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ABSTRACT
Simulations have always been a very useful and powerful tool to
study and develop networking protocols. ns-2 is one of the most
commonly used open-source network simulators and many proto-
cols have been evaluated with this tool. In order to bridge the gap
between simulation and implementation on a real testbed, Nsclick
was developed. Nsclick makes it possible to entirely reuse code
between the ns-2 simulator and a testbed, based on the Click Mod-
ular Router. In the quest for high performance wireless networks,
researchers have found that the layered architecture networks did
not perform well enough. Therefore they focused their research on
cross layer design techniques. Although using Click and the Mad-
Wifi driver gives us many possibilities to design and evaluate cross
layer optimizations in a testbed set up, the Nsclick platform does
not support these extensions.

In this paper we will introduce an extension to ns-2 which over-
comes these shortcomings of the Nsclick platform. This extension
makes the wireless features of the Click Modular Router available
in Nsclick platform, eliminating the differences between the ns-2
simulator, within the Nsclick platform, and a real world set up.
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1. INTRODUCTION
The route to develop and evaluate network and routing protocols

often has two approaches: via simulation or via implementation on
a testbed. However nowadays, as wireless networks and mobility
become more and more important, it is becoming more difficult to
build mobility aware testbeds. With the increasing popularity of ad
hoc networks, we not only have to cope with wireless and mobile
nodes issues, but also with larger scaling issues, because wireless
ad hoc networks have the tendency to extend beyond a few nodes.
Of course, routing protocols can still be tested and evaluated on a
wired testbed, but if cross layer designs are desired, then a wired
testbed is no longer an option.
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A simulator then seems the only way to go in order to quickly
develop and debug cross layer designed ad hoc network protocols.
Although offering a lot of functionality, a simulator is always lim-
ited in the use of networked applications and cannot be used in
a live demonstration, which many research projects nowadays re-
quire as a proof of concept. The use of a simulator to design and
evaluate a protocol, implies that all the implementation efforts will
need to be redone, when building a prototype or testbed set up, as
code written for the simulator will typically not be compatible with
a real life system.

Nsclick [9] offers an efficient alternative to overcome these in-
compatibilities. This simulation environment combines the well
known and widely used ns-2[3] simulator and the Click Modular
Router [8]. The use of the Click platform makes it possible to reuse
code between the simulator and the testbed hardware.

The Click Modular Router is even capable of using lower layer
IEEE 802.11 characteristics using specific drivers. Unfortunately,
these functionalities are not available within the Nsclick framework
which makes it impossible to do simulations using algorithms that
heavily depend on these lower layer properties. For this reason,
we extended the Nsclick architecture to bring cross layer facilities,
already available in Click, to the Nsclick framework.

This paper is further organized as follows: in the next section,
we will introduce in more detail the architecture of the simulation
platform. We then continue with an explanation of the changes
made to some of its components. In section 4 we present two case
studies in which the usability of the extended simulator is shown
and we conclude this paper in section 5.

2. DESIGN
In this section we present the different parts that make up the

Nsclick simulation framework.

2.1 Click Modular Router
The Click Modular Router is a software architecture for con-

structing and deploying fast, configurable, and flexible packet rou-
ters. It consists of two parts: a router configuration and a platform-
specific layer that handles the details of running the router config-
uration on a particular platform.

A router configuration is a graph with packet processing mod-
ules called elements at the vertices. The individual elements imple-
ment simple router functions like packet classification, queueing,
scheduling, and interfacing with network devices. The packets flow
along the edges of the graph.

The Click graph of a very simple example configuration of an
ethernet bridge[10] is shown in Figure 1. The Click script corre-
sponding to Figure 1 is:



Figure 1: Example configuration

FromDevice(eth0, PROMISC true) 1

-> ToDump(eth0.dump) 2

-> Queue 3

-> ToDevice(eth1); 4

FromDevice(eth1, PROMISC true) 5

-> ToDump(eth1.dump) 6

-> Queue 7

-> ToDevice(eth0); 8

In the first line the FromDevice element takes packets from the
eth0 Ethernet device and pushes them to the ToDump element. The
ToDump element saves the content of the packets in the eth0.dump
file, before pushing the packets to the Queue element. The Queue
holds packets until the ToDevice element is ready to transmit
them on interface eth1. The same happens in lines 5 to 8, but in the
opposite direction of this simple Ethernet bridge.

When using a wireless network card, the Click Modular Router
can only receive and send Ethernet frames. The driver of the wire-
less network card presents itself to the kernel (and to Click) as a
standard Ethernet device. This driver performs the translation from
Ethernet to 802.11 frames and vice versa. As a consequence the
kernel, Click and any other part in the networking stack cannot
differentiate packets received from a wireless interface from those
received from a wired interface.

