
Reliable Data Transmission in Event-based Sensor
Networks During Overload Situation

Charalambos Sergiou Vasos Vassiliou Andreas Pitsillides

Networks Research Laboratory
Department of Computer Science

University of Cyprus
75 Kallipoleos Str, 1678 Nicosia, Cyprus

{cspgsc2, vasosv, cspitsil} @ cs.ucy.ac.cy

ABSTRACT
In this paper, we describe a scalable and distributed
framework for minimizing congestion and assuring reliable
data transmissions in event based networks. Event based
networks are a particular category of sensor networks on
which reports are produced only upon the observation of a
specific event. This event should satisfy a pre-specified
condition. Whenever this condition is satisfied, a sudden
traffic increase occurs which may lead the network into
congestion. This is particularly undesirable because the data
generated during this situation are of great importance, often
critical, to the applications. We propose a novel algorithm
which is able to control a congestion situation and which is
efficient enough to safely transmit almost all the data,
generated by the sensors due to an event, back to the sinks.
The algorithm does that without throttling the source nodes’
data rate. Throttling the data rate could prove fatal for
critical networks, due to the fact that each data packet
provides the network with updated information concerning
the monitored event.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
Communication, Distributed Networks

General Terms
Algorithms, Performance

Keywords
Sensor Networks, Distributed Algorithms, Congestion Control,
Overload Control, Hierarchical Tree, Alternative Path

1. INTRODUCTION
Wireless sensor networks (WSN) are wireless networks

consisting of spatially distributed autonomous devices using
sensors to cooperatively monitor physical or environmental

conditions, such as temperature, sound, vibration, pressure,
motion, or pollutants, at different locations [1].
A special category of WSNs are the event-based networks. In
event-based networks data packets are produced only upon the
observation of a specific event that satisfies a pre-specified
condition. In event-based environments there is a need for
controlling the sudden traffic increase. Due to the nature of these
environments, sudden traffic increase occurs when the monitoring
event is happening. This high generation of data packets is usually
uncontrolled and often leads to congestion.
When congestion occurs, the network may enter into an unstable
state. In this state the networks’ behavior is unpredictable. If there
is no congestion control mechanism the network’s reaction to
congestion is the random drop of data packets. Besides the
obvious energy consumption, the major drawback in this method
is that the packets, which are produced during this state, are of
great importance. So, the need for early congestion prediction
and alleviation is obligatory.
In different studies [2,3] it is observed that the number of nodes
with occupied queues grows if congestion gets worse. When
congestion is detected, the sources should be notified in order to
take action to face congestion. The most popular approach for this
notification is the transmission of a control packet to the source,
from the sink.
Congestion control approaches in WSNs [4,5,6,7,8] try to react in
congestion with rate limiting techniques. Throttling the data rate
in event-based WSNs is not acceptable due to the fact that the
data packets which are produced during the monitoring of the
event are of great importance and almost all of them need to be
forwarded to the sink. An example of the use of these networks is
the case of a fire in a forest. Data packets are forwarded to the
sink to keep the fire stations updated for the fire’s frontage
In this paper we present a scalable and distributed framework for
assuring safe and reliable transmission of data packets to the sinks
during an overload situation without reducing the sources’ data
rate. Our framework consists of the following algorithms:
(i) Hierarchical Flooding which is used initially for the network
discovery and the placement of nodes in levels,
(ii) Hierarchical Tree Alternative Path (HTAP) algorithm in order
to deal with the expected congestion situation and to safely
forward the data packets to sinks, and
(iii) Handling of powerless (dead) nodes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PWSN’07, October 23, 2007, Austin, Texas, USA.
Copyright 2007 WICON/PWSN 987-963-9799-04-2

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personalor classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post onservers or to redistribute to lists, requires prior specific permission and/or a fee.WICON 2007, October 22-24, Austin, USACopyright © 2007 978-963-9799-12-7DOI 10.4108/pwsn.2007.2280

2. RELATED WORK
Wan et al. propose CODA [6], a congestion control system for

sensor networks. CODA detects congestion by periodically
sampling the channel load and comparing the fraction of time that
the channel is busy to the optimal channel utilization. The system
responds to congestion with a combination of hop-by-hop flow
control and closed-loop regulation. In hop-by-hop flow control
the node experiencing congestion broadcast backpressure
messages upstream toward the source nodes informing them for
the need to reduce their data rates. In closed- loop,
acknowledgments (ACKs) are by the sinks in order to inform
sources that their sending rates exceeded a predetermined
threshold. In this case source reduces their sending rate.

