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Abstract 

This work explores the feasibility of using motion-sensitive sensors embedded in Google Glass, a head-mounted wearable 
device, to robustly measure physiological signals of the wearer. In particular, we develop new methods to use Glass’s 
accelerometer, gyroscope, and camera to extract pulse and respiratory waves of 12 participants during a controlled 
experiment. We show it is possible to achieve a mean absolute error of 0.82 beats per minute (STD: 1.98) for heart rate and 
0.6 breaths per minute (STD: 1.19) for respiration rate when considering different observation windows and combinations 
of sensors. Moreover, we show that a head-mounted gyroscope sensor shows improved performance versus more commonly 
explored sensors such as accelerometers and demonstrate that a head-mounted camera is a novel and promising method to 
capture the physiological responses of the wearer. These findings included testing across sitting, supine, and standing 
postures before and after physical exercise. 
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1. Introduction

Being able to comfortably monitor physiological 
information during daily life can reduce the costs 
associated with health measurement and care delivery [37]. 
For instance, physiological measures such as 
cardiovascular and respiratory activity can be used for 
early detection and diagnosis of relevant risk factors of 
cardiovascular disease [6] as well as for helping to monitor 
chronic conditions and therapeutic interventions. 

 Traditional approaches to measure parameters such as 
heart rate require attaching electrodes to the skin, which is 
cumbersome for daily life monitoring. However, recent 
advances in technologies have enabled the creation of 
wearable devices of reduced sized, weight and power 
consumption. These devices are in close contact with the 
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body and offer a new set of low-cost unobtrusive sensors 
that can run continuously during daily activities.  

In this work we focus on the motion-sensitive 
capabilities within a commercial product, the Google Glass 
(see Fig. 1). Google Glass is a wireless head-mounted 
device equipped with a touch pad, a see-through display, 
and most of the sensors available in smartphones. Although 
the device was not designed for physiological 
measurement, its unique location on the head of the person 
provides an opportunity to unobtrusively monitor 
physiological information during daily activities. In 
particular, we develop new methods allowing the 
gyroscope, the accelerometer and the camera embedded in 
Glass to be used to capture subtle head motions of the 
wearer that are associated with the mechanical activity of 
the heart and the respiration of the wearer. 
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The paper is organized as follows. We start by reviewing 
the previous literature on non-invasive physiological 
measurement, followed by a description of the 
experimental setting and the sensors used in our study. 
Next, we present the algorithms to retrieve pulse and 
respiratory waves from different sensors. The results of the 
proposed algorithms are then compared to an FDA cleared 
heart rate and respiration rate sensor. Finally, we discuss 
the potential implications of this work for real-life 
monitoring.  

2. Non-Invasive Physiological
Measurement 

One of the least invasive physiological measurement 
approaches is photoplethysmography (PPG) which 
captures color variations of reflected light on the skin. 
Traditional measurements of PPG require a dedicated light 
source in close contact with the surface of the skin such as 
the finger [1]. However, Verkruysse et al. [38] 
demonstrated that it’s also possible to gather this type of 
information using a remote camera (>1m) and ambient 
light. This idea was further explored by Poh et al. [30][31] 
who proposed and validated a method to robustly extract 
physiological parameters using a regular webcam. More 
recently, Wu et al. [39] proposed a method to amplify and 
visualize frequency changes in a video. Among many 
explored applications, the authors used their method to 
amplify and visualize blood flow changes in a baby’s face, 
along with its respiration movements. Although these 
studies represent some of the least invasive approaches 
currently available, they require having a camera pointed 
at the person which severely limits their possibilities for 
daily life monitoring. This work includes PPG 
measurements from the finger to provide ground truth 
physiological comparison.  

