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ABSTRACT

The quality of information (Qol) that sensor networks pro-
vide to the applications they support is an important design
goal for their deployment and use. In this paper, we in-
troduce a layered framework for Qol-centered evaluation of
sensor network deployment. The layered framework allows
decomposing the deployment evaluation in three steps: in-
put pre-processing, core analysis, and result post-processing.
The layering allows the creation of a rich, modular toolkit
for Qol-centered analysis that can accommodate both exist-
ing and new system modeling and analysis techniques. We
demonstrate the utility of the framework by comparing the
Qol performance of finite-sized sensor networks with general
deployment topology. We also derive some new analysis re-
sults for the class of applications considered herein.

1. INTRODUCTION

With advances in computing and communication technolo-
gies, low(er) cost, intelligent networked sensor systems find
their way in a multitude of application environments in ar-
eas as diverse as the military intelligence gathering, habitant
monitoring, forest monitoring, utility grid monitoring, envi-
ronmental control, machinery control, and so on.

For the past several years, considerable amount of research
work has been contacted regarding the internal operation
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of a sensor network including ad hoc deployment and op-
eration of sensor networks, energy-aware architectures and
protocols, coverage and localization, efficient query dissem-
ination, etc. While the value and necessity of these studies
is unquestionable, since sensor networks are deployed for a
purpose —to serve an application—, we find it appropriate
that additional studies are also needed that bridge the be-
havior of the sensor networks with the application(s) they
support.

We have elected to use the concept of quality of (sensor)
information (Qol) as a means to capture an application’s
information needs from the sensors. Research on Qol, also
referred to as IQ (for information quality, of course) as well,
has its roots in the study of the condition of structured infor-
mation stored in database systems with respect to its consis-
tency, completeness, currency, etc. [5]. Within the context
of sensor networks, a comprehensive definition of Qol is still
an inconclusive endeavor, but for the purpose of this paper,
we have adopted the following definition: *

DEFINITION 1. Qol is the collective effect of the available
knowledge regarding sensor-derived information that deter-
mines the degree of accuracy and confidence by which those
aspects of the real world (that are of interest to the user of
the information) can be represented by this information.

It follows from the above definition that Qol is a multi-
dimensional concept that is applicable (at least some aspects
of it) to a user, i.e., an application. The multi-dimensionality
of Qol pertains to attributes that “codify” and possibly quan-
tify the knowledge about the information.For example, knowl-
edge about the timeliness of the available information, its
reliability, its (arithmetic) precision, and so on, may be used
to describe how accurately we can represent the real world
using the sensor-derived information [1, 2, 3, 5].

Which information attributes are more important and/or
what is the range of acceptable values for them, will de-
pend on application(s) and their needs as specified by an
application planner. Given the broad application space for
sensor networks, we have elected to use for our research work
a general class of applications that are part of many deci-
sion making operations. This class of applications relates
to event detection that find applications in surveillance and
intelligence gathering operations like detecting presence of

We have actually based our wording of the definition on
a paraphrase of ITU’s Rec. E.800 definition of quality of
service provided by a telecommunications services provider.
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enemy weaponry, hostile activities (e.g., gunfire, explosions),
monitoring remote territories, and so on.

Upon detection of an event of interest, an operative can
take an action to mitigate the effects of the event. The ef-
fectiveness and the severity of the action, (or the inaction,
if the event is not detected) will depend on the Qol that
is provided to the operative. Thus, for the class of event
detection applications, we elect as Qol attributes of impor-
tance the detection probability Py of correctly detecting the
occurrence of the event and the false alarm rate Py, i.e., the
probability of declaring an event occurrence when no event
really occured.

