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ABSTRACT
The experimental study of distributed systems and algo-
rithms for large-scale internet platforms typically requires
simulation of compute and network resources. This paper fo-
cuses on network simulation issues. While many packet-level
network simulators are available and enable high-accuracy
simulation, they can lead to prohibitively long simulation
times. Consequently, a number of simulation frameworks
have been developed that simulate networks at higher levels,
thus enabling fast simulation but losing accuracy. One such
framework, SimGrid, uses a flow-level approach that ap-
proximates the behavior of TCP networks, including TCP’s
bandwidth sharing properties.

In this paper we perform a quantitative evaluation of Sim-

Grid and compare it to popular packet-level simulators. We
identify the regimes in which SimGrid’s accuracy is com-
parable to that of these packet-level simulators, and the
regimes in which SimGrid’s accuracy may not be acceptable.
We then describe an integration of the GTNetS packet-level
simulator and SimGrid, which allows SimGrid users to eas-
ily opt either for fast but potentially inaccurate flow-level
simulation or for accurate but potentially prohibitively slow
packet-level simulation.

Categories and Subject Descriptors
I.6.4 [Model Validation and Analysis]: Network Simula-
tion; I.6.7 [Simulation Support System]: SimGrid, ns-2,
SSFNet, GTNetS

General Terms
Experimentation, Measurement, Performance
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1. INTRODUCTION
Large-scale distributed systems, that is, systems that con-

sist of hundreds to tens of thousands of hosts on wide-area
networks, have become feasible due to improvements in net-
working and middleware technology. These systems provide
tremendous opportunity in many domains and have already
been deployed for particular applications. Example appli-
cations include distributed file sharing on peer-to-peer net-
works, distributed volunteer computing using idle cycles of
home or office computers, deployment of grid platforms to
support collaborative e-Science applications, and distributed
gaming. In spite of these successful deployments, many re-
search challenges remain for achieving higher levels of scal-
ability, efficiency, and resilience in a view to better support
current applications as well as to enable future ones. These
challenges boil down to the development of better systems
(e.g., better overlay topologies for peer-to-peer systems, bet-
ter resource management architectures in grid platforms)
and of better algorithms (e.g., more advanced search al-
gorithms in peer-to-peer networks, better scheduling algo-
rithms for e-Science applications).

To investigate the relative merit of competing designs for
the aforementioned systems and/or algorithms, one must
conduct experiments. Indeed, the systems are often so com-
plex and the algorithms so often relying on heuristics, that
analytical comparisons are at best possible only with very
stringent and ultimately unrealistic assumptions. An ap-
proach to obtain valid experimental results is to conduct
experiments on production platforms, or at least on large
testbeds. Unfortunately, this approach often proves infeasi-
ble. Real-world platforms may not be available for experi-
mentation purposes so as not to disrupt production usage.
Experiments are often non-repeatable due to resource dy-
namics (e.g., time-varying and non-deterministic network
usage, unpredictable host failures). Even if a stable plat-
form is available, experiments can only be conducted for the
platform configuration at hand, which may be not sufficient
to gain all necessary insight in the relative effectiveness of
various distributed system or algorithm designs. Finally, ex-
periments on real-world platforms may be prohibitively time
consuming especially if large numbers of experiments are
needed to explore many scenarios with reasonable statisti-
cal significance. Given all these difficulties, while researchers
strive to obtain experimental results in real-world systems,
the majority of published results are obtained in simulation.

Simulating a large-scale distributed system and its accom-
panying distributed algorithm(s) entails the simulation of



both compute and network resources. In this work we focus
mostly on the network simulation component. The network
community has employed simulation for many years in order
to study network protocols. The standard approach is to use
packet-level network simulators that use event-driven simu-
lation of individual packets going from end-point to end-
point via network links and routers. While these simulators
make it possible to prototype and study new network proto-
cols, they typically also provide full implementations of ex-
isting protocols such as TCP or UDP. Therefore, these simu-
lators are usable for practical distributed systems simulation
purposes. For instance, the work in [10] builds a simulator of
the Gnutella peer-to-peer network based on the well-known
ns-2 [22] packet-level simulator. It is widely acknowledged
that packet-level simulators lead to accurate simulation re-
sults because they capture virtually all aspects of underlying
network protocols.