An alternative approach that has the potential to enable 

non-intrusive physiological measurements is 
ballistocardiography (BCG). This method was popularized 
by Starr et al. [36] who showed that the mechanical ballistic 
forces of the heart elicit subtle body movements. While the 
original experiments required a subject to lie down on a 
suspended supporting structure, continuous technological 
advances have enabled BCG measurement in less 
constrained settings [9]. For instance, researchers have 
successfully gathered BCG information from daily life 
objects such as modified weighing scale [18], a chair [32] 
or a back pad [28]. Moreover, a wide variety of methods 
have been explored to gather similar information during 
sleep, when the amount of motion artifacts are minimized 
(e.g., [4][5][24][27][34]). Researchers have also started to 
consider more wearable approaches which are more 
appropriate for daily life monitoring. For instance, Kown 
et al. [20] and Dinh [7] attached a smartphone to the chest 
and used its accelerometer to monitor heart rate. Similarly, 
Phan et al. [29] proposed a different approach to extract 
heart rate and respiration. While these approaches enable 
measurements during daily life, they mostly focus on the 
chest location where both cardiac and respiratory motions 
are more prominent. In a series of studies, however, He et 
al. [11][12][13] created a custom-made device and 
demonstrated that heart rate could also be extracted from a 
peripheral location such as the ear. In [14], He also showed 
preliminary results of respiration rate estimation from 
accelerometer data for a single sample but no validation 
was performed. This work similarly demonstrates that 
heart rate can be performed from accelerometer data but 
also provides a methodological validation of respiration 
rate estimation. Moreover, we show improvements with 
novel use of the gyroscope, and explore a different 
peripheral location of the sensor (above the right eye 
instead of over the ear). Finally, our work also considers 
the use of a head-worn camera that captures the egocentric 
view of the person to monitor subtle periodic motions. This 
is in contrast to the work of Balakrishnan et al. [2], which 
measured the heart rate of a person in front of a static 
camera by monitoring subtle head motions. To the best of 
our knowledge, the work presented here is the first to use 
the egocentric view of a wearer to gather his or her own 
physiological data. 

3. Experimental Procedure

Twelve participants (6 females) with an average age of 27.3 
(STD of 5.3) years old, weight of 144.5 (STD: 30.9) pounds 
and height of 5.65 (STD: 0.4) feet participated in this study. 
After obtaining written consent, participants were asked to 
keep still, breathe spontaneously and look at a static indoor 
scene situated at a distance of 2.2 meters while remaining 
in three different positions (standing up, sitting down and 
lying down) for a minute each. In order to generate a larger 
dynamic range of physiological readings, participants were 
then asked to repeat the three positions after pedaling a 

Figure 1. Head-mounted wearable device Google 
Glass and the locations of some of the main sensors. 
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stationary bike for one minute.  Thus, this procedure 
provided 72 minutes of well-characterized data over a 
range of heart rate and respiratory conditions. At the end of 
the study, participants took a survey and were compensated 
with a $5 Amazon gift card.  

We created a custom Android application to 
simultaneously log information from the accelerometer, the 
gyroscope and the camera of an early beta version of 
Google Glass. In order to measure the ground truth 
physiology, participants also wore an FDA cleared sensor 
(FlexComp Infiniti by Thought Technologies) that 
simultaneously recorded Blood Volume Pulse (BVP) from 
the finger and respiration from a chest belt sensor at a 
constant sampling rate of 256 Hz. The Institutional Review 
Board of the Massachusetts Institute of Technology 
approved the study. 

4. Sensors and Preprocessing

This work explores the utility of three different sensors 
embedded in a head-mounted device. In the following, we 
provide a brief description of each sensor and some of the 
main considerations.  

4.1. Accelerometer 

The 3-axis accelerometer captures the acceleration applied 
to the device (meters/second2) along the X, Y and Z axes 
(see Fig. 1). Accelerometer measurements include the force 
of gravity and have been widely used in the context of 
activity recognition [21]. Furthermore, this sensor seems to 
be one of the preferred choices to sense BCG 
measurements in different contexts [7][11][20][29][33]. In 
our specific setting, we were able to retrieve accelerometer 
information at an average sampling rate of 50 Hz. In order 
to ensure a constant sampling rate, we performed cubic 
interpolation at a sampling rate of 256 Hz (the same as the 
FlexComp Infiniti sensor). There were some sporadic cases 
where the sensor did not log any data for long periods of 
time (e.g., half a second), which introduced critical artifacts 
when estimating physiological information. We believe 
part of the problem was due to the simultaneous logging of 
the three sensors and the limited capability of the beta 
version of Google Glass to handle high sampling rates. To 
minimize the effect of these artifacts, we applied a hard-
thresholding method (2 STD above and below the mean) 
for each observation window.  