With the above as the motivating background, in this paper,
we introduce a Qol analysis framework instantiated through
a toolkit system. The toolkit (and the analysis framework
it represents) serves as a computational aid for a sensor sys-
tems designer to evaluate the performance of his/her design
based on deployment and Qol constraints provided by the
application planner. Considerable amount of work has been
performed analyzing detection systems for different system
models such as signal-to-noise ratio (SNR), channel fading,
spatial correlation, and so on [13, 4, 11, 6, 7]. In [11] a
homogenous system is considered that results in identical
SNR levels at the various sensors nodes, while in [6] non-
identical SNR levels are considered as a result of the spa-
tial distribution of the nodes and channel fading. In [7] a
decision fusion algorithm is also studied and an approxima-
tion is derived for the system-level decision threshold that
provides performance guarantees for the system under fixed
level, persistent events, as most studies assume. Detection
systems have also studied with relation to energy require-
ments as well. For example, in [10] and [9] hybrid (neither
centralized nor distributed) energy-driven detection schemes
are proposed based on a binary observation model for the
sensors that provides the flexibility to trade-off detection
accuracy and energy consumption. We do not considered
energy efficiency in this paper, which is left for future study.

We have recognized that past research in the area comprises
of specific performance analysis methodologies that are ap-
plicable to the specific system models studies. Contrary, in
this paper, and motivated by our previous work [1, 2], we
take a general, system-level approach to detection evalua-
tion that considers Qol analysis techniques for a class of
centralized, distributed, as well as hybrid detection archi-
tectures in a unified way. Furthermore, we also consider
general events whose (signal) signatures with arbitrary sup-
port and amplitude, with special emphasis in transient and
decaying events. Studying general classes of events, brings a
new dimension to research in the area. This is because sam-
ples taken at different times by the various sensors, either
due to their geographical distribution or the use of different
sampling policies, may result in a sensor measuring differ-
ent signal amplitude levels over time which may significantly
impact the performance of the detection systems.

The organization of the paper is as follows: In section 2, we
introduce the reference model for the system under consid-
eration and the general toolkit framework. In section 3, we
present the core analysis approach based on hypothesis test-
ing. In section 4, we include example uses of the framework
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Figure 1: Functional architecture of the reference detection
system.

while, at the same time, deriving some new results for the
analysis of networks with finite number of sensor and tran-
sient events. We conclude in section 5 with some concluding
remarks.

2. THE REFERENCE DETECTION MODEL
AND QOI ANALYSIS FRAMEWORK

We start this section by introducing a reference architec-
ture of our sensor-enabled, detection system and then we
introduce the Qol analysis toolkit that is built around the
reference model.

2.1 The reference detection system

Figure 1 shows the reference architecture of our sensing sys-
tem. It comprises three functional subsystems: (a) the sen-
sor subsystem or sampler; (b) the fusion subsystem; and (c)
the detection subsystem. The sensor subsystem comprises
M sensors that sample the physical world and provide their
samples to the fusion subsystem. The fusion subsystem,
comprising a collection of L fusion centers, operates on the
samples it receives (which could be corrupted by noise) to
produce a “summary” description of the samples. The sum-
mary, in turn, is used by the detection subsystem to decide
whether an event of interest has occurred or not. These
three subsystems may be collocated or separated as could
be the case of a networked sensing system.

According to the reference model, the sensor subsystem takes
samples {s1, s2, ...} of the event signature (if the event oc-
curred) as it is experienced locally by the sensors (the index
k in the figure identifies “things” related to the k-th sen-
sor). The sampled signature is distorted by noise and the
combination of the two (or just the noise component, when
the event did not occurred) produce recordable observations
{r1,72,...}. These observations are then processed by the
fusion subsystem to generate the sample summaries.

If the event occurred, the sequence {s1, s2, ...} can be thought
of as samples of “projections” of the original event signa-
ture s*(t) at the locations of the sensors. These projections
accommodate the impact of the signal propagation, or, in
other words, they are reflective of the physical geography
of the system and the medium properties. Since, decision
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Figure 2: The Qol analysis framework and toolkit usage
architecture

making is really made based on the recorded observations,
if the above projections were known, one could have pro-
ceeded with the detection analysis unbeknownst to the phys-
ical geometry of the system. In other words, a core fusion
and detection analysis engine can be developed that is in-
dependent of “external factors” by assuming knowledge of
the signal projections at the sensor locations. Anchored on
this core analysis engine, a system-level analysis framework
can be developed that accommodates the remaining system
parameters, like the deployment and observation topology,
the application domain (and hence the collection of event
signatures s*(t) to be encountered), the signal propagation
models, the noise models, and so on.

Based on the above observation and the reference system
model in figure 1, next we propose a toolkit architecture
and a framework for a Qol analysis system.

