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ABSTRACT 
In this paper, we describe a scalable and distributed 
framework for minimizing congestion and assuring reliable 
data transmissions in event based networks.  Event based 
networks are a particular category of sensor networks on 
which reports are produced only upon the observation of a 
specific event. This event should satisfy a pre-specified 
condition. Whenever this condition is satisfied, a sudden 
traffic increase occurs which may lead the network into 
congestion. This is particularly undesirable because the data 
generated during this situation are of great importance, often 
critical, to the applications. We propose a novel algorithm 
which is able to control a congestion situation and which is 
efficient enough to safely transmit almost all the data, 
generated by the sensors due to an event, back to the sinks. 
The algorithm does that without throttling the source nodes’ 
data rate.  Throttling the data rate could prove fatal for 
critical networks, due to the fact that each data packet 
provides the network with updated information concerning 
the monitored event. 

Categories and Subject Descriptors 
C.2.1 [Network Architecture and Design]: Wireless 
Communication, Distributed Networks 
 
General Terms 
Algorithms, Performance 

Keywords 
Sensor Networks, Distributed Algorithms, Congestion Control, 
Overload Control, Hierarchical Tree, Alternative Path 

1. INTRODUCTION 
Wireless sensor networks (WSN) are wireless networks 

consisting of spatially distributed autonomous devices using 
sensors to cooperatively monitor physical or environmental 

conditions, such as temperature, sound, vibration, pressure, 
motion, or pollutants, at different locations [1]. 
A special category of WSNs are the event-based networks. In 
event-based networks data packets are produced only upon the 
observation of a specific event that satisfies a pre-specified 
condition. In event-based environments there is a need for 
controlling the sudden traffic increase. Due to the nature of these 
environments, sudden traffic increase occurs when the monitoring 
event is happening. This high generation of data packets is usually 
uncontrolled and often leads to congestion.  
When congestion occurs, the network may enter into an unstable 
state. In this state the networks’ behavior is unpredictable. If there 
is no congestion control mechanism the network’s reaction to 
congestion is the random drop of data packets. Besides the 
obvious energy consumption, the major drawback in this method 
is that the packets, which are produced during this state, are of 
great importance.  So, the need for early congestion prediction 
and alleviation is obligatory. 
In different studies [2,3] it is observed that the number of nodes 
with occupied queues grows if congestion gets worse. When 
congestion is detected, the sources should be notified in order to 
take action to face congestion. The most popular approach for this 
notification is the transmission of a control packet to the source, 
from the sink. 
Congestion control approaches in WSNs [4,5,6,7,8] try to react in 
congestion with rate limiting techniques. Throttling the data rate 
in event-based WSNs is not acceptable due to the fact that the 
data packets which are produced during the monitoring of the 
event are of great importance and almost all of them need to be 
forwarded to the sink. An example of the use of these networks is 
the case of a fire in a forest. Data packets are forwarded to the 
sink to keep the fire stations updated for the fire’s frontage 
In this paper we present a scalable and distributed framework for 
assuring safe and reliable transmission of data packets to the sinks 
during an overload situation without reducing the sources’ data 
rate. Our framework consists of the following algorithms:   
(i) Hierarchical Flooding which is used initially for the network 
discovery and the placement of nodes in levels,  
(ii) Hierarchical Tree Alternative Path (HTAP) algorithm in order 
to deal with the expected congestion situation and to safely 
forward the data packets to sinks, and  
(iii) Handling of powerless (dead) nodes.  
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2. RELATED WORK 
Wan et al. propose CODA [6], a congestion control system for 

sensor networks. CODA detects congestion by periodically 
sampling the channel load and comparing the fraction of time that 
the channel is busy to the optimal channel utilization. The system 
responds to congestion with a combination of hop-by-hop flow 
control and closed-loop regulation. In hop-by-hop flow control 
the node experiencing congestion broadcast backpressure 
messages upstream toward the source nodes informing them for 
the need to reduce their data rates. In closed- loop, 
acknowledgments (ACKs) are by the sinks in order to inform 
sources that their sending rates exceeded a predetermined 
threshold. In this case source reduces their sending rate.   

Woo and Culler propose a rate control mechanism [7] that 
admits traffic into the network using an AIMD controller. When a 
node hears that a packet it had previously sent was forwarded, it 
additively increases its transmission rate. When it does not hear a 
previous transmission being successfully forwarded (presumably 
after a timeout), it multiplicatively reduces its transmission rate. 