4.2. Gyroscope 

The 3-axis gyroscope captures the rate of rotation 
(radians/second) of the device along the X, Y and Z axis of 
the device (see Fig. 1). Unlike an accelerometer, a 
gyroscope is not affected by gravity but may present a 
cumulative error (drifting) when analyzed over time. A 

common application of this sensor is the stabilization of 
aerial vehicles, but it can also be combined with other 
sensors to provide accurate localization (e.g., [19]). To the 
best of our knowledge this sensor has not been validated in 
the context of BCG measurement, probably due to the 
limited rotational motions of considered body locations 
(e.g., chest, ear). Similarly to the accelerometer sensor, the 
average sampling rate of the gyroscope was 50 Hz and 
sensor drops were sometimes observed. We applied the 
same cubic interpolation and thresholding described above. 

4.3. Camera 

The video was recorded at a constant frame rate of 30Hz at 
a resolution of 1280x720 pixels (the default settings of 
Glass). Each of the pixels yields a vector in RGB color 
space. We estimate the motion of the device by tracking 2D 
feature points in the video. First, we detect feature 
points [34] in each frame and track them using a Kanade-
Lucas-Tomasi feature tracker [22]. We then fit a 
homography matrix [10]  to the point correspondences 
using RANSAC [8]. We assume that all tracked points 
correspond to static 3D points, in which case their offsets 
are solely explained by the camera motion. Finally, the 
vertical and horizontal motion (up to a scale) of the camera 
can then be directly extracted from the matrix. While more 
accurate motion estimation methods exist (e.g., [10]), they 
require addressing additional challenges such as calibrating 
the camera and facing degenerate conditions for small 
movements that may attenuate the physiological 
information. To the best of our knowledge, this work is the 
first to use the egocentric view of a wearer to gather his or 
her own physiological data.  

5. Physiological Parameter Estimation

A challenge in extracting physiological parameters during 
daily activity with wearable devices is to develop 
algorithms that require low-computational power and run 
in real-time. Therefore, we constrained our new methods to 
use combinations of efficient signal processing techniques. 
In this section we provide details about the proposed 
processing steps to estimate the pulse and respiratory 
waves from a specific stream of sensor data.   

5.1. Pulse Wave 

Given a specific sensor modality with sensor readings as a 
time series of vectors (e.g., 3D vector for accelerometer and 
gyroscope, 2D vector for camera), the estimation of the 
pulse wave was divided into the following steps: 
(i) A moving average window of 3 samples was

subtracted from each dimension of the
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vector, allowing the removal of signal shifts and 
trends. 

(ii) A band-pass Butterworth filter of order 4 with cut-off
frequencies of 10 and 13 Hz was applied to each
dimension to isolate BCG changes.

(iii) In order to aggregate the different components of the
signal, i.e. dimensions of the vector, we compute the
square root of the summation of the squared
components (i.e., L2 norm) at each sample. This
aggregation gives the same relevance to each of the
dimensions and makes our approach more robust to
different body postures.

(iv) Finally, a band-pass Butterworth filter of order 2 with
cut-off frequencies of 0.75 and 2.5 Hz (corresponding
to 45 and 150 beats per minute) was applied, yielding
the final pulse wave.

Fig. 2 shows an example of pulse wave estimation from 
gyroscope data of a person wearing the head-mounted 
wearable device while lying down. The top graph shows 
the 3-axis gyroscope over a period of 5.5 seconds and 
clearly shows the BCG changes. The middle graph shows 
the pulse wave obtained by BVP (blue) and the pulse wave 
obtained after applying the described methods on the 
gyroscope data (red line). As can be seen, the estimated 

pulse wave is well aligned with the wave of reference and 
is able to capture the changes associated with the beats and 
their reflections.  

5.2. Respiratory Wave 

In order to estimate the respiratory wave from data of a 
specific sensor (same to what we used for pulse wave), we 
performed the following steps independently for each 
sensor modality: 
(i) An averaging filter was applied to each of the

components. The window length was set to be the
duration of a respiration cycle at a maximum breathing
rate (45 breaths per minute in our case).

(ii) A band-pass Butterworth filter of order 4 with cut-off
frequencies of 0.13 and 0.75 Hz (corresponding to 8
and 45 breaths per minute) was applied to each
dimension.

