given by our approach for helping 
the user understand adaptive behavior needs to be crafted 
with great caution. We believe that traceability can be used 
as a mechanism for scoping policies to be selected for 
adaptation to a context that was not completely understood 
at design time. The feasibility of this idea is being 
investigated. We plan to capture the runtime event traces 
of a real-world access control application and map each 
event in a trace to its effect using causality information. By 
so doing we hope to identify abnormal behavior that leads 
to the violation of a security requirement. Using 
supervised learning mechanisms [37] the adaptive 
application may then be trained on new behaviors that can 
be applied to either weaken the requirement or strengthen 
it to prevent further violation. We may use techniques such 
as inductive learning procedures [38] to generate 
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explanations of how the system may be changed to comply 
with user requests.  
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