Woo and Culler propose a rate control mechanism [7] that
admits traffic into the network using an AIMD controller. When a
node hears that a packet it had previously sent was forwarded, it
additively increases its transmission rate. When it does not hear a
previous transmission being successfully forwarded (presumably
after a timeout), it multiplicatively reduces its transmission rate.

Sankarasubramaniam et al. propose ESRT [8], the Event to
Sink Reliable Transport Protocol. Their system addresses
congestion control in the context of reliable delivery. The sink
uses congestion feedback from sensor nodes to broadcast a
notification to reduce reporting rate. Feedback latency is
dependent on the network’s size and may not scale in very large
sensor networks.

3. SCHEME DESIGN
Bearing in mind the related work and the unique features of WSN,
especially the limited power and storage resources, a new
algorithm is proposed attempting to solve the congestion problem
in these networks. For the development of this algorithm we
involve a major input, which exists in sensor networks. This is the
plethora of unused recourses.
The algorithm consists of two parts, the Alternative Path Creation
(APC) and Hierarchical Tree Creation (HTC). The philosophy of
these two algorithms is similar. Both of them are based on the
creation of alternative paths from the source to the sink, when
congestion is going to take place. For the creation of these paths,
nodes which are not used at that moment start being utilized. APC
uses these nodes in a generally random way, compared to HTC
where these nodes are placed in a Hierarchical tree from the
source to the sink. The final algorithm is called HTAP
(Hierarchical Tree Alternative Path) and is a combination of these
two algorithms.
The HTAP (Hierarchical Tree Alternative Path) algorithm
attempts to solve a congestion situation locally “by- passing” the
congested node through the creation of alternative paths form the
source to the sink. Initial simulation results show that the HTAP
algorithm can cope with congestion and maintain the reliability of
data packets transmission to the sink. In addition it achieves good
performance in terms of energy dissipation, latency and
transmission efficiency

3.1 Alternative Path Creation (APC)
The initial idea for the creation of this algorithm derived from a
particular concept of the theory of Dynamic Alternative Routing
(DAR) used in public telephony [9]. In this concept it is stated
that if you have a good route without problems, stick to it, until

something goes wrong with it. With some major changes in the
implementation, this concept is adopted by us in the case of
congestion control in WSNs.
According to [10,11] there are many nodes in wireless sensor
networks, which, when a specific event is detected, are not taking
part in the path from the source to the sink. This is due to the fact
that these nodes are far away from the event. The main target of
the APC algorithm is to take advantage of these nodes and use
them for the creation of alternative paths from the source to the
sink. The creation of these paths unloads the highly dense parts of
the network and lead the data packets safely to a sink though
other routes.
The basic theory of this algorithm is that a source node keeps
transmitting data packets to a specific node at a level higher than
itself, until it receives a control message from this node that is not
able to handle any more packets. This is either because the
downstream node is going to become congested or due to the fact
that it will soon run out of power. In such a case, the source node
will search in its neighbor table and find the most appropriate
node to further transmit the data. To explain the concept let us
consider Figure 1.

Fig. 1 Transmission from Source to Sinks

We consider that there is a source which is sending data packets.
Initially, it is sending data to the node numbered 1. The data
packets follow the right path to a sink. As soon as node 1
calculates that is going to be congested it sends a control packet to
the source in order to inform it about the fact. When the source
node receives the control packet it searches in its neighbor table,
which includes nodes 1, 2 and 3, to find the proper node to keep
sending data (how the neighbor table is created and which is the
proper node is explained in the algorithm). The sending node
may then choose to transmit through nodes 2 or 3 (middle or left
path).
It must be stated that this procedure is taking place at all nodes
and not only at the source. For example, if node 8 becomes
congested, it will send a control message to the previous node (in
this example is 5) to inform it about the fact and node 5 will apply
the same procedure. It will continue to forward data through node
6 instead of 8.