(iii) Since different dimensions of the sensor reading
(e.g., X and Y axis of accelerometer) may change in
different directions depending on the body position,
we applied Principal Component Analysis to reduce
this influence. We then computed the Fast Fourier

Figure 2.  Example of an estimated pulse wave from 
gyroscope data (red) and the ground truth blood volume 

pulse signal (blue). Bottom graphs show the Fourier 
Spectrum of each signal. (FFT: Fourier Spectrum, 

GYR: Gyroscope, BVP: Blood Volume Pulse, HR: Heart 
Rate, bpms: beats per minute) 
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Figure 3.  Example of an estimated respiratory wave 
from accelerometer data (blue) and the ground truth 

respiration signal (red). Bottom graphs show the Fourier 
Spectrum of each signal. (FFT: Fourier Spectrum, 

ACL: accelerometer, RESP: Respiration from chest 
band, RR: respiration rate, bpms: breaths per minute) 
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Transform of each principal component and selected 
the most periodic signal, where periodicity of the 
signal was estimated by computing the maximum 
magnitude observed within the operational frequency 
range. 

Fig. 3 shows an example of respiratory wave frequency 
estimation from accelerometer data of a supine participant. 
As in Fig. 2, the two waves are closely aligned.  

5.3. Heart and Respiration Rates 

For each of the waves we extracted the heart rate and the 
respiration rate in the frequency domain. Given an 
estimated wave or ground truth signal, we extracted the 
frequency response with the Fast Fourier Transform and 
identified the frequency with the highest amplitude 
response. The band of frequencies used for the pulse and 
respiration rates are the same ones considered in the 
previous section (i.e., [0.75-2.5] Hz for heart rate and 
[0.13-0.75] Hz for respiration rate). The final estimated 
heart rate and respiration rate corresponded to the 
maximum frequency multiplied by 60 (beats per minute). 
Computing these parameters in the frequency domain 
instead of the time domain allowed us to 1) partially 
address the problem of missing peaks due to non-constant 
sampling rates of accelerometer and gyroscope, 2) deal 
with the non-linear phase responses of the Butterworth 
filter, and 3) avoid addressing the problem of peak 
detection. Future work will focus on ensuring more 
constant sampling rates and the development of more 
computationally efficient and robust-to-extraneous-
movement peak detection. 

  The bottom graphs of Figs. 2 and 3 show the Fourier 
Spectrum over the whole 20 second estimated (left) and 
reference (right) waves. As can been seen, the frequency 
responses for the two waves are closely aligned and their 
maximum frequency response is approximately the 
same: 1.1 Hz (corresponding to a heart rate of 62 beats per 
minute) for the pulse waves, and 0.41 Hz (corresponding to 
25 breaths per minute) for the respiratory waves.  

6. Results

Each of the 12 participants held three different positions 
under relaxed and aroused (after biking) conditions for a 
minute each. Therefore, we collected 72 1-minute 
segments of data. In order to increase the number of 
samples, we divided the data into intervals of 20 seconds 
with a 75% overlap, yielding 648 samples. In this section, 
we use the segmented data to compare performance across 
the three modalities and body postures. We then evaluate 
the benefit of combining the three modalities. Finally, we 
explore the effects of dividing the data into intervals of 
different durations.  

6.1. Comparison across Modalities 

To evaluate the utility of each sensor modality, we 
extracted heart rate and respiration rate from each of the 
samples and computed the same performance metrics used 
in Poh et al. [31]. Fig. 4 shows the Bland-Altman plots [3] 
for each physiological parameter using the different 
modalities. In particular, each graph shows the agreement 
of the 648 pairs of measurements color-coded by 
participant. The graphs also show the mean error and the 
95% limits of agreement (i.e., 1.96 standard deviations 
above and below the mean). As can be observed, most of 
the graphs have a significant concentration of points along 
the zero values of y-axis, illustrating a close agreement 
between the measurements. Tables 1 and 2 show a 
summary of quantitative metrics for heart rate and 
respiration rate, respectively, across all the 648 segments 
(72 minutes) of data computed from the 12 participants. 
We observe the same trend across three modalities for both 
heart rate and respiration rate: our estimation has a high 
accuracy in comparison to ground-truth, while the errors 
vary across different sensors. The small mean errors from 
different modalities provide strong evidence to the 
feasibility of our approach. When comparing the three 
sensors individually, the gyroscope yielded the best 
performance for both heart and respiration rates, achieving 
a mean absolute error of 0.82 beats per minute (STD: 1.98) 
and 1.39 breaths per minute (STD: 2.27), respectively. 
Notably, the accelerometer (upon which prior BCG work 
is based) was never the best performing modality for heart 
rate or respiration. While the camera modality 
outperformed the accelerometer for estimating respiration 
rate (achieving a ME of 1.55 breaths per minute), its 
performance for heart rate estimation was the worst 
(ME: 7.92 beats per minute).  