2.2 The Qol analysis toolkit architecture

Figure 2 shows the component and “usage” architecture of
the proposed toolkit system. It comprises three major func-
tional blocks responsible for: (a) input pre-processing; (b)
detection (Qol) analysis (the core analysis engine); and (c)
output post-processing. The input pre-processing deals with
all those aspects of the toolkit that generally relate to the
constraints imposed on the signal(s) to be detected. These
constraints include the deployment and observation topolo-
gies (which determine where the sensors are located and
where the events occur), the signal propagation and at-
tenuation models (which determine how the original signal
projects itself at the sensor locations), the sampling policies
(which determine which sensors contribute which samples to
the detection process), the noise models (which determine
the distortion process of the signal), and so on. All of the
above contribute to the creation of the observation sequence
{ri,r2,...} that feeds into the core analysis engine which
then calculates the Qol attributes for a very specific (well
defined) set of system parameters. The figure also shows
the special case of additive noise, where, typically, noise
samples {n1,na,...} are simply added to the signal samples
{s1, 82, ...}; this case will be studied further in the next sec-

tion. Given the application requirements, post-processing
of the Qol analysis results may be necessary, for example,
to calculate averages over an observation region, or calcu-
late optimal position of sensors, and so on. During post-
processing, the services of the core analysis engine may be
requested again for the Qol analysis of the system for a dif-
ferent set of system parameters.

In addition to the toolkit itself, the figure also shows the re-
lationship between the application planner, system designer
and the toolkit. The planner provides the problem definition
and constraints, e.g., provide the deployment and observa-
tion regions, any cost constraints, the application domain,
the desired Qol level, and so on. The designer provides
system level model libraries, e.g., propagation models, noise
models, communication and interference models, multi-path
models, and so on. When a deployment plan with associated
Qol performance levels has been produced, the planner may
take a decision as to whether the expected performance of
the system will be satisfactory enough, or may request addi-
tional analysis and trade-off studies for “what if” situations.

The layered analysis framework suggested by the toolkit al-
lows us to place (research) emphasis on different aspects of
the system, while still be able to relate these aspects back
to the overall system design objectives. For example, in the
next section, we focus on the core analysis engine indepen-
dently of the specifics of the sensor deployment. Special
cases of the latter then are considered during the derivation
of numerical results in section 4.

We close this section with an example of input pre-processing;
this will be discussed further later on in section 4. The exam-
ple relates to the physical topology (geometry) of the sensor
network. Let the physical topology of the system be rep-
resented by the distance vector? d = [di,...,dn]T, where
dy is the distance of the path k that a signal takes from
the event location to sensor k. Over path k, let ax(t) repre-
sent the cumulative environmental impact, e.g., the propaga-
tion attenuation, on the signal, and let v be the propagation
speed. Assuming that an event occurs at time ¢ = 0 and pos-
sesses the (transient) event signature s*(t), the signal signa-
ture seen by sensor k (the k-th event signature projection),
1 <k < M, would be (excluding any noise components):

sk(t) = ap(t)s™ (t — m)u(t — 1), (1)

where u(t) is the unit step function. The time shift 15, is due
to the propagation delay to sensor k and equals 7, = di /v.
As discussed earlier, if si(t) were known, a Qol analysis
methodology could be employed independently of the origi-
nal signal s*(t).

3. THE CORE QOI ANALYSIS ENGINE:
HYPOTHESIS TESTING

Hypothesis testing is one of the primary tools used for the
performance analysis of detection systems [12, 8]. We will
base our core Qol analysis engine on hypothesis testing as
well. In this section, we will quickly review the key re-
sults from hypothesis testing and we will (re)interpret them

2Bold letters represent the (column) vector version of a
corresponding collection of parameters. Unless otherwise
stated, T' represents the matrix transposition operation.



within the context of our toolkit for sensor networks. In the
course of doing so, as a result of our focus on general signals,
some new results for detection in sensor networks will also
be derived.

In hypothesis testing, a number of hypotheses is made, e.g.,
no event occurred (the null event), an event occurred, an
event of type I occurred, and so on. Then, based on obser-
vations made, sampled data in the context of sensors, one of
these hypotheses is declared to hold true. The selection of a
hypothesis is done to satisfy certain performance objectives.
In Bayesian hypothesis testing, which we will also adopt in
this paper, the objective is to minimize the average cost of
making a decision.