3.1.1 APC implementation
The implementation philosophy of the algorithm follows the steps
below:

0

• A simple hierarchical flooding protocol is used for the
formation of the network’s topology. Through this procedure,
each node discovers its neighbor nodes and updates its neighbor
table. In addition, through this protocol, sensor nodes are
theoretically placed in levels from the source to the sink.

• At each packet transmission each node piggybacks its
congestion state (buffer occupancy). The neighbor nodes overhear
the packet transmission [6] and update their neighbor tables with
this information.

• During the triggering of an event, the source node begins
transmitting data packets creating flows to the sink. If the sending
data rate is higher than the rate that the receiving node can
transmit, the receiving node will soon face a buffer congestion
situation and the results would probably be the random drop of
data packets. In order to avoid this situation each candidate
congested receiver is sending a backpressure packet to the sender
to inform it that if it continues to transmit packets with the same
rate it will soon be congested. This way the sender stops the
transmission of packets to the candidate congested receiver and
searches in its neighbor table to find the least congested receiver
in order to continue the transmission of data.

• The transmitting node begins transmitting the data to the
alternative node. The same phenomenon can happen at any level
(between the neighbor nodes). The change of receivers leads to
the creation of alternative paths.

3.2 Hierarchical Tree Creation (HTC)
This algorithm consists of two main steps:

• Route Creation: In this step a hierarchical tree is created
beginning at the source node. Each node is assigned a level
according to the hierarchical tree. The source node is assigned a
level 0 and broadcasts a level_discovery packet. Sensors that
receive this packet are handed as children to the transmitter and
are set as level 1 (they will ignore subsequent level_discovery
packets). Each of these nodes broadcasts a level_discovery packet,
and the pattern continues with the level 2 nodes etc. The source
when it receives the level_discovery packet updates its neighbor
table.

• Flow Creation: Connection is established between each
transmitter and receiver using a 2-way handshake. Packets are
exchanged between each transmitter and receiver in the network,
in order to get connected. Through this packet exchange, the
congestion state of each receiver is communicated to the
transmitter. This connection is performed using a 2-way
handshake. Having a source node A and a receiver B, node A
sends a first packet to B. When node B receives this packet, it
sends an ack packet back to A. In this ack packet the node B
piggybacks the congestion state at the moment. In this way, the
source node is aware of the congestion state of all the children
and is also able to forward them data packets. When the
congestion state of children changes to a pre-specified limit this
node updates its congestion state by sending a packet to the
source node.
The congestion state limit is calculated as follows:
TPR is the propagation time for the transmission of a packet from
source A to node B (level 1).
K packets/sec is the transmission rate of node A.
In TPR sec is possible to exist b=TPR x K packets on fly.

Based on the above, when node’s B buffer plus b equals full then
node B is sending Buffer_Full to node A.

3.3 APC and HTC issues
We aim to evaluate the effectiveness of the Alternative Path
Creation (APC) algorithm as a technique to alleviate the
congestion problem in WSNs for event triggered networks.
The major advantage we anticipate is the fact that it utilizes nodes
which in other ways would be in a dormant state. Basically, it
increases the resource provisioning in the network with the energy
and buffer capacity of these nodes.
This solution seems to create good results concerning congestion
alleviation but its problem is that it scales poorly with dense
networks where there are many nodes. More specifically the
problem has to do with the mean time of the transmission of
packets from the sources to the sink, which in some cases is
highly increasing (Fig 2). This means that a packet could be
received “late” causing problems in the accomplishment of the
mission.

4.80

2.701.60

8.80

16.45

28.24

0

3

6

9

12

15

18

21

24

27

30

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Number of Nodes

M
ea

n
Ti

m
e

(S
ou

rc
e

to
 S

in
k)

APC

Fig. 2 APC's Mean Time (Source to Sink) vs Number of

Nodes
Each node is transmitting event data packets without a perception
about the congestion situation in other fields on the network,
except of the level above. The lack of knowledge of the rest of the
network may lead the packets through a longer path to the
destination. In any case packets avoid hotspots due to the fact that
they always choose the least congested node). Figure 3 explains
this situation.
In Figure 3 node 1 (upper left) is the source and node 6 (lower
right) is the sink. Node 38 is just one hop away from the sink. If,
for example node 38 becomes congested, packets from node 30
can be forwarded to sink either through node 32 (the best case,
one hop) or following the path 30, 9, 22, 36, 39, 32 following 6
hops. If exactly after the forwarding of packet to node 30, node 38
is relieved from congestion, the next packet which carries the
latest information will be received by the sink in one hop, and the
previous packet will become a “stale” packet.