The process of extracting motion measurement from 
video is more complex and less direct than it is for the other 
two sensors. For instance, different factors such as the 
depth of the scene or the amount of feature points that can 
be tracked in the environment have a direct impact on the 
performance. Furthermore, the sampling rate of the camera 
was significantly lower than the other two sensors. 
Therefore, high frequency changes such as subtle head 
movements due to heart activity may not be as accurately 
captured as the low frequency movements associated with 
respiration. While these results still show that it’s possible 
to extract heart and respiratory information from the 
egocentric video of the wearer, future work will focus on 
performing a more systematic comparison across different 
factors, e.g. motion estimation method, depth of the scene 
and objects, amount of tracked points.  

6.2. Postural Changes 

Body posture mediates the intensity and quality of BCG 
movements. In this study, participants were measured from 
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three body postures: sitting, standing, and supine. Tables 3 
and 4 show the mean absolute error (beats and breaths per 
minute, respectively) for each of the different positions and 
sensors. When estimating heart rate, the most challenging 
position was sitting down, which is in accordance with the 
results described in [11]. The results obtained with the 
gyroscope in this study outperform the results of He et 

al. [11] for the sitting (ME: 1.27) and supine (ME: 0.84) 
conditions but not for the standing (ME: 0.72) position. 
However, the range of heart rates they observed in their 
study was considerably smaller (55 to 95 beats per minute) 
in comparison to the ones we elicited (56 to 133 beats per 
minute). The different results for the camera sensor may be 
due to a combination of several factors such as the 
influence of body posture, the accuracy of motion 
estimation as well as the relative pose of the camera with 

Figure 4.  Bland-Altman plots for heart (top) and respiration rates (bottom) using gyroscope (left), 
accelerometer (center), and camera (right). Each graph shows the agreement of 648 pairs of measurements. Data 
from different participants are represented with dots of different colors. Mean error is depicted with slashed red and 

95% limits are depicted with slashed green lines. (HR: Heart Rate, RR: Respiration Rate, GYR: Gyroscope, 
ACL: Accelerometer, RGB: Camera) 
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Table 1. Heart Rate Estimation 

Sensor ME STD RMSE CC 

Gyroscope 0.82 1.98 2.14 0.99 
Accelerometer 2.51 7.03 7.46 0.91 
Camera 7.92 13.4 15.56 0.58 
All 1.19 3.42 3.62 0.98 
  

Table 2. Respiration Rate Estimation 

Sensor ME STD RMSE CC 

Gyroscope 1.39 2.27 2.66 0.75 
Accelerometer 2.29 3.43 4.12 0.41 
Camera 1.55 2.59 3.02 0.69 
All 1.16 2.04 2.35 0.79 
  

ME = Mean absolute error (beats/breaths per minute) 
STD = Standard deviation of the absolute error 

RMSE = Root mean squared error 
CC = Pearson’s correlation coefficient 

Table 3. Mean Absolute Error of Heart Rate 

Sensor Sitting Standing Supine 

Gyroscope 1.18 0.85 0.44 
Accelerometer 3.30 2.18 2.06 
Camera 4.51 10.17 9.10 
All 1.48 1.17 0.92 
 

Table 4. Mean Absolute Error of Respiration Rate 

Sensor Sitting Standing Supine 

Gyroscope 1.13 1.97 1.06 
Accelerometer 1.87 3.17 1.82 
Camera 1.32 1.89 1.45 
All 0.94 1.77 0.77 
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respect to the wearer’s head. When estimating respiration 
rate, the most challenging position was standing up for all 
the modalities. Apparently, respiratory movements have 
less influence on head motion while standing. Overall, 
even the most challenging posture positions yielded low 
error for the best-performing modality.  

6.3. Combination of Modalities 

Differences in performance across modalities are partly 
due to the different types of information being captured by 
each of the sensors. For instance, while the accelerometer 
data captures linear accelerations, the gyroscope captures 
rotations of the device. Furthermore, while some of the 
sensors may be affected by sampling rate artifacts 
(e.g., accelerometer and gyroscope), other sensors may 
provide more constant sampling rates but less accurate 
information (e.g., camera). Therefore, a combination of 
different modalities may help to provide more reliable 
estimates at the cost of computational complexity. To 
explore this idea, we extracted the heart/respiration rates of 
each modality separately and computed the median as the 
final estimate. The bottom rows of Tables 1 and 2 show the 
results using this late fusion technique. While the heart rate 
estimation using the gyroscope was still better than the one 
obtained combining all the modalities, the respiration rate 
estimation with all three modalities yielded better results 
than with any of the other modalities alone (reducing the 
ME to 1.16 breaths per minute, STD 2.04). Although not 
explored in this work, we expect larger improvements by 
combining physiological signals in less controlled settings 
where different modalities might provide complementary 
information about motion.  