The main problem with packet-level simulation is that
simulation speed is low, with simulation times possibly or-
ders of magnitude larger than simulated times. Expectedly,
simulation time increases with the number of packets to sim-
ulate [15]. For some simulation domains, the number of
packets is not large and thus does not lead to prohibitively
long simulation times. For instance, many simulations of
peer-to-peer networks consist in simulating overlay network
routing protocols by which peers exchange short messages
that consist of only a few packets. Therefore, in spite of large
numbers of end-points and of routers, packet-level simula-
tion leads to acceptable execution times. Unfortunately, this
is not true in all domains. For instance, consider the work
in [30] that studies data caching and replication schemes for
e-Science applications in grid platforms. The authors ran 72
simulation experiments to explore scenarios in which data
files between 500MB and 2GB are communicated among 30
sites on an internet overlay network for 6000 jobs requir-
ing data. For such simulations, which we term grid simula-
tions for lack of a better term, using a packet-level approach
would require a prohibitive amount of time due to the enor-
mous number of individual packets. As a result, the authors
in [30] developed their own ad-hoc simulator, which does not
attempt to model TCP behavior although their work ulti-
mately targets TCP networks. For their particular simula-
tions the use of this ad-hoc simulator is justifiable because
their overlay network topology is hierarchical, is congruent
to the hierarchy of the physical network, and flows sharing
links and routers are between the same endpoints. However,
their simulator is not applicable if one hopes to capture the
behavior of a TCP network in general.

As seen in the discussion above, there is a clear need for
network simulation technology that is orders of magnitude
faster than packet-level simulation and that captures the
behavior of real networks well. In this work we focus on
TCP networks. The alternative to packet-level simulation,
which we term flow-level simulation, consists in reasoning
directly about TCP flows and in computing their through-
puts within a theoretical framework. Flow-level simulation
is orders of magnitude faster than packet-level simulation.
Unfortunately it makes several simplifying assumptions that
do not hold in real networks (e.g., ignoring TCP slow-start),
therefore reducing accuracy.

A simulation tool, SimGrid [13], has gained prominence
in the community of researchers that study distributed sys-
tems and algorithms in the broad area of grid computing.

Part of its acceptance by an increasing number of users stems
from its fast simulation capability. Indeed, due to its use of
a flow-level network simulation approach, SimGrid makes
it possible to perform large numbers of statistically signif-
icant experiments even on large TCP networks. A crucial
question is whether the accuracy of SimGrid network simu-
lations is“reasonable”when compared to that of packet-level
simulations. To answer this question we make the following
contributions in this paper:

1. We perform a qualitative and quantitative evaluation
of the flow-level network simulation component of Sim-

Grid by comparing it to packet-level simulators;

2. We identify the regimes in which the accuracy of the
flow-level approach is significantly worse than that of
the packet-level approach; and

3. We enhance the SimGrid tool by integrating it with
the GTNetS packet-level simulator [29] so that users
can opt for either packet-level or flow-level simulation
seamlessly.

This paper is organized as follows. In Section 2 we dis-
cuss related work and further motivate our work. Section 3
presents the results of our evaluation. Section 4 describes
our integration of SimGrid and GTNetS. Finally, Section 5
concludes the paper with a discussion of future directions.

2. RELATED WORK
In this section we briefly review existing packet-level sim-

ulators, endeavors to improve the speed of packet-level sim-
ulation, and non-packet-level simulators used by researchers
in the area of grid computing. We then give some details
about network simulation in the SimGrid simulator as it
is the target of our evaluation. Finally we review works
that, like ours, have compared accuracy of packet-level and
flow-level simulation, including works that have attempted
to combine the two approaches.

2.1 Packet-level Simulation
Packet-level simulators use discrete-event simulation by

which a flow over a network path can be represented as a
sequence of events, such as packet arrivals and departures
at end-points and routers. End-points and routers both im-
plement full-fledge network protocols. Simulation time typ-
ically increases in proportion to the number of events [15].
Popular such simulators include ns-2 [22], GTNetS [29], and
SSFNet [6]. As mentioned in Section 1, the main problem
with these simulators is that simulation time can be orders
of magnitude larger than simulated time for simulations that
involve realistic topologies with many flows. For instance,
using GTNetS, which is known for good scalability, simulat-
ing 200 flows each transferring 100MB between two random
end-points in a random 200-node topology for 125 sec of sim-
ulated time takes approximately 1500 sec on a 3.2GHz Xeon
processor. While this is acceptable for researchers study-
ing network protocols, it is prohibitive for many researchers
studying distributed systems and algorithms on large-scale
platforms for application that are long-running and/or that
involve large amounts of communication. This problem is
often compounded by the need to rely on results from over
thousands of simulation experiments to compute valid statis-
tics regarding the relative effectiveness of competing algo-
rithms (see for instance the scheduling study in [23], which



uses over one million simulation experiments, with each ex-
periments requiring over 1,000 sec of simulated time).