Fig. 3 APC snapshot

The Hierarchical Tree Creation (HTC) algorithm aims to solve
this problem. In this case, the packets follow the hierarchical tree
which is created at the network deployment. Through the nodes
above it each node has perception of the whole network through
the routes that have been created in the route discovery phase.
Each packet follows specific flows in order to reach the sink.
When congestion is going to happen at a specific receiver node,
this node sends a control packet to the transmitter node to inform
it to change destination node. The transmitter node searches in its
neighbor table and finds the most appropriate node, towards
which it begins the transmission of data. The procedure is exactly
the same as in the APC algorithm. The differences are that
according to this algorithm the routes from the source to the sink,
pre-exist and are followed by the packets.
However, as in APC so in this algorithm, a main disadvantage
exist. This is the energy consumption compared with APC
algorithm (Fig 4). The 2-way handshake requires each node to
receive a packet and send one in response. For a source node A
with children B and C, node A broadcasts level discovery packet
and then connection packet. Nodes B and C receive both packets
and then transmit an ack packet to node A, piggybacking also
their congestion state. This example uses 4 transmissions and 4
receptions.

91.70

98.20

97.45
97.36

98.14

96.80

95.90

94.59

93.86

94.42

93.02
93.56

90

91

92

93

94

95

96

97

98

99

100

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Number of Nodes

N
et

w
or

k
Po

w
er

 (%
)

APC
HTC

Fig. 4 Network’s Power vs Number of Nodes for APC and

HTC

3.4 Hierarchical Tree Alternative Path
(HTAP) algorithm
The HTAP algorithm is a combination of the two previously
mentioned algorithms. Due to the fact that the advantage of the
first algorithm is the disadvantage of the second algorithm and
vice versa, this algorithm embodies the advantages of both
algorithms in order to eliminate the disadvantages.
This means that in this algorithm the APC is going to be applied
in combination with the HTC when the network is densely
deployed. The density or the sparseness of a network is not an
abstract term. A specific threshold needs to be specified by which
each node should be able to decide when to apply APC by itself
or in combination with HTC. Many deployment scenarios
envision that sensor nodes are dropped by airplanes or fill a place
in a field etc. This means that some nodes may not become part of
the network, due the fact that they fall too far away from other
nodes and there is no other node in their transmission range. Some
other nodes could be very densely deployed and other could be
very sparse. This threshold results out of the number of nodes
that a specific node has in its neighbor table. If the number is
below the pre-specified (for the specific network) threshold the
nodes apply the APC algorithm by itself. Otherwise, they apply it
with the HTC algorithm. Threshold values can be extracted
through simulations.

3.5 Powerless (dead) nodes
Special care should be taken in the HTAC algorithm concerning
the nodes with exhausted batteries. These nodes are causing major
problems to the network, especially when they are source nodes.
Thus, when a node is going to lose its power, it should
immediately be extracted from the network and the tables of their
neighbor nodes should be updated. This procedure should be as
simple as possible due to the fact that this can happen when the
network is in a crisis state.
This algorithm deals with two cases. The first case is when the
“dead” node is the source node and the other case is when the
“dead” node is a child node. In the first case, when the remaining
source’s node power is diminished, the source node broadcast an
elect_packet to its neighbor nodes. The neighbor nodes
communicate their power levels with each other and the one with
the most remaining energy is elected as the new node. Power is
diminished, and the other nodes remove it from their neighbor
tables.