For the core Qol analysis engine in our toolkit, we start by
considering binary hypotheses, i.e., event occurrence, (hy-
pothesis Hi) vs. the null event (hypothesis Hop). The gen-
eral Qol-influenced hypothesis testing formulation for a sin-
gle sensor system were presented in [1, 2] and is based on
the following traditional formulation [12, 8]:

hypothesis Hy : 7, = s; + ng, i=1,...,N,
hypothesis Ho : 7; = i, i=1,...,N;

(2)

where, under hypothesis Hi, s; represents the value of the
signal at the i-th sampling instance, while, under both hy-
potheses, n; represents an additive noise component that is
added to the i-th sample, and r; represents the i-th mea-
surement that is contributed to the fusion subsystem. A
decision is made based on the likelihood ratio test (LRT):

_ fRN\Hl (rN) Sele;t 0

B fRN\HU(rN) selec<t Ho

A(I‘N) m, (3)

where fr,a, (-) represents the probability density function
for the IV observations conditioned on hypothesis H;, i €
{0,1}3; for notational brevity, in the sequel, we will skip the
size index N unless necessary. The threshold 7 is calculated
from the a priori probabilities for the two hypotheses, Py
and P;. If cost of one unit is incurred (only) when a wrong
decision is made n = P/ P1, and the Bayesian test minimizes
the risk of making a wrong decision. When the noise is
described by a zero mean, additive and stationary Gaussian
process with covariance matrix C = E{n"n}, where n =

[n1,...,nn], then the test in (3) reduces to the following:
H 1
12¢7C's 21 n* £ In(n) + §sTC_ls. (4)
Ho

The parameter [ is referred to as the sufficient statistic and
represents the summary operation performed by the fusion
subsystem on the measurements r;. Note that the execution
of the comparison between [ and n*, for deciding in favor of
the one or the other hypothesis, is the responsibility of the
detection subsystem in figure 1. Finally, in (4)

2 2 sTC s, (5)
is reflective of the signal-to-noise ratio (SNR) for this setup.

In the special case of a single sensor system in additive, white
Gaussian (AWG) noise process with zero mean and variance

3Ry represents a vector random variable for the N obser-
vations and ry a sample realization of N observations.

a® (a N(0,0) random variable), the Qol performance met-
rics, i.e., the probability of detection P, and false alarm rate
Py, can be derived from (4), and are given by [2, 8]:

Pd:Pr(lzn*|H1):1f®(¥f%) , and  (6a)
Py =Pr(l>n'|Hy)=1— & (mg;) + %) , (6b)

respectively, where ®(-) is the cumulative distribution func-
tion of a N'(0, 1) random variable. The square of the param-
eter 1 is reflective of the signal-to-noise ratio (SNR) and in
particular:

=3 (7)

Within the context of a sensor network, the covariance ma-
trix C of the noise process in (4) may capture correlations
across both the spatial (i.e., across the sensors) and temporal
dimensions. We are currently investigating the implications
of this fact. In this paper, we consider the special case where
the covariance matrix is diagonal with variance o7 for the
measurements related to sensor k, 1 < k < M.

Due to the additive nature of the terms in (4), it could be
possible that (under certain conditions) the “contributions”
from the various sensors to (4) are separable. In this case it
will be easier to describe the system-wide Qol performance
using the performance formulations for single sensor systems
in (6) and (7). We will study the implications of this possi-
bility in the next two subsections where we instantiate the
above discussion for two different fusion architectures.

In a sensor network, a fusion architecture captures how sen-
sors, and their samples, relate to the fusion and ultimately
detection subsystems, see figure 1. In one case, we may
have all sensors feeding their samples to a single fusion sub-
system; the M — 1 or centralized case. In another, more
general case, we may have multiple fusion and detection sub-
systems in the system, with each sensor associated with only
one of them; the M — L case, where 1 < L < M. Just as
we consider one or more fusion centers, we can also consider
the case of having multiple decision subsystems tied, even-
tually, to a single system-level decision subsystem. Each
fusion subsystem will be associated with only one of the de-
cision subsystems. The possibilities of such architectures are
numerous and choosing the right one will depend on some
form of cost vs. performance trade-off analysis as well; this
cost could include the cost of deployment, cost of nodes of
various types, cost of energy paid, communication cost and
so on. Next we consider two extreme cases: (a) L = 1 and
(b) L =M.