Several researchers have attempted to increase the speed
of packet-level simulations. For instance, in [16] the au-
thors developed the MaSSF framework, which combines the
DaSSF packet-level simulator [5] with message passing [33]
to accelerate and increase the scalability of network simu-
lation by running in parallel on large clusters of worksta-
tions. MaSSF is the main component of the MicroGrid [34]
tool for simulating Grid platforms and applications. Others
have proposed emulation techniques by which traffic flows on
physical devices, introducing delay, bandwidth and packet
loss characteristics of the network to be simulated. A well-
known example of such work is ModelNet [38].

While the above works do increase the speed and scalabil-
ity of packet-level simulation without compromising simula-
tion accuracy, many users performing grid simulations need
simulations orders of magnitude faster. In the face of such
requirements, simulators that relax the notion of a packet
were developed. For instance, the Bricks simulator [36] uses
ideal queuing networks to simulate real networks. While the
user can specify a packet size in this simulator, Bricks pack-
ets do not correspond to real network packets and Bricks
does not implement real network protocols. Large packets
lead to fast simulation but obviously low accuracy (in the ex-
treme, multi-path network communications use a store-and-
forward approach with no pipelining across network links).
Although lower packet size leads to behavior presumably
qualitatively closer to that of real networks, nothing in this
simulator ensure that the behavior is quantitatively close to
that of, for instance, TCP. Another simulator, GridSim [35]
implements a protocol that includes some elements of UDP
and allows for variable packet size. Like Bricks, GridSim re-
quires small packet size to hope to gain accuracy close to that
of true packet-level simulators on realistic network topolo-
gies, but then suffers from high simulation costs. Many other
“grid” simulators exist, such as OptorSim [2], GangSim [7],
Neko [25], or HyperSim [27] (see [28] for a survey). All imple-
ment some network model, but to the best of our knowledge
(i.e., based on publications and/or on inspection of source
codes), these simulators either use packet-level simulation
or do not attempt to implement a model that realistically
tracks the behavior of TCP networks.

2.2 Flow-level Simulation
To increase the speed of network simulation one approach

is to use theoretical models to compute the throughput of
each flow in a network topology at a given time. Models
have been proposed [26, 19, 24] that model the throughput
of a TCP flow as a function of packet loss and round trip
delay, as well as some parameters of the network and of the
TCP protocol. Unfortunately, some of these parameters are
difficult to measure and/or instantiate for the purpose of
grid simulations. Furthermore, it is not clear how the model
can be applied to arbitrary network topologies with many
simulated flows competing for network resources. Instead,
one desires reasonable models that capture the bandwidth
sharing behavior induced by TCP among flows on arbitrary
topologies and that are defined by a few simple parameters,
namely link physical bandwidths and TCP congestion win-
dow size. This notion of macroscopic models of bandwidth
sharing is challenging [18]. A key question is: which type of
“fairness”does TCP implement when flows share bandwidth

on bottleneck links? The first widely recognized model is
the simple Max-Min fairness model [1], which computes a
bandwidth allocation in which increasing the allocation of
a flow would require decreasing the allocation of another.
However, it is well-known that TCP does not implement
Max-Min fairness, as shown for instance by Chiu [4]. In-
deed, the analytical models for TCP throughput in [8, 26]
approximate the throughput, B(p), to

B(p) =
c

RTT
√

p
,

where p is the fraction of packets lost, RTT is the round-
trip time (RTT), and c is some constant, provided that p
is not “too high”. Assuming that all flows experience the
same loss rate, p, this formula suggests that bandwidth is
in fact shared in inverse proportion to the RTT. This thus
suggests a Max-Min scheme that is modified to account for
flow RTTs.