4. DESCRIPTION OF ALGORITHMS

This section describes the four previous mentioned algorithms.
These algorithms are activated when a congestion situation is
about to appear in the network.
Moreover in this section the flooding algorithm is described. The
flooding algorithm is used at the first deployment of the network
in order for each node to discover its neighbor node and to update
their network tables. In order to “assist” the Hierarchical Tree
Algorithm a level_discovery functionality is also added to this
algorithm

Flooding Algorithm with Level Discovery

set neighbor_nodes to 0
if current_node is source node

Set level to 0
Broadcast flood_packets with level

else if current_node receives flood_packets and is accepting
them
 set current_node to level+1
 send ack_packet with current_node_id

broadcast flood_packet with current_node_id and level
 ignore subsequent flood_packets
else if current_node receives ack_packet
 neighbor nodes+1

The APC algorithm is described next. After the application of the
flooding algorithm, each node is aware of its neighbor nodes. As
it was mentioned in the analysis of APC algorithm, the nodes are
also aware of the congestion state of their neighbor nodes and are
update their neighbor tables, by overhearing the transmitted
packets of the other nodes, in which their congestion state is
piggybacked.

APC: Alternative Path Creation Algorithm

if current_node receives ack with congestion_level full
 update neighbor_table
 search neighbor_table
 find node_id with min (congestion_level)
 send data packet
if current_node receives congestion_update_message
 update neighbor_table
else if current_node receives data packet and accepting them
 Set buffer to buffer+1
 if buffer+b=full //from Section 3.2
 send ack packet with congestion_level full

Figure 5 shows an execution of APC algorithm. In Fig 5 data are
produced from a source node next to node 1 and are forwarded to
sinks 6 and 49. In our simulations we use more than one sink. The
same situation, concerning the neighbor table, applies for the
Hierarchical Tree algorithm. Here, the differences are related with
level discovery and the connection- oriented situation, in order to
form the hierarchical tree. Flooding algorithm assists in level
creation as it was described before.

Fig. 5 APC snapshot

 HTC: Hierarchical Tree Creation Algorithm

if current_node receives hello_message
send ack_hello
else if current_node sends hello_message
wait specific_time
 if current_node receives ack_hello
 update neighbor_table
 else if time_expires
re-send hello_message
/** IN CASE OF CONGESTION APPLY APC **/

The combination of the two algorithms to create the Hierarchical
Tree Alternative Path (HTAP) algorithm is described below. As it
was described before, when the neighbor nodes of a specific node
is below a specified threshold the APC algorithm applies, the HT
applies otherwise.

HTAP: Hierarchical Tree Alternative Path Algorithm

Set neighbor_nodes_threshold to [prespecified value]
if neighbor_nodes< neighbor_nodes_threshold

apply APC
else

apply HTC

Figure 6 shows an execution of HTAP algorithm

Fig. 6 HTAP snapshot

5. EVALUATION

To evaluate the proposed algorithm, scenarios were created to
compare various network and nodes parameters. The proposed
algorithm has been implemented in MATLAB, as a part of a
specific simulator for Congestion Control in WSN.

5.1 Simulation Environment
In all simulation environments and scenarios we choose to
randomly deploy nodes in a rectangular grid. The grid size is
1000m x 1000m a commonly used grid for modeling densely
deployed networks [12]. In each run, the parameters in Table 1
were kept stable while increasing the number of nodes in the grid
to make a dense network with strong connectivity. In order to
trigger off a congestion situation, all the nodes in the network are
almost congested, meaning that their buffer occupancy in near to
90%.

Table 1. Simulation Parameters

In addition we introduce more than one sink. Each sink is able to
handle a big amount of data. Each time the number of nodes in
the network is increasing the sources produces proportional
number of data packets.

5.2 Scenarios Analysis and Results

In order to get some reference results, the first simulation series
run has been conducted with no congestion control algorithm.
Basically, in this case the nodes were placed in a hierarchical tree
(flooding algorithm) but no congestion prevention measures were
taken when congestion happened (e.g no retransmissions). The
only “extra” provision was the handling of “dead” (powerless)
nodes.
The first parameter that has been investigated is the networks’
energy consumption during a crisis state. As it was stated in
Section 3.3, during a crisis state there is a sudden traffic increase
which will certainly lead to congestion if no countermeasures are
taken. This specific metric, simply adds the remaining power of
all nodes in the network and divides it by the number of nodes.