Sankarasubramaniam et al. propose ESRT [8], the Event to 
Sink Reliable Transport Protocol. Their system addresses 
congestion control in the context of reliable delivery. The sink 
uses congestion feedback from sensor nodes to broadcast a 
notification to reduce reporting rate. Feedback latency is 
dependent on the network’s size and may not scale in very large 
sensor networks. 

 

3. SCHEME DESIGN 
Bearing in mind the related work and the unique features of WSN, 
especially the limited power and storage resources, a new 
algorithm is proposed attempting to solve the congestion problem 
in these networks. For the development of this algorithm we 
involve a major input, which exists in sensor networks. This is the 
plethora of unused recourses.  
The algorithm consists of two parts, the Alternative Path Creation 
(APC) and Hierarchical Tree Creation (HTC). The philosophy of 
these two algorithms is similar. Both of them are based on the 
creation of alternative paths from the source to the sink, when 
congestion is going to take place. For the creation of these paths, 
nodes which are not used at that moment start being utilized. APC 
uses these nodes in a generally random way, compared to HTC 
where these nodes are placed in a Hierarchical tree from the 
source to the sink. The final algorithm is called HTAP 
(Hierarchical Tree Alternative Path) and is a combination of these 
two algorithms.  
The HTAP (Hierarchical Tree Alternative Path) algorithm 
attempts to solve a congestion situation locally “by- passing” the 
congested node through the creation of alternative paths form the 
source to the sink. Initial simulation results show that the HTAP 
algorithm can cope with congestion and maintain the reliability of 
data packets transmission to the sink. In addition it achieves good 
performance in terms of energy dissipation, latency and 
transmission efficiency 

3.1 Alternative Path Creation (APC) 
The initial idea for the creation of this algorithm derived from a 
particular concept of the theory of Dynamic Alternative Routing 
(DAR) used in public telephony [9]. In this concept it is stated 
that if you have a good route without problems, stick to it, until 

something goes wrong with it. With some major changes in the 
implementation, this concept is adopted by us in the case of 
congestion control in WSNs.  
According to [10,11] there are many nodes in wireless sensor 
networks, which, when a specific event is detected, are not taking 
part in the path from the source to the sink. This is due to the fact 
that these nodes are far away from the event. The main target of 
the APC algorithm is to take advantage of these nodes and use 
them for the creation of alternative paths from the source to the 
sink. The creation of these paths unloads the highly dense parts of 
the network and lead the data packets safely to a sink though 
other routes. 
The basic theory of this algorithm is that a source node keeps 
transmitting data packets to a specific node at a level higher than 
itself, until it receives a control message from this node that is not 
able to handle any more packets. This is either because the 
downstream node is going to become congested or due to the fact 
that it will soon run out of power.  In such a case, the source node 
will search in its neighbor table and find the most appropriate 
node to further transmit the data. To explain the concept let us 
consider Figure 1. 

 
Fig. 1 Transmission from Source to Sinks 

We consider that there is a source which is sending data packets. 
Initially, it is sending data to the node numbered 1. The data 
packets follow the right path to a sink. As soon as node 1 
calculates that is going to be congested it sends a control packet to 
the source in order to inform it about the fact. When the source 
node receives the control packet it searches in its neighbor table, 
which includes nodes 1, 2 and 3, to find the proper node to keep 
sending data (how the neighbor table is created and which is the 
proper node is explained in the algorithm).  The sending node 
may then choose to transmit through nodes 2 or 3 (middle or left 
path). 
It must be stated that this procedure is taking place at all nodes 
and not only at the source. For example, if node 8 becomes 
congested, it will send a control message to the previous node (in 
this example is 5) to inform it about the fact and node 5 will apply 
the same procedure.  It will continue to forward data through node 
6 instead of 8. 

3.1.1 APC implementation 
The implementation philosophy of the algorithm follows the steps 
below: 

0 



• A simple hierarchical flooding protocol is used for the 
formation of the network’s topology. Through this procedure, 
each node discovers its neighbor nodes and updates its neighbor 
table. In addition, through this protocol, sensor nodes are 
theoretically placed in levels from the source to the sink.  