Based on the above considerations, the designer of the
SimGrid simulation tool [13, 32], have opted for a RTT-
aware Max-Min flow-level model. (See Section 5 for a dis-
cussion of other promising models of fairness, such as pro-
portional fairness.) In this model, the bandwidths allocated
to flows competing over a bottleneck link is inversely propor-
tional to the flows’ RTTs. (A link is defined as a bottleneck
if the sum of the bandwidths allocated to the flows over this
link is equal to the total bandwidth of the link.) We refer the
reader to [3] for full details on the model and for initial val-
idation results via which this particular model was selected
among several alternatives. The model is instantiated solely
based on network link physical characteristics (latencies and
bandwidths) and on the size of the TCP congestion window
size. As a result, SimGrid is, to the best of our knowledge,
the first simulation framework designed for the study of dis-
tributed systems and algorithms for large-scale platforms
that uses a flow-level network simulation approach that at-
tempts to capture the true behavior of TCP networks and
that decreases simulation costs by orders of magnitude when
compared to packet-level simulation.

2.3 Flow-level Simulation Accuracy
Although SimGrid has garnered a sizeable user base, its

flow-level network simulation scheme has several limitations.
It does not capture the slow-start feature of TCP and in-
stead assumes that flows are backlogged and in steady state.
Also, it assumes that the RTT of each flow is constant and
is equal to twice the sum of the link latencies on the flow’s
network path. And of course, the model cannot account for
any detail pertaining to the behavior of individual packets.
Therefore, one may wonder how accurate the network sim-
ulation in SimGrid is. For instance, the simulation of short
TCP flows should incur large inaccuracies since slow-start
is not accounted for. In this paper we quantify such inac-
curacy and identify the regimes in which simulation results
deviate significantly from those of packet-level simulation.

Other works present quantitative comparisons between
packet-level non packet-level simulation approaches, and are
therefore related to this work. Liu et al. [15] evaluated the
relative performance of a sophisticated fluid-based simula-
tion scheme over packet-level simulation. Their results show
that fluid models usually outperform packet-level simula-
tors. However, when flows compete for resources, which
increases computation, fluid models may be less efficient



than packet-level simulation. Nicol et al. [21] also stud-
ied the performance/accuracy trade-offs between fluid mod-
els and packet-level simulation. Their results showed that
the relative error of fluid simulation is very small compared
to the results of packet-level simulation. Nevertheless, the
cost of their fluid simulation would be prohibitive if applied
for simulating long-running large-scale distributed applica-
tions, such as the ones studied by SimGrid users. Schwefel
et al. [31] compared three different analytical TCP mod-
els and their results showed that all of the analytical mod-
els have deficiencies in some scenarios for which their as-
sumptions are violated. The analytical TCP models in their
study were instantiated using parameters such as loss rate,
which were themselves determined through simulation ex-
periments. The network model used in SimGrid is simpler
than these models as it uses fewer parameters, which makes
it straightforward for users to instantiate but also mandates
our study of its accuracy.

Finally, in [12] Kim combines packet-level with so-called
network calculus simulation. He achieves accuracy within a
few percents of packet-level simulation with an increase in
simulation speed up to a factor 20. While a factor 20 is im-
pressive, SimGrid achieves factors up to 4 orders of magni-
tude. For instance, for the same 200-node topology example
as in Section 2.1, while the GTNetS simulation takes approx-
imately 1500 sec SimGrid performs the same simulation in
approximately 0.5 sec. Such speed is key to SimGrid’s ac-
ceptance by many of its users. Nevertheless, it could be in-
teresting for SimGrid to use the network calculus approach
proposed in [12]. Later in this paper we describe how we in-
tegrate GTNetS and SimGrid to give users the opportunity
to easily opt for either packet-level or flow-level approaches
at the onset of the simulation. An integration with the net-
work calculus approach in [12] would provide users with yet
another option for trading off simulation speed and simula-
tion accuracy.

3. EXPERIMENTAL EVALUATION
In this section we present experimental results quantify-

ing network simulation speed and accuracy for SimGrid and
three packet-level simulators: ns-2 [22], SSFNet [6], and GT-
NetS [29]. All simulators are configured to use the same
TCP window size (20KB by default in our experiments).
We ran experiments with TCP window sizes of 10K and 30K
but we obtained similar results with all three. TCP Reno is
used as the TCP model (without the use of a delayed ack
algorithm, which is the default behavior for ns-2 and GT-
NetS). In all our experiments we ignored receiver window
limitations, and the communications are backlogged.