99.60

96.8097.07
97.14 96.60 96.23

94.32

96.40
97.30

92.60

99.20
98.40

80

90

100

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Number of Nodes

N
et

w
or

k
Po

w
er

 (%
)

HTAP
No Congestion Control

Fig. 7 Network power versus Number of Nodes

At first glance Figure 7 seems to give some “unexpected” results:
as the number of nodes in the network is increasing, “no
congestion control” algorithm appears to save more power. Of
course, this is not true. The reason can easily be explained.
HTAP’s main target is the involvement in congestion alleviation
phase, a number of nodes which are in dormant state. These nodes
will create alternative paths to the sinks. Bearing in mind that the
network’s dimensions are constant and the numbers of nodes are
increasing, the more nodes are in the network, the more of them
are involved in the congestion alleviation phase. This means that
packets traverse to the sink through a higher number of hops,
leading to energy consumption from many nodes.
On the other hand, when the “no congestion control” algorithm
applies, the situation is clear. In this procedure is involved a
specific number of nodes (only a path from the source to the
sink). These nodes are, like all the nodes in the network, are
almost congested. As long as they receive packets that are not
able to handle, they drop them. Furthermore, the control packets
that they exchange are limited. This situation will lead to
extinction of a specific number of nodes, while the rest will have
their power in full.
This leads to a subjective energy saving. Taking into account that
the metric we examine, derives from the division of the remaining
nodes’ power by the number of nodes, it is easy to understand that
as the number of nodes in the network is increasing, more nodes

X distance (m) 1000

Y distance (m) 1000

Transmit Power (dBm) -2

Sensitivity Threshold (dBm) -81

Path Loss Coefficient 3.5

Node CPU (MHz) 4

Radio Freq. (MHz) 433

Buffer Occupancy (%) 85

Data packet 1 packet

Control Packet ¼ packet

are in dormant state and of course more nodes have their power
untouched, leading to increment of the overall power.
The next parameter that was studied was the number of packet
drops during a crisis state. Keeping the parameters same as above,
the following results were noted.

908

23
15

7

39

85
127

144

207

68

453

332

0

100

200

300

400

500

600

700

800

900

1000

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Number of Nodes

Pa
ck

et
 D

ro
ps

HTAP
No Congestion Control

Fig. 8 Packet Drops versus Number of Nodes

As it is presented in Figure 8, the number of packets drops with
HTAP, increase slightly as the number of nodes is rising. Yet, in
all cases, the packet losses are up to ten times lower compared
with the “no congestion control” algorithm. This fact is a good
indication that the HTAP algorithm is able to minimize the
congestion problem and minimize the packet loss. The problem
concerning the “no congestion control” algorithm can become
even worse, bearing in mind that in this simulation series,
retransmissions have been disabled, and the “dead” nodes
provision is active.
The following item of interest is the percentage of dropped
packets, compared to transmitted packets. Figure 9 illustrates
these results.

57.20

4.20
4.12

4.03
4.19 4.46 3.27

16.70

22.60

10.23

42.80

32.10

0

10

20

30

40

50

60

70

80

90

100

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Number of Nodes

nu
m

D
x/

nu
m

Tx
 (%

)

HTAP
No Congestion Control

Fig. 9. numDx/numTx (%) versus Number of Nodes

The percentage of dropped packets to transmitted packets is
generally stable meaning that HTAP alleviates congestion even
under a big number of nodes (i.e a big load). On the other hand, if
the “no congestion control” algorithm is applied, the percentage
of lost packets is increasing as the number of nodes in the network
is increasing.
The next parameter that has been simulated was the mean travel
time of packets from the source to the sink. This parameter has
not been compared with “no congestion algorithm”, due to the

fact that the results of “no congestion control” algorithm are not
reliable in this case. The reason is that this metric measures the
time of all received packets to the sink and calculates the mean
time. Bearing in mind that a big number of packets with “no
congestion control” algorithm are dropped, the results could not
be true.