• At each packet transmission each node piggybacks its 
congestion state (buffer occupancy). The neighbor nodes overhear 
the packet transmission [6] and update their neighbor tables with 
this information. 

• During the triggering of an event, the source node begins 
transmitting data packets creating flows to the sink. If the sending 
data rate is higher than the rate that the receiving node can 
transmit, the receiving node will soon face a buffer congestion 
situation and the results would probably be the random drop of 
data packets. In order to avoid this situation each candidate 
congested receiver is sending a backpressure packet to the sender 
to inform it that if it continues to transmit packets with the same 
rate it will soon be congested. This way the sender stops the 
transmission of packets to the candidate congested receiver and 
searches in its neighbor table to find the least congested receiver 
in order to continue the transmission of data. 

• The transmitting node begins transmitting the data to the 
alternative node. The same phenomenon can happen at any level 
(between the neighbor nodes). The change of receivers leads to 
the creation of alternative paths. 

3.2 Hierarchical Tree Creation (HTC) 
This algorithm consists of two main steps: 

• Route Creation: In this step a hierarchical tree is created 
beginning at the source node. Each node is assigned a level 
according to the hierarchical tree. The source node is assigned a 
level 0 and broadcasts a level_discovery packet. Sensors that 
receive this packet are handed as children to the transmitter and 
are set as level 1 (they will ignore subsequent level_discovery 
packets). Each of these nodes broadcasts a level_discovery packet, 
and the pattern continues with the level 2 nodes etc. The source 
when it receives the level_discovery packet updates its neighbor 
table. 

• Flow Creation: Connection is established between each 
transmitter and receiver using a 2-way handshake. Packets are 
exchanged between each transmitter and receiver in the network, 
in order to get connected. Through this packet exchange, the 
congestion state of each receiver is communicated to the 
transmitter. This connection is performed using a 2-way 
handshake. Having a source node A and a receiver B, node A 
sends a first packet to B. When node B receives this packet, it 
sends an ack packet back to A. In this ack packet the node B 
piggybacks the congestion state at the moment. In this way, the 
source node is aware of the congestion state of all the children 
and is also able to forward them data packets. When the 
congestion state of children changes to a pre-specified limit this 
node updates its congestion state by sending a packet to the 
source node. 
The congestion state limit is calculated as follows: 
TPR  is the propagation time for the transmission of a packet from 
source A to node B (level 1). 
K packets/sec is the transmission rate of node A. 
In TPR sec is possible to exist b=TPR x K packets on fly.  
 

Based on the above, when node’s B buffer plus b equals full then 
node B is sending Buffer_Full to node A. 

3.3 APC and HTC issues 
We aim to evaluate the effectiveness of the Alternative Path 
Creation (APC) algorithm as a technique to alleviate the 
congestion problem in WSNs for event triggered networks.  
The major advantage we anticipate is the fact that it utilizes nodes 
which in other ways would be in a dormant state. Basically, it 
increases the resource provisioning in the network with the energy 
and buffer capacity of these nodes.  
This solution seems to create good results concerning congestion 
alleviation but its problem is that it scales poorly with dense 
networks where there are many nodes. More specifically the 
problem has to do with the mean time of the transmission of 
packets from the sources to the sink, which in some cases is 
highly increasing (Fig 2).  This means that a packet could be 
received “late” causing problems in the accomplishment of the 
mission. 
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Fig. 2 APC's Mean  Time (Source to Sink) vs Number of 

Nodes 
Each node is transmitting event data packets without a perception 
about the congestion situation in other fields on the network, 
except of the level above. The lack of knowledge of the rest of the 
network may lead the packets through a longer path to the 
destination. In any case packets avoid hotspots due to the fact that 
they always choose the least congested node). Figure 3 explains 
this situation. 
In Figure 3 node 1 (upper left) is the source and node 6 (lower 
right) is the sink. Node 38 is just one hop away from the sink. If, 
for example node 38 becomes congested, packets from node 30 
can be forwarded to sink either through node 32 (the best case, 
one hop) or following the path 30, 9, 22, 36, 39, 32 following 6 
hops. If exactly after the forwarding of packet to node 30, node 38 
is relieved from congestion, the next packet which carries the 
latest information will be received by the sink in one hop, and the 
previous packet will become a “stale” packet. 
 