We start by introducing first some notations. Let SM rep-
resent the set of all sensors. Let also RY and Sév represent
the set of all the sensor observations and the set of all the
corresponding signal projections, respectively, involved in a
single instance of the detection process; in a sense, the sets
RN and S]év collect all the r;’s and s;’s in (2). The car-
dinality of the sets is [S}| = M and |[RY| = |S)'| = N.
Let also S;,f represent the set of signal (projection) samples

slf,...,sf\,k due to sensor k, where N = |S§\ > 0. Hence,



Sp = U,JCVIZISJ’; and N = 22/[:1 Npi. Note that the Ng’s need
not be equal to accommodate, for example, cases where the
sampling rates of the various sensors are not equal. Finally,
if Iy represent the N x N identity matrix, then the block
diagonal covariance matrix considered hereafter will satisfy:

C = diag(0iIn,, 05Ny, ..., 0t Ingy, ). (8)

3.1 L=1: Centralized detection

When L = 1, all N measurements from all M sensors are
fed to a single fusion and detection subsystem. Hence, in
this case, we can apply LRT to the entire set of observations
RY and signal projections SZJ,V to derive the “system-wide”
versions of the Qol performance metrics. It follows from (5)
and (8) that the system-wide SNR is given by:

M Ny (sh)2 M
k=1 1i=1 k=1

where 7 is the SNR due to the signal projection at the
location of the k-th sensor. It can be easily shown that the
test in (4) results in Qol performance metrics as in (6) with
the per sensor 9 in (7) replaced by the system-wide ¥sys in
(9).

DEFINITION 2. The equivalent sensor of a multi-sensor
system is a single-sensor sensing system that achieves the
same Qol level as the multi-sensor system using the same
observation set.

It follows from (9) that the centralized detection system con-
sidered here possesses an equivalent detector.

3.2 L=M: Distributed detection

When L = M, detection occurs in two steps. Firstly, a de-
tection decision is made by each sensor (or more accurately,
by each detection subsystem that is associated with one-and-
only-one sensor) based on its own measurements. Secondly,
the detection decision is made at the system level based on
the local detection decisions.* It follows from section 3.1
that the Qol performance at the sensor level is given by (6)
again, where we use ¢, instead for .

Next, to obtain the system level detection probabilities, we
need to use a system-wide detection policy. A detection pol-
icy describes how the sensor-level detection decisions com-
bine to generate the system-wide decision. Such a policy
will typically be based on some form of a counting strategy,
e.g., decide that the event has occurred if at least, say, Q
out of the M sensors indicate that it has. Note that while
one may tend to use a majority rule, where Q > M/2, we
do not believe that this is necessarily the best policy for the
general case. The use of the majority rule tacitly assumes
that each sensor detects the event with equal probability,
which may not always be true for any sensor deployment
geography. We elaborate on this further in section 4.1

In accordance to our toolkit’s usage architecture, see figure
2, the detection policy is passed to the core analysis engine
by the system designer. Any fine tuning of the detection
policy to increase performance, e.g., comparing different de-
cision thresholds, is made via output post-processing.

4These two steps can be generalized to a hierarchy of deci-
sion steps and to the case where 1 < L < M.

Assuming a “counting” detection policy, let Sé” represent the
collection of all subsets of sensors that contain g sensors; the
cardinality of S} is M!/(g!(M — q)!). To declare that the
event has occurred, when it has really occurred, i.e., under
hypothesis Hi, there should be at least one set of sensors
xq € S}* with ¢ > @ for which, all the sensors in x, indicate
that the event has occurred.