3.50

2.38
1.73

5.67

10.92

19.86

0

10

20

30

40

50

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Number of Nodes

M
ea

n
Ti

m
e

(S
ou

rc
e

to
 S

in
k)

Fig. 10 Mean Time (Source to Sink) versus Number of Nodes
Basically, this metric shows the trend of mean time while the
number of nodes in the network is increasing. As it is depicted in
Figure 10 the time is slightly increasing as the number of nodes in
the network is increasing. This is normal having in mind that the
creation of alternative paths creates many hops between the
source and the sink. This can be considered as a disadvantage of
the proposed algorithm since the time is sometimes a critical
factor for the success of the application.

6. Conclusions
In this paper we investigated the congestion problem that takes
place in WSN. In our work we dealt with a specific category of
WSNs, the event-based networks, which produce data only when
the monitored event exceeds a pre-specified threshold
We propose a novel algorithm HTAP (Hierarchical Tree
Alternative Tree), which takes advantage of unused nodes,
involving in the congestion alleviation phase their resources,
power and storage (buffer space).
The HTAP algorithm has been simulated in Matlab and has been
compared to a situation without congestion control mechanism.
The results showed that the HTAP algorithm is able to reliably
lead a large percentage of data packets to the sinks. In contrast,
the same network, without congestion control mechanism, looses
almost half of its data packets.
Moreover, simulations show that HTAP can also contribute to the
increment of network’s life since it uses power from a big number
of nodes. This means that networks are dying out, uniformly. In
other cases, due to congestion, it is possible that a specific area of
the networks gets exhausted, while other areas are “untouched”.
Moreover a special provision has been taken in our algorithm in
order that the entire exhausted nodes to get removed immediately
from the network’s topology, because they may cause major
problems.

7. REFERENCES
[1] K. Römer and F. Mattern, "The Design Space of Wireless
Sensor Networks". IEEE Wireless Communications 11 (6): 54-61,
December 2004

[2] A. Woo and D. E. Culler, “A Transmission Control Scheme
for Media Access in Sensor Networks”, In Proceedings of the
Seventh Annual International Conference on Mobile Computing
and Networking, pp 221-235, July 2001.

[3] C. Lu, B. M. Blum, T. F. Abdelzaher, J. A. Stankovic, and T.
He, “RAP: A Real-Time Communication Architecture for Large-
Scale Wireless Sensor Networks”, In Proceedings of the Eighth
IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS'02), p.55, September 2002.

[4] C. Tien Ee, R. Bajcsy, “Congestion Control and Fairness for
many-to-one Routing in Sensor Networks”, In Proceedings of the
2nd International Conference on Embedded Networked Sensor
Systems, November 2004.

[5] B. Hull, K. Jamieson, H. Balakrishnan, “Mitigating
Congestion in Wireless Sensor Networks”, In Proceedings of the
2nd International Conference on Embedded Networked Sensor
Systems, November 2004.

[6] C. Y. Wan, S. B. Eisenman, and A. T. Campbell, “CODA:
Congestion Detection and Avoidance in Sensor Networks”, In
Proceedings of the ACM SenSys, 2003.

[7] A. Woo and D. E. Culler, “A Transmission Control Scheme
for Media Access in Sensor Networks”. In Proceedings of
MobiCom 2001, pages 221–235, 2001.

[8] Y. Sankarasubramaniam, O. B. Akan, and I. F. Akyildiz,
“ESRT: Event-to-Sink Reliable Transport in Wireless Sensor
Networks” In Proceedings of ACM MobiHoc`03, pp. 177-188,
June 2003,

[9] R.J. Gibbens, F.P. Kelly and P.B. Key “Dynamic Alternative
Routing - Modelling and Behaviour”, In Proceedings of the 12th
International Teletraffic Congress, 1988.

[10] T. Yan, T. He, and J. A. Stankovic. “Differentiated
Surveillance Service for Sensor Networks.” In Proceedings of the
ACM SenSys 2003, 2003.

[11] F. Ye, G. Zhong, S. Lu, and L. Zhang. PEAS: A Robust
Energy Conserving Protocol for Long-lived Sensor Networks. In
Proceedings of the 23rd International Conference on Distributed
Computing Systems, May 2003.

[12] Mingyan Liu “Modeling a Dense Wireless Sensor Network:
Complexity, Stability and Robustness”, IPAM Mathematical
Challenges and Opportunities in Sensor Networking (SN’07), Jan.
2007