 
Fig. 3  APC snapshot 

The Hierarchical Tree Creation (HTC) algorithm aims to solve 
this problem. In this case, the packets follow the hierarchical tree 
which is created at the network deployment. Through the nodes 
above it each node has perception of the whole network through 
the routes that have been created in the route discovery phase. 
Each packet follows specific flows in order to reach the sink.  
When congestion is going to happen at a specific receiver node, 
this node sends a control packet to the transmitter node to inform 
it to change destination node. The transmitter node searches in its 
neighbor table and finds the most appropriate node, towards 
which it begins the transmission of data. The procedure is exactly 
the same as in the APC algorithm. The differences are that 
according to this algorithm the routes from the source to the sink, 
pre-exist and are followed by the packets. 
However, as in APC so in this algorithm, a main disadvantage 
exist. This is the energy consumption compared with APC 
algorithm (Fig 4). The 2-way handshake requires each node to 
receive a packet and send one in response. For a source node A 
with children B and C, node A broadcasts level discovery packet 
and then connection packet. Nodes B and C receive both packets 
and then transmit an ack packet to node A, piggybacking also 
their congestion state. This example uses 4 transmissions and 4 
receptions.  
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Fig. 4 Network’s Power vs Number of Nodes for APC and 

HTC 

3.4 Hierarchical Tree Alternative Path 
(HTAP) algorithm 
The HTAP algorithm is a combination of the two previously 
mentioned algorithms. Due to the fact that the advantage of the 
first algorithm is the disadvantage of the second algorithm and 
vice versa, this algorithm embodies the advantages of both 
algorithms in order to eliminate the disadvantages. 
This means that in this algorithm the APC is going to be applied 
in combination with the HTC when the network is densely 
deployed.  The density or the sparseness of a network is not an 
abstract term. A specific threshold needs to be specified by which 
each node should be able to decide when to apply APC by itself 
or in combination with HTC. Many deployment scenarios 
envision that sensor nodes are dropped by airplanes or fill a place 
in a field etc. This means that some nodes may not become part of 
the network, due the fact that they fall too far away from other 
nodes and there is no other node in their transmission range. Some 
other nodes could be very densely deployed and other could be 
very sparse.  This threshold results out of the number of nodes 
that a specific node has in its neighbor table. If the number is 
below the pre-specified (for the specific network) threshold the 
nodes apply the APC algorithm by itself. Otherwise, they apply it 
with the HTC algorithm. Threshold values can be extracted 
through simulations. 

3.5 Powerless (dead) nodes 
Special care should be taken in the HTAC algorithm concerning 
the nodes with exhausted batteries. These nodes are causing major 
problems to the network, especially when they are source nodes.  
Thus, when a node is going to lose its power, it should 
immediately be extracted from the network and the tables of their 
neighbor nodes should be updated. This procedure should be as 
simple as possible due to the fact that this can happen when the 
network is in a crisis state. 
This algorithm deals with two cases. The first case is when the 
“dead” node is the source node and the other case is when the 
“dead” node is a child node.  In the first case, when the remaining 
source’s node power is diminished, the source node broadcast an 
elect_packet to its neighbor nodes. The neighbor nodes 
communicate their power levels with each other and the one with 
the most remaining energy is elected as the new node. Power is 
diminished, and the other nodes remove it from their neighbor 
tables. 

4. DESCRIPTION OF ALGORITHMS 
 
This section describes the four previous mentioned algorithms. 
These algorithms are activated when a congestion situation is 
about to appear in the network.  
Moreover in this section the flooding algorithm is described. The 
flooding algorithm is used at the first deployment of the network 
in order for each node to discover its neighbor node and to update 
their network tables. In order to “assist” the Hierarchical Tree 
Algorithm a level_discovery functionality is also added to this 
algorithm  

 
 



Flooding Algorithm with Level Discovery 

set neighbor_nodes to 0 
if current_node is source node 

Set level to 0 
Broadcast flood_packets with level  

else if current_node receives flood_packets and is accepting 
them 
 set current_node to level+1 
 send ack_packet with current_node_id 

broadcast flood_packet with  current_node_id and level 
 ignore subsequent flood_packets 
else if current_node receives ack_packet 
 neighbor nodes+1 
 

 
The APC algorithm is described next. After the application of the 
flooding algorithm, each node is aware of its neighbor nodes. As 
it was mentioned in the analysis of APC algorithm, the nodes are 
also aware of the congestion state of their neighbor nodes and are 
update their neighbor tables, by overhearing the transmitted 
packets of the other nodes, in which their congestion state is 
piggybacked.  
 