Each sensor makes a local decision based on its own mea-
surements. Thus, given these measurements, each sensor
makes a detection decision independently of the other sen-
sors. This conditionally independent decision making pro-
cess should not be confused with the fact that measurements
made by the sensors may relate to each other. Let P¥ and
Pf represent the probability of detection and false alarm for
sensor k, respectively. Then, the system-wide probability of
detection P;(Q; M) for a given threshold @ is given by:

Py(Q; M) = Pr(q > Q|Hy)

—f{ > [(HPJ“)(HufPf))]}. (10)

=0 \xgesp gmer e
A similar expression for P;(Q, M) can be obtain by substi-
tuting P¥ with ij in the above.

While highly unlikely, when all the PX’s, z € {d, f}, are
equal to P independently of k, e.g., when the event (if it
occurs) is equidistant from all the sensors, then (10) —and
likewise for the Py(Q; M)— reduces to the tail distribution
of a binomially distributed random variable with parameters
M and P and thus:

PAQM) = 3 [ (P = PO 0] ()
q=Q

A system with the above binomial case was consider in [11].
Note that for @ < M —1, (11) can be conveniently evaluated
recursively:

P.(Q;M)=(1—-P))P.(Q; M —1)+ P/ P.(Q—1; M —1).
(12)

4. NUMERICAL STUDIES

In this section, we supplement the core Qol analysis of the
previous section with specific deployment models to derive
performance results for the overall resultant systems. Specif-
ically, we consider two cases. In the first case, we compare
the Qol performance of a totally distributed system with
its corresponding centralized system as discussed in sections
3.1 and 3.2. In the second case, we study the behavior of a
sensor system by deriving upper and lower bounds for the
probability of detection Py. The use of the framework allows
us a systematic step-wise development of the performance
results reusing analysis approaches as necessary.

For both cases, we use a four-sensor system described in
table 1. We assume two families of decaying electromag-
netic signals, the (relatively) “slow” decaying s*(t) = 1 — t"
and “fast” decaying s*(t) = (1 — ¢)" that last for one time
unit. The family of event signatures chosen, which may rep-
resent envelopes of more realistic signatures, is a convenient
one. For an appropriate selection of the decay parameter n
(n > 0), the signatures can span the range from a unit pulse



Topology | M = 4 sensors
d =[di,d2,ds,ds]" =[1,2,4,8]"
[N1, N2, N3, N4] = [20, 20, 20, 20]
Ny samples in 1 time unit
Attenuation model | ax(t) = ar = 1/(1 +d3)
Propagation model | 7, = di/v (v =3 x 10°m/s)
Noise variance | o3 = 05 = Ué =03 =0
event signature | s*(¢) : 1 —t" and (1 —¢)"

Sampling policy

Table 1: Parameters for the reference system
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Figure 3: Centralized vs. distributed architectures detection
M=4,n=1land 1< Q< M)

(or, even a fixed-amplitude constant signal) to a unit delta
function. Per the toolkit figure 2, the parameters populating
table 1 are provided by the application planner and/or the
system designer.

4.1 Centralized vs. distributed architectures
In this section, we study the Qol merits of the centralized
(L = 1) and fully distributed (L = M) architectures. Fur-
thermore, we will study their performance as our predisposi-
tion of whether the event has occurred (i.e., the priori prob-
ability for hypothesis Hi) changes. We consider n = Py/P1
(see discussion about 7 following (3)). We first consider
n =1, i.e., Py = P; which will serve as our reference point
and then n =2 (> 1) and n = 0.5 (< 1) as well. The signal
signature will be s*(t) = 1 —¢?, and each sensor contributes
20 samples. We consider a “lucky” system that happens to
start sampling just after the signal signature arrives at its
sensors. We will discuss this idealistic case further in section
4.2.

When n = 1, figure 3.a and 3.b show the P; and Ps as a
function of o (the standard deviation of the noise) for the
centralized architecture and for the distributed architecture
for various decision thresholds Q. As expected, in the case
of the distributed architecture, both probabilities decrease
with increasing @) as the detection policy decides in favor
of Hop more liberally; this trend holds true for all cases of
n studied. When comparing the Qol performance metrics
of the two architectures, the metrics for the architecture lie
between that of the distributed ones for @Q = 2 and 3, which

@Q=3 - - - @Q=4 = centralized

AL L Lt bt bt s ]

0 05 1 15 2 25 3

Figure 4: Centralized vs. distributed architectures detection
(M=4,n=2and1<Q < M)

is above the “middle point” (Q = 2).