We performed three types of experiments:

1. Experiments with one or more flows on one-link topolo-
gies;

2. Experiments with two flows on classical 5-link topolo-
gies; and

3. Experiments with multiple flows on random topologies.

We summarize key results in the following three sections,
and we refer to the Master’s thesis of the first author for full
details [9].

3.1 One-Link Topology

Figure 1: One-link topology with a single TCP flow.
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Figure 2: Single flow throughput as a function of
link latency (α) and bandwidth (β), for a transferred
data size S = 100MB. The mesh shows the through-
put computed by the SimGrid model. Squares (2)
show the throughput simulated by GTNetS; Circles
(©) by ns-2; and Crosses (×) by SSFNet. Many data
points are identical and thus overlapped.

Our first set of experiments is for a single TCP flow on
the topology depicted in Figure 1. The TCP sender (the
“source”) sends S bytes of data to the receiver (the “sink”)
over a single link with latency α and bandwidth β. For each
simulator we compute the flow’s throughput, that is, the
ratio of S to the time for the flow to complete. Figure 2
shows a 3D plot of the throughput (z axis) as a function
of α and β, for S=100MB. The mesh is the throughput
obtained by SimGrid. It turns out that in this case SimGrid

computes the throughput analytically as:

Throughput =
S

α + S/ min(β, W

2α
)
, (1)

where W is the TCP congestion window size. This formula
is simply the ratio of the data size to the transfer time. The
transfer time is equal to the latency plus the data size di-
vided by the effective bandwidth. The effective bandwidth,
min(β, W/(2α)) is bounded above by the physical band-
width and by the TCP window size divided by the RTT.
The data points on the mesh correspond to the throughput
simulated by the three packet-level simulators. We see on
the figure that the throughputs computed by SimGrid are
very close to those simulated by the packet-level simulators,
with relative differences between them under 1%.

While the results shown in Figure 2 indicate that SimGrid

achieves accuracy comparable to the packet-level simulators,
these results are for a data size of 100MB. As mentioned in
Section 2.3, the network model in SimGrid assumes that
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Figure 3: Throughput versus data size as simulated
by SimGrid, ns-2, GTNetS, and SSFNet, for α =
10ms and β = 100MB/sec.

TCP flows are in steady-state so that the impact of the
TCP slow-start mechanism is negligible. This assumption is
realistic for large data sizes, but breaks down for small data
sizes. Figure 3 plots the throughput versus the data size for
all simulators. The plot is for two particular values of α and
β, but similar plots were obtained for other values of these
two parameters. We see that, indeed, for small data sizes
the throughput by the SimGrid simulation is much higher
(e.g., a factor 5) than those by the packet-level simulations.
When data size is larger than 10MB, the relative difference
between the throughputs becomes lower than 1%. Note that
although the packet-level simulators lead to similar results,
they are not in perfect agreement.

Another interesting result, not shown in the figure, is that
if β ≤ W

2α
, meaning that the minimum in Eq. 1 is equal to

β, the relative difference between the throughput achieved
by SimGrid and that of the packet-level simulators is a few
percent (∼ 5%), even for large data sizes. This corresponds
to cases when the throughput is bounded by the link’s physi-
cal bandwidth. When the throughput is instead bounded by
latency, that is, when W

2α
≤ β, as is the case for the results

shown in Figure 3, then this relative difference is equal to
zero. This is consistent with the results in the next section.

Finally, when adding multiple flows on the link results
remain essentially unchanged in terms of the relative differ-
ence between SimGrid and the packet-level simulators. In
the following two sections, to avoid clutter, we omit results
obtained with ns-2 and SSFNet. From now on we term the
relative difference between throughputs computed by Sim-

Grid and those simulated by GTNetS the relative error of
SimGrid, assuming for the sake of discussion that GTNetS
results are perfectly realistic. We also limit results to data
sizes of 100MB to isolate other sources of discrepancy be-
tween SimGrid and SSFNet from the TCP slow-start issue
discussed above. (Recall that full results are available in [9].)