APC: Alternative Path Creation Algorithm 

if current_node receives ack with congestion_level full 
 update neighbor_table  
 search neighbor_table  
 find node_id with min (congestion_level) 
 send data packet 
if current_node receives congestion_update_message 
 update neighbor_table 
else if current_node receives data packet and accepting them 
 Set buffer to buffer+1 
 if buffer+b=full //from Section 3.2 
 send ack packet with congestion_level full 
 
Figure 5 shows an execution of APC algorithm. In Fig 5 data are 
produced from a source node next to node 1 and are forwarded to 
sinks 6 and 49. In our simulations we use more than one sink. The 
same situation, concerning the neighbor table, applies for the 
Hierarchical Tree algorithm. Here, the differences are related with 
level discovery and the connection- oriented situation, in order to 
form the hierarchical tree. Flooding algorithm assists in level 
creation as it was described before. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 APC snapshot 
 

 HTC: Hierarchical Tree Creation Algorithm 

if current_node receives hello_message  
send ack_hello 
else if current_node sends hello_message 
wait specific_time  
 if current_node receives ack_hello 
  update neighbor_table 
 else if time_expires 
re-send hello_message 
/** IN CASE OF CONGESTION APPLY APC **/ 
  

 
The combination of the two algorithms to create the Hierarchical 
Tree Alternative Path (HTAP) algorithm is described below. As it 
was described before, when the neighbor nodes of a specific node 
is below a specified threshold the APC algorithm applies, the HT 
applies otherwise.  

 

HTAP: Hierarchical Tree Alternative Path Algorithm 

Set neighbor_nodes_threshold  to [prespecified value] 
if neighbor_nodes< neighbor_nodes_threshold 

apply APC 
else 

apply HTC 
 

 
Figure 6 shows an execution of HTAP algorithm 



 
Fig. 6 HTAP snapshot 

5. EVALUATION 
 
To evaluate the proposed algorithm, scenarios were created to 
compare various network and nodes parameters. The proposed 
algorithm has been implemented in MATLAB, as a part of a 
specific simulator for Congestion Control in WSN.  

5.1 Simulation Environment 
In all simulation environments and scenarios we choose to 
randomly deploy nodes in a rectangular grid. The grid size is 
1000m x 1000m a commonly used grid for modeling densely 
deployed networks [12]. In each run, the parameters in Table 1 
were kept stable while increasing the number of nodes in the grid 
to make a dense network with strong connectivity. In order to 
trigger off a congestion situation, all the nodes in the network are 
almost congested, meaning that their buffer occupancy in near to 
90%. 

Table 1. Simulation Parameters 

 
In addition we introduce more than one sink. Each sink is able to 
handle a big amount of data. Each time the number of nodes in 
the network is increasing the sources produces proportional 
number of data packets.  
 

5.2 Scenarios Analysis and Results 
 
In order to get some reference results, the first simulation series 
run has been conducted with no congestion control algorithm. 
Basically, in this case the nodes were placed in a hierarchical tree 
(flooding algorithm) but no congestion prevention measures were 
taken when congestion happened (e.g no retransmissions). The 
only “extra” provision was the handling of “dead” (powerless) 
nodes.  
The first parameter that has been investigated is the networks’ 
energy consumption during a crisis state. As it was stated in 
Section 3.3, during a crisis state there is a sudden traffic increase 
which will certainly lead to congestion if no countermeasures are 
taken.   This specific metric, simply adds the remaining power of 
all nodes in the network and divides it by the number of nodes. 
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Fig. 7  Network power versus Number of Nodes 