Naturally, one will expect that the higher the P;, and the
lower the Py, the better the Qol will be. To achieve a more
direct comparison of the two architectures, we use the av-
erage of two metrics represented by the probability of error
P.=PyP;+ P (1—Py) =P (nPr+ (1 — Py)), which is
shown in figure 3.c. The centralized architecture achieves
the best (i.e., smallest) P.. That is not surprising as this
architectures makes best use of the sampled observations.
However, an interesting byproduct of this analysis is that
setting @ at the middle point (@ = 2) attains the best (i.e.,
smallest) P. for the distributed architecture. On the other
hand, when @ = 1 or Q = M, due to their poor P; and
Py performance, these two extreme cases achieve the worst
(i.e., highest) P..

The case where n = 2 is shown in figure 4. First of all, with
n > 1 (i.e.,, Po > P1), the condition for deciding in favor
of Hy becomes harder to achieve when compared with the
n =1 case, see (4). Therefore, P; and Py decrease in mag-
nitude when compared with these probabilities when n =1
(for the same o) for both architectures. Comparing the two
architectures, the P; and Py for the centralized one lie be-
tween @Q = 1 and 2 of the distributed one, which is below the
“middle point.” Comparing the P. performance of the two
architectures, we again see the centralized one achieving the
best performance. With respect to the distributed architec-
ture, the best distributed detection policy is attained when
Q is set to 2 for smaller o and 1 for larger o. The reduction
of the optimal @ threshold in the case where n > 1 when
compared with that for n = 1 follows from the fact that with
decreasing P; it becomes harder for any sensor to declare in
favor of Hi. Therefore, having even a small(er) number of
sensors declaring in favor of H; is reason enough to decide
in favor of H; system-wide.

Finally, the case where n = 0.5 is shown in figure 5. Argu-
ing as before, the behavior of the Qol metrics in this case
relative to those of the n = 1 case is in reverse order to the
behavior experienced when 1 = 2. With respect to P., while
the centralized architecture still performs the best, the best
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distributed detection policy is attained when @ is set to 3
for smaller o and 4 for larger o.

Based on the behavior of the two systems when compared
on the basis of P., we conjecture that in general the best de-
tection policy for the distributed architectures is achieved at
a threshold @ that decreases away from M /2 (and possibly
toward 1) as 7 increases above 1. On the other hand, the
threshold @ increases away from M /2 (and possibly toward
M) as n decreases below 1.

4.2 The lucky and unlucky sensor

In the previous subsection, we made reference to the lucky
sensor k, that starts sampling the signal just after the signal
projection first arrives at the sensor location (and then takes
additional N — 1 samples as well). For the decaying signal
considered, this lucky sensor picks the strongest possible sig-
nal (or, better, event signature projection) measurements,
and hence achieves the highest possibility of detecting the
event, hence, PC'ZZ > P(ZT, where the indexes [ and r stand
for lucky and real (k-th sensor), respectively. Similarly, we
may have an unlucky sensor that samples just before the
projection arrives at the sensor and, hence, when the sig-
nal samples are taken, they are the weakest possible, which
results in PC’Zu < wa.

In general, under hypothesis H1, a sensor will take its first
signal y, time units after the signal projection arrives at
the k-sensor, see figure 1, where 0 < yi < Tj; where Ty
is the sampling period of the k-th sensor. The i-th sample
contributed to the decision process by the k-th sensor is

st =apxs"(ti—mn+ur) +ni, 1<i< Ny (13)

Since, yx is in general unknown (could be modeled as a
random variable), the convenience of using the lucky and
unlucky sensors instead to bound the system performance
for the case of decaying signals becomes apparent. We will
study these bounds next; this analysis can be generalized for
non-decaying signals as well.
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Figure 6: Performance region for M = 4 sensors, s*(t) =
(1—t)*andn =1
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Figure 7: Performance comparison for fast-decaying signals
(1 —¢)"™ and slow decaying signals 1 — ¢™