3.2 Dumbbell Topology
In this section we present results for two TCP flows, A

and B, on a dumbbell topology defined by two parameters,

Figure 4: Dumbbell topology with two TCP flows,
A and B. All bandwidths and latencies are fixed,
but for β, the bandwidth of the middle link, and for
α, the latency of the bottom right link.

α and β, as depicted in Figure 4. This topology, which is
sometimes referred to as a ”dogbone”, is used in many TCP
studies to evaluate the basic bandwidth sharing behavior of
flows that share a bottleneck link [14].

Figure 5 shows the throughputs for flow A and flow B,
as computed by SimGrid and simulated by GTNetS, ver-
sus α, for β = 100MB/sec and a transferred data size of
100MB. We can see in the figure that both SimGrid and
GTNetS are in perfect agreement. Figure 6 shows the same
results for β = 100KB/sec, which corresponds to the case in
which the throughput is bounded by the physical bandwidth
β rather than by W

2α
. As discussed for the one-link topology

in Section 3.1 we observe a discrepancy between SimGrid

and GTNetS. However, both simulators follow similar trends
(e.g., the flow with the larger RTT achieves a lower through-
put than the flow with the lower RTT).

3.3 Random Topology
Our previous two sets of experiments have highlighted ex-

pected flaws of flow-level simulations, namely that they do
not account for TCP slow-start, as well as the lack of ac-
curacy in the case of throughput limited by physical band-
widths rather than by latencies. While this is interesting,
it is difficult to envision what the impact would be for the
simulation of an application over many hosts in a multi-
router network topology with many TCP flows. To quantify
this impact we perform the following experiments. We gen-
erate random but representative internet topologies using
the BRITE [20] topology generator. We then generate flows
between random pairs of end-points in the topology, which
all start simultaneously and communicate 100MB of data.
We then measure the transfer time and thus the achieved
throughput for each flow. We repeated each experiment 10
times, but only show data for individual experiments here
(it turns out that results are essentially unchanged across
repetitions).

Figure 7 shows the SimGrid relative error for three ex-
periments with 200 flows. Negative (resp. positive) values
mean that SimGrid computes throughputs that are lower
(resp. higher) than those obtained with GTNetS. In the
case of a 200-node topology and high bandwidths (the top
plot), we see that for 90% of the flows SimGrid achieves rel-
ative errors under 10%. The middle plot shows that these
errors increase when the bandwidths decrease (70% of flows
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Figure 5: Throughput for SimGrid and GTNetS
versus latency, α, with β=100MB/sec, S = 100MB,
for the dumbbell topology, which corresponds to a
latency-bound scenario. The upper panel shows the
throughput for flow A and the lower panel for flow
B.
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Figure 7: SimGrid’s relative error for 200 flows on
random topologies, where flows are shown on the
x axis, sorted by increasing error. The upper plot
shows the error for an experiment with Nn = 200
nodes and high bandwidths between 100MB/sec and
128MB/sec. The plot below it shows the error for
an experiments in which bandwidths are lower, be-
tween 10MB/sec and 128MB/sec. The bottom plot
shows the error for an experiment with the lower
bandwidths but for a topology with Nn = 50 nodes.
The horizontal dash lines correspond to relative er-
rors between −10% and +10%, and between −50%
and +50%.
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Figure 8: Distribution of the relative error between
SimGrid and GTNetS, averaged over all flows, ver-
sus η, into three categories: lower than −1%, be-
tween −1% and +1%, and above +1%.

have relative errors below 10%). The bottom plot shows
that these errors increase further (50% of flows have rela-
tive errors below 10%) when the number of nodes decreases.
From theses results and others like them we hypothesized
that the relative error between SimGrid and GTNetS in-
creases as network contention increases.

To validate this hypothesis further, we present the results
in another fashion. We define η as the minimum ratio be-
tween the physical bandwidth of a link and the number of
flows that use that link, over all links in the topology. η
thus quantifies network contention, with high values cor-
responding to high bandwidths and/or few flows, and low
values corresponding to low bandwidths and/or many flows.
Figure 8 presents the distribution of relative errors in three
categories: within 1%, below −1%, and above 1%, versus η.
We see that, indeed, as network contention decreases, that
is, as η increases, the fraction of flows whose relative error is
between −1% and +1% increases. We refer the reader to [9]
for other results that further confirm our hypothesis.