 
At first glance Figure 7 seems to give some “unexpected” results: 
as the number of nodes in the network is increasing, “no 
congestion control” algorithm appears to save more power. Of 
course, this is not true. The reason can easily be explained.  
HTAP’s main target is the involvement in congestion alleviation 
phase, a number of nodes which are in dormant state. These nodes 
will create alternative paths to the sinks. Bearing in mind that the 
network’s dimensions are constant and the numbers of nodes are 
increasing, the more nodes are in the network, the more of them 
are involved in the congestion alleviation phase. This means that 
packets traverse to the sink through a higher number of hops, 
leading to energy consumption from many nodes. 
On the other hand, when the “no congestion control” algorithm 
applies, the situation is clear.  In this procedure is involved a 
specific number of nodes (only a path from the source to the 
sink). These nodes are, like all the nodes in the network, are 
almost congested. As long as they receive packets that are not 
able to handle, they drop them. Furthermore, the control packets 
that they exchange are limited. This situation will lead to 
extinction of a specific number of nodes, while the rest will have 
their power in full. 
This leads to a subjective energy saving. Taking into account that 
the metric we examine, derives from the division of the remaining 
nodes’ power by the number of nodes, it is easy to understand that 
as the number of nodes in the network is increasing, more nodes 

X distance (m) 1000 

Y distance (m) 1000 

Transmit Power (dBm) -2 

Sensitivity Threshold (dBm) -81 

Path Loss Coefficient 3.5 

Node CPU (MHz) 4 

Radio Freq. (MHz) 433 

Buffer Occupancy (%) 85 

Data packet 1 packet 

Control Packet  ¼ packet 



are in dormant state and of course more nodes have their power 
untouched, leading to increment of the overall power.  
The next parameter that was studied was the number of packet 
drops during a crisis state. Keeping the parameters same as above, 
the following results were noted. 
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Fig. 8 Packet Drops versus Number of Nodes 

As it is presented in Figure 8, the number of packets drops with 
HTAP, increase slightly as the number of nodes is rising. Yet, in 
all cases, the packet losses are up to ten times lower compared 
with the “no congestion control” algorithm. This fact is a good 
indication that the HTAP algorithm is able to minimize the 
congestion problem and minimize the packet loss.  The problem 
concerning the “no congestion control” algorithm can become 
even worse, bearing in mind that in this simulation series, 
retransmissions have been disabled, and the “dead” nodes 
provision is active.  
The following item of interest is the percentage of dropped 
packets, compared to transmitted packets. Figure 9 illustrates 
these results. 
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Fig. 9. numDx/numTx (%) versus Number of Nodes 

The percentage of dropped packets to transmitted packets is 
generally stable meaning that HTAP alleviates congestion even 
under a big number of nodes (i.e a big load). On the other hand, if 
the “no congestion control” algorithm is applied, the percentage 
of lost packets is increasing as the number of nodes in the network 
is increasing.  
The next parameter that has been simulated was the mean travel 
time of packets from the source to the sink. This parameter has 
not been compared with “no congestion algorithm”, due to the 

fact that the results of “no congestion control” algorithm are not 
reliable in this case. The reason is that this metric measures the 
time of all received packets to the sink and calculates the mean 
time. Bearing in mind that a big number of packets with “no 
congestion control” algorithm are dropped, the results could not 
be true. 
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Fig. 10 Mean Time (Source to Sink) versus Number of Nodes 
Basically, this metric shows the trend of mean time while the 
number of nodes in the network is increasing. As it is depicted in 
Figure 10 the time is slightly increasing as the number of nodes in 
the network is increasing. This is normal having in mind that the 
creation of alternative paths creates many hops between the 
source and the sink. This can be considered as a disadvantage of 
the proposed algorithm since the time is sometimes a critical 
factor for the success of the application.  

6. Conclusions 
In this paper we investigated the congestion problem that takes 
place in WSN. In our work we dealt with a specific category of 
WSNs, the event-based networks, which produce data only when 
the monitored event exceeds a pre-specified threshold 
We propose a novel algorithm HTAP (Hierarchical Tree 
Alternative Tree), which takes advantage of unused nodes, 
involving in the congestion alleviation phase their resources, 
power and storage (buffer space). 
The HTAP algorithm has been simulated in Matlab and has been 
compared to a situation without congestion control mechanism. 
The results showed that the HTAP algorithm is able to reliably 
lead a large percentage of data packets to the sinks. In contrast, 
the same network, without congestion control mechanism, looses 
almost half of its data packets. 
Moreover, simulations show that HTAP can also contribute to the 
increment of network’s life since it uses power from a big number 
of nodes. This means that networks are dying out, uniformly. In 
other cases, due to congestion, it is possible that a specific area of 
the networks gets exhausted, while other areas are “untouched”. 
Moreover a special provision has been taken in our algorithm in 
order that the entire exhausted nodes to get removed immediately 
from the network’s topology, because they may cause major 
problems. 
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