6.4. Observation Windows 

While combining several sensors may partially address the 
problem of motion artifacts, an underlying assumption of 
the proposed methods and evaluation is that the person is 

holding a motion-less position for the majority of a certain 
observation window (20 seconds for the previous results). 
However, being able to remain still for large periods of 
times during daily life may not be always possible and 
shorter and more available observation windows may be 
preferred. In order to explore the performance of our 
methods for different lengths of observation windows, we 
split the collected data into segments of different durations 
following the same criteria described above and assessed 
their performance. Fig. 5 shows the number of samples 
obtained for each of the observation windows (left), and the 
absolute mean error of the different approaches to estimate 
heart rate (center) and respiration rate (right). As can be 
seen, heart rate can be computed with a ME of 4 beats per 
minute with an observation window of only 5 seconds from 
gyroscope. This error goes below 2 beats per minute for 
observation windows equal or larger than 10 seconds, 
reaching its minimum at 25 seconds. The decrease of 
performance with smaller windows is expected due to 
several factors. When computing heart and respiration 
rates, especially in the frequency domain, longer 
observation windows are preferred to provide more 
accurate estimates. Moreover, different body locations 
reflect physiological changes at different times which can 
negatively bias our estimates.  

Although we expected ME would always decrease with 
longer observation windows, there was a subtle rebound 
effect for windows above 30 seconds for the accelerometer 
and gyroscope data. Visual inspection suggested that this 
rebound was due to missing beats due to the non-uniform 
sampling rates of these two sensors, which became more 
significant when reducing the amount of samples. This 
effect was not observed when estimating respiration rate, 
where larger observation windows always improved 
performance. This finding is in accordance with the 
previous observation as breathing rate operates in a lower 
frequency range and the non-uniform sampling rate did not 
negatively affect the signal. Using the longest observation 
window (60 seconds) and a combination of all the sensors, 
the ME was reduced to 0.6 breaths per minute (STD: 1.19). 

Figure 5.  Mean absolute error for heart (beats per minute) and respiration rates (breaths per minute) when 
considering different window sizes. (ACL: Accelerometer, GYR: Gyroscope, RGB: Camera) 
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Note that the fusion of the three modalities performs 
more or less the same as the best modality when estimating 
the heart rate, and consistently leads to slightly better 
results than the individual modalities when estimating 
respiration rate. These results are promising for real-life 
monitoring where the head of the person is more likely to 
remain still for shorter periods of time than longer ones. In 
practice, the duration of the observation window and the 
accuracy is a trade-off that needs to be carefully chosen 
when deciding on a specific population and/or application. 
For instance, children may have more problems to remain 
still than adults and shorter and less accurate windows may 
be preferred. However, longer and more accurate readings 
may be more accessible and adequate in certain scenarios 
such as sleeping or practicing meditation.  

7. Discussion

The previous sections have shown that it is possible to 
capture physiological parameters from acceleration, 
gyroscope and camera. The results from different 
modalities are consistent and the mean absolute errors are 
small, which further justify our methods. Furthermore, 
some of our results were improved by combining several 
modalities and changing the observation windows. While 
we expect the combination of sensors will yield improved 
assessments of physiological parameters during daily life, 
there are critical differences among sensors that need to be 
considered.  

Both accelerometer and gyroscope require considerably 
less energy than the camera and, therefore, allow for longer 
periods of monitoring without charging the batteries. With 
the current version of device, we were able to continuously 
record gyroscope and accelerometer data for around 
8 hours with an average sampling rate of 50 Hz. These two 
sensors directly capture complementary aspects of the 
wearer’s head motion. For instance, while driving a car, the 
accelerometer readings may be influenced by external 
forces such as changes of speed; however, the gyroscope 
will provide cleaner signals associated with the rotation of 
the head of the driver. In this specific case, the 
accelerometer and the gyroscope can provide meaningful 
information about both the context and the physiology.  