While our results so far have focused on highlighting sce-
narios in which SimGrid leads to reduced accuracy when
compared to GTNetS, a compelling advantage of SimGrid

is high simulation speed. Table 1 shows that, even for our
modest 200-node topology and for TCP flows that trans-
fer only 100MB of data, SimGrid achieves simulation speed
higher than GTNetS by factors 3,000 and above. This corre-
sponds to a major shift from packet-level simulation, whose
simulation time is orders of magnitude larger than simu-
lated time, to flow-level simulation, whose simulation time
is orders of magnitude lower than simulated time. Note that
SimGrid simulations can become arbitrarily faster than GT-
NetS simulations when amounts of transferred data become
arbitrarily large.

4. SIMGRID/GTNetS INTEGRATION
The results in the previous section illuminate the trade-off

between simulation accuracy and speed for packet-level and
flow-level network simulation. For instance, when simulat-



Table 1: Simulated time, simulation time, and their ratios observed with GTNetS and SimGrid for a 200-
node random topology with various numbers of flows that transfer 100MB of data. The measurements are
repeated ten times, and the average is taken. Results are obtained on a 3.2GHz Xeon processor.

GTNetS SimGrid

simulated simulation ratio simulated simulation ratio
# of flows time time time time

(sec) (sec) (sec) (sec)
10 70.31 65.34 0.92 72.72 0.00176 0.00002
25 87.77 163.10 1.86 80.67 0.00836 0.00010
50 93.73 364.67 3.89 98.44 0.02839 0.00029
100 93.19 753.42 8.08 97.21 0.13810 0.00142
200 124.10 1562.90 12.59 134.06 0.53833 0.00402

ing an application in which flows transfer more than 10MB
of data and in which links are not too heavily contended,
then using SimGrid is most likely acceptable in terms of
accuracy and is orders of magnitude faster (this is the case
for many grid simulations). However, for an application in
which flows exchange small amounts of data, then packet-
level simulation is needed for its accuracy (this is likely the
case for many peer-to-peer simulations). In order to enable
the use of SimGrid for both usages, we integrate GTNetS
as part of SimGrid. Note that our work enables SimGrid

users to opt for either packet-level or flow-level network sim-
ulation but not a combination of both. Indeed, the latter
raises many difficult challenges and is outside the scope of
this work. Details of our implementation are available in [9]
and we focus here on key technical aspects.

The main challenge for the integration is that SimGrid

simulates both computations and communications. Sim-

Grid, like GTNetS, is event-driven and thus must repeat-
edly determine the next event in this simulation. This next
even may be either the completion of a computational task
(or task) or the completion of a flow. Therefore, although
SimGrid treats GTNetS as a black box, it must carefully
control the GTNetS simulation. To enable this control,
which will be detailed shortly, we had to modify GTNetS
to add to it three new functionalities:

Functionality #1: The ability to run a GTNetS simula-
tion until a flow completes, after which the simulation
is suspended;

Functionality #2: The ability to run a GTNetS simula-
tion for a given lapse of simulated time, after which
the simulation is suspended;

Functionality #3: The ability to resume a suspended GT-
NetS simulation.

These modifications to GTNetS required altering under 100
lines of code, essentially to create a “stop” event and to im-
plement functions to insert this event in the GTNetS event
queue, and to remove it upon resuming the simulation.

In its original implementation, SimGrid uses the same
framework to simulate computations and communications.
This framework makes it easy to determine whether the next
event is a task completion or a flow completion and the
date of this event without changing the state of the simula-
tion. This ability, which stems from the fact that SimGrid

uses analytical simulation models both for computations and

computations, is key for allowing the simulation to progress
correctly. In our integration with GTNetS we have modified
SimGrid so that the user can replace the original SimGrid

network simulation component with GTNetS (via a single
parameter to the SimGrid API function that initializes the
simulation). The difficulty is then to determine the date of
the next flow completion. To determine this date SimGrid

uses functionality #1 above but runs the GTNetS simula-
tion “speculatively”: SimGrid saves the state of the GT-
NetS simulator, runs the GTNetS simulation to determine
the date of the next flow completion, and reverts to the saved
state. It turns out that speculative execution is straightfor-
ward to implement by cloning the GTNetS simulation with
the fork() system call, letting the child simulation proceed
until the next flow completion, retrieving the date of that
completion from the child via a pipe, and terminating the
child.