We will consider the class of fast decaying signals s*(t) =
(1 —¢)™, applied to a centralized system with parameters
as in table 1, we also assume that Py = P, ie., n = 1.
Along with the upper and lower bounds derived from the
lucky and unlucky sensors, we also consider two additional
approximations: (a) an approximation derived when y, =
Ty /2 for all sensors (we may drop the index k in this case);
and (b) an average signal approximation given by

7
& Ok k

8 = — s*(t;

T — 1 +y)dy. (14)

Figure 6 shows the P; for the four different approximations
as a function of o. As expected, the lucky system (where
all the sensors are lucky) achieves the highest probability of
detection and the unlucky system the lowest for all values
of 0. Interestingly, the case where y = T'/2 and the average
signal approximation in (14) result in very close results. In
general, it is expected that the higher the sampling rate
becomes, the upper and lower bounds will become tighter,
and so will any approximation that restricts itself between
these two bounds. We also notice that as o increases, the Py
decreases toward 0.5 for all cases (and, hence, for the real
system too). Looking at (6a), this should be expected since
as o increases (or ¢ decreases) and n = 1, the probability
of detection tends toward 0.5. Applying this observation to
the equivalent sensor of our centralized system results in the
behavior seen in figure 6.



Finally, figure 7 shows a comparison of the performance be-
havior for fast and slow decaying signals as a function of n,
for the same system as in figure 6. Specifically, we show the
integral between the upper and lower performance bounds
(noted as performance area in the figure) and the maximum
difference (MAXaig) between the bounds for each class of
signals. It can be easily shown that, as n increases, the fast
decaying signals tend to the unit delta function and the suc-
cessive samples taken by a sensor differ significantly from
one sample to next. Thus, the performance differences be-
tween the lucky and unlucky sensors for fast decaying signals
increase. The reverse behavior is exhibited for the slow de-
caying signals that tend to the unit pulse with n and hence
the differences between successive samples diminish. Note
that when n = 0, we have a constant amplitude (persistent)
signal and, hence, the upper and lower bounds due to the
lucky and unlucky sensors coincide in this case.

S. CONCLUDING REMARKS

In this paper, we have used Qol as the means to capture
an application’s information needs from an underlying sen-
sor networks. We then introduce a Qol-based framework for
the evaluation of sensor network deployments. The deploy-
ment evaluation aids application planners to anticipate the
performance capabilities of the network, thus, allowing them
to possibly develop contingency plans in case the expected
performance is below desired Qol levels.

The framework is reflective of how application planners and
system designers will use it, and input parameters to it. It
considers a class of event detection applications and com-
prises: (a) an input preprocessing step, where the physical
constraints of the system deployment are considered; (b)
a core analysis step, where a common performance analy-
sis approach is used based on hypothesis testing; and (c)
a result post-processing step, where specific solutions ob-
tained through core analysis are combined and processed fur-
ther to derive the desired end-results. We have applied the
framework on analyzing a rather non-homogenous system
comprising a finite-size sensor network with transient (non-
constant) signals, arbitrary sensor deployment, and different
noise levels at each sensor. Note that persistent events, typ-
ically considered in research work on sensor networks, can
be studied as limiting cases of transient events, but this is
not necessarily true the other way around. We have also
analyzed the performance of “lucky” vs. “unlucky” systems
with respect to sampling times thus developing performance
bounds for various sampling possibilities.

We have compared the Qol performance of centralized vs. dis-
tributed detection architectures. For distributed schemes,
we have also studied the selection of an optimal threshold
for counting-based, system-wide detection policies. In the
latter case, we have demonstrated how a priori knowledge
about event occurrence influences the selection of the best
detection policy threshold. This analysis is also applicable
for the case where local fusion is performed but the detec-
tion decision-making is still centralized, e.g., when the sum
on the RHS of (4) is calculated in a distributed fashion, but
the inequality comparison is performed at a central location.

The proposed framework facilitates the decoupling of the
three steps, and the mix-and-match of different analysis, and

modeling approaches (both existing and new ones), e.g., use
of a Neyman-Pearson instead of Bayesian detection testing
for the core analysis engine. The decoupling permits us to
focus on separate aspects of the problem at different times,
thus simplifying the analysis, and modeling approaches en-
gaged at each step. This various approaches can then be-
come components of a toolkit that can be used for the anal-
ysis of a broad collection of sensing systems.
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