The camera requires significantly more energy 
(the current battery lasts approximately 20 minutes of 
continuous monitoring), but also provides some critical 
benefits. The location of the camera of the head-mounted 
device in this work is located above the right eye 
(see Fig. 1). This setup offers the opportunity of capturing 
the environment from the wearer’s perspective. This 
information is useful not only to extract physiological 
parameters as demonstrated in this work, but also to 
capture rich contextual information that helps infer the 
sources of physiological responses. For instance, a person 
exercising at the gym and a person giving a public 
presentation may show similar increases in heart and 

respiration rates. However, the same arousal of 
physiological signals is due to different reasons (physical 
stress vs. affective-cognitive stress). The visual context in 
these cases, therefore, plays a critical role to interpret the 
physiological signals. Furthermore, linking physiological 
information with visual imagery can be useful in a wide 
variety of applications such as catalyzing 
introspection [15], augmenting human memory [17], and 
improving social communication [23]. 

One of the main challenges when estimating 
physiological parameters from motion in real-life scenarios 
is the presence of large ego-motion due to physical activity. 
Daily activities such as walking or speaking with other 
people involve large body movements that might occlude 
the subtle heart and respiratory motions. Although this 
study did not directly address this issue, we evaluate our 
methods for a large range of observation windows. For 
instance, with only a 5-second observation we were able to 
provide estimates of heart rate with a ME of 4 beats per 
minute with gyroscope. This observation window is 
significantly smaller than windows reported on similar 
studies (e.g., >70 sec. in [2], >20 sec. in [11], 30 sec. 
in [30]). An important area of research is to understand how 
often these observation windows are accessible during 
daily life activity. In a relevant study, Rienzo et al. [33] 
monitored sternal seismocardiogram of 5 participants 
during 24 hours and found that there were more than 100 
5-second segments per hour with good quality acceleration
data during the day and three times higher during the night.
These numbers were quickly reduced with longer
observation windows. These results are promising for non-
intrusive physiological assessments. However, the location
and types of sensors of this study are different, and can
have an impact on the statistics. Future research will assess
the availability of good quality data from participants
wearing a head-mounted device during daily life activity.

8. Conclusions

In this work we have explored the possibility of using 
different motion-sensitive sensors of a head-mounted 
wearable device to extract physiological parameters of the 
wearer. In particular, this work has 1) proposed real-time 
algorithms to process head-mounted motion-sensitive 
sensors, 2) provided validation of heart and respiration rate 
estimation with FDA-cleared sensors in a controlled 
laboratory setting, and 3) quantitatively compared sensor 
modalities, body postures, and observation windows.  

Among the three motion-sensitive sensors we 
considered, we have shown that the gyroscope 
outperformed the other sensors, including the 
accelerometer upon which prior BCG measurements are 
mostly based (e.g., [7][11][20][29][33]). We believe this 
improvement is partly due to the above-eye location of the 
sensor and its capability to capture amplified rotational 
movements of BCG. Moreover, we have demonstrated that 
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analyzing the ego-centric view of head-mounted camera is 
a novel and promising method to harvest physiological 
information of the wearer, with the benefit of also 
providing insightful visual context. Finally, as each of the 
modalities captures different aspects of motion, their 
combination offers the opportunity to improve overall 
performance. For instance, this work has demonstrated 
preliminary improvements in the estimation of respiration 
rates when combining the estimations of the three 
modalities.  

Future efforts will consider evaluating other modalities 
and developing novel methods to combine them depending 
on contextual information such as body postures or 
activities. We have also started to work on more 
sophisticated methods that can handle large motions 
associated with daily activities, which is fundamental to 
apply the proposed methods in real world settings. In the 
future, we will also be analyzing other relevant 
physiological parameters such as heart rate variability 
(e.g., [4]) as it has been shown to be associated with 
cognitive load [26] and stress [16][25]. The key to this 
parameter is to obtain highly accurate timing of the 
heartbeats and, therefore, uniform sampling rates and 
filters without phase delays will be explored.   

In summary, this work has shown a new capability to 
provide accurate real-time heart-rate and respiration 
measures from motion-sensitive sensors available in 
today’s head-mounted wearable Google Glass. With the 
continuous technological improvements and commercial 
reach of new devices, we expect our results will help 
facilitate non-intrusive access of meaningful physiological 
information during daily activity. We are looking towards 
a future where this type of information is more accessible 
and is used to enhance the delivery of primary health care 
and the monitoring of chronic conditions. 
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