To overcome this limitation a special Click Wifi Driver[1],
known as the Madwifi Stripped Driver, was initially developed. The
Click Wifi Driver was a stripped down version of the Multiband
Atheros Driver[2] which contains only the very basics of the 802.11
MAC protocol and the RTS/CTS mechanism. This Stripped Mad-
wifi Driver does not perform any encapsulation or de-capsulation,
instead it only accepts 802.11 frames to transmit and passes on the
received 802.11 frames to the Click Modular Router. Currently,
this functionality is incorporated in and directly available from the
MadWifi driver, when using the wireless interface in monitor mode.

struct click_wifi_extra {
u_int32_t magic;
u_int32_t flags;

u_int8_t rssi;
u_int8_t silence;
u_int8_t power;
u_int8_t pad;

u_int8_t rate;
u_int8_t rate1;
u_int8_t rate2;
u_int8_t rate3;

u_int8_t max_retries;
u_int8_t max_retries1;
u_int8_t max_retries2;
u_int8_t max_retries3;

u_int8_t virt_col;
u_int8_t retries;
u_int16_t len;

};

Figure 2: Click Wifi annotations

Figure 3: Mobile Node Interface

Besides the basic functionality of transmitting and receiving fra-
mes, the MadWifi Driver, in combination with the Click frame-
work, provides some extra functionality. The Click router pos-
sesses an interface along which the transmission parameters can be
communicated to the driver on a per packet basis. The router does
so by extending every packet with a Click Wifi Extra header(figure
2). This header communicates the following information to the
driver on a per packet based way:

• the transmission rate,

• the maximum number of retries,

• and if the RTS/CTS mechanism should to be used.

Once a frame is transmitted, the driver will report to Click about
the actual transmission. The driver indicates in the same Click Wifi
Extra header if the transmission was successful and how many re-
tries were needed, before returning the transmitted packet to the
Click router for inspection.

At the receiver side, an incoming frame will be marked with the
received signal strength indicator (RSSI) to inform higher layers on
the reception quality, again on a per packet basis.

2.2 ns-2
The ns-2 simulator is a discrete event simulation framework, de-

signed to evaluate transport protocols, networking routing proto-
cols and multicast protocols over wired and wireless networks. ns-2
simulations consist of nodes, links and events. These nodes repre-
sent communication stations and routers in the network, which are
connected by links.

In figure 3, the architecture of a (mobile) node is shown. At
the bottom, the Channel object represents the physical broadcast
medium to which the nodes are connected. Every node that is con-
nected to the same Channel object, is connected to the same LAN.
This medium can be either a wireless or a wired medium.

The next item in the communication stack is the network inter-
face (NetIF), representing the physical network interface connected
to a Channel object. In a wireless network, the physical network in-
terface is responsible for determining if a transmitted frame can be
heard. Every interface connected to the same channel object will
receive the frame. The associated propagation model computes the
received signal strength, based on the position of the sender and
the receiver. If the received signal strength is greater than a certain
threshold, the receiving interface will accept the frame and pass it
on up the stack, shown in Figure 3.
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Figure 4: Nsclick Ethernet Interface

A MAC layer is connected on top of the network interface. ns-
2 implements, amongst others, an IEEE 802.3 and 802.11 MAC
layer. The implementation of the ns-2 802.11 MAC is a 802.11
DCF with RTS/CTS mechanism and its functionality is comparable
to the Madwifi driver support of the Click Modular Router, provid-
ing only basic transmission functions without, e.g. the management
functions for infrastructure based networks.

To finish up, the Link Layer (LL) provides the fragmentation and
reassembly of frames while Classifiers are responsible for deliver-
ing the frames to the appropriate applications or the routing agents.

2.3 Nsclick
Nsclick is an integration of the Click Modular Router with the

ns-2 network simulator. The purpose of Nsclick is to run the same
Click router configuration1 both on an real system, as well as in
combination with ns-2 to facilitate testing, debugging and evalu-
ation of network code. The simulator is very useful for running
large and repeatable scenarios. Building a large testbed is expen-
sive and repeatability is hard to achieve in a testbed. Another major
advantage is that only one code-base has to be maintained.

The link between the ns-2 simulator and the Click Modular
Router is made in the Classifier. Click presents itself to ns-2 as
a special Classifier, as shown in Figure 4. This Classifier intercepts
all packets and translates them from a ns-2 packet format to Click
raw data format before sending them through the Click router con-
figuration. When the packets are processed, the Classifier translates
them back from Click raw data format to the ns-2 packet format and
sends them down the stack to the ns-2 MAC layer, except pack-
ets destined for the local node. These packets are delivered to a
ToHost element, which delivers them to the corresponding appli-
cations. Packets originating from the local applications are handed
over to a FromHost, which inserts them in to the Click Modular
Router.

Because Nsclick uses the ns-2 simulator as a platform for the
Click Modular Router, it is not possible to use the available Click
WiFi elements which interface with the lower MAC functions by
using the earlier described headers. As such it is not possible to
control the lower MAC functions or receive feedback information
as would be possible in a testbed set up with the MadWifi drivers.
It is however this type of information we would like to use in cross
layer optimization schemes and which we have integrated in the
Nsclick framework.

1Some very minor modifications have to be made to the Click
router configuration.

3. MADWIFI STRIPPED IN NSCLICK
The objective of this Nsclick extension is to support the Click

Wifi elements in Nsclick, which control the Madwifi driver. These
elements communicate with the driver through the Click Wifi anno