After the speculative GTNetS execution, SimGrid has de-
termined the date of the next flow completion. Using its
original method SimGrid has also determined the date of
the next task completion. Both dates have been determined
without changing the simulation state. If the next flow com-
pletion occurs after the next task completion, then SimGrid

runs the GTNetS simulation only until the next computa-
tion completion (using functionality #2), in case the com-
putation completion leads to the creation of a new flow that
would change the state of the network simulation. If instead
the next flow completion occurs before the next computa-
tion completion, then SimGrid runs the GTNetS simulation
until the next flow completion, using functionality #1 again.
After all necessary bookkeeping and handling of the simu-
lation of compute resources, this process is repeated so that
the simulation can progress until the next event. This re-
quires that SimGrid resume the GTNetS simulation (using
functionality #3).

With this integration of SimGrid and GTNetS, SimGrid

users retain all SimGrid capabilities, including the simu-
lation of both compute and network resources, but have
the added ability to opt for flow-level or packet-level net-
work simulation at the onset of the simulation. This is done
seamlessly without any modification to the user’s simulation
code. Note that speculative execution of the GTNetS sim-
ulation increases the network simulation time by roughly a
factor 2 (i.e., the times in the GTNetS portion of Table 1 are
multiplied by 2 when using GTNetS packet-level simulation
within SimGrid).



5. CONCLUSION
In this paper we have compared the speed and the accu-

racy of packet-level and flow-level network simulation. The
overriding question is whether flow-level approaches, which
are faster by orders of magnitude, lead to reasonable accu-
racy when compared to their packet-level counterparts. Our
study compared the flow-level simulation implemented in the
SimGrid simulation framework to three packet-level simula-
tors: ns-2 [22], SSFNet [6], and GTNetS [29]. We found that
in many scenarios SimGrid leads to acceptable accuracy
when compared to packet-level simulators. We also found
that this accuracy would likely becomes unacceptable for
many users when data sizes are small (due to the TCP slow-
start mechanism) or when networks are highly contended
(i.e., low physical bandwidths and/or many flows). We also
observed decreases in accuracy when throughput on bottle-
neck links is bounded by physical bandwidths rather than by
latencies. To enables users to cope with such scenarios, and
to trade simulation speed for simulation accuracy, we have
integrated the GTNetS simulator as part of SimGrid. This
integration will be part of an upcoming SimGrid software
release.

One interesting new direction for this work is the inte-
gration into SimGrid of network calculus schemes as pro-
posed in [12], to increase simulation speed by a factor ∼20
while retaining most of the accuracy when compared to pure
packet-level simulation. This would be of interest to a sub-
set of the SimGrid users, although many of them require
much more than a factor 20 increase in speed from packet-
level simulators. One practical issue is that the work in [12]
was done as part of the ns-2 simulator, which is notoriously
difficult to integrate with other software tools (for instance,
while the first version of MicroGrid [34] used ns-2, the de-
velopers switched to DaSSF [5] in later versions due to the
difficulty of integrating ns-2 with their software). Some of
these integration issues may be aleviated with ns-3.

A promising but challenging future direction is to improve
the flow-level model in SimGrid so that its inaccuracies are
reduced. For instance, one could modify the model, per-
haps in an ad-hoc manner, to account for the TCP slow-
start mechanisms. More importantly, one could replace the
RTT-aware Max-Min model by another model. Indeed, it is
known that when routers use the Drop Tail or RED scheme,
and for TCP Reno, the bandwidth allocation is computed by
maximizing the sum of the arctangents of the flow through-
puts [17]. Furthermore, more recent versions of TCP, like
TCP Vegas, produce allocations computed by maximizing
the sum of the logarithms of the flow throughputs, which
corresponds to the proportional fairness model proposed by
Kelly [11]. Bandwidth sharing in real TCP networks is thus
more complex than the simple RTT-aware Max-Min model
implemented in SimGrid. Enabling these bandwidth shar-
ing schemes is challenging (both in terms of implementa-
tion complexity and computational complexity) and must be
based either on semi-definite programming or on Lagrangian
optimization and gradient methods [37]. Such developments
are planned for future versions of SimGrid. Note that the
validation of such models will be straightforward thanks to
the integration of SimGrid and GTNetS presented in this
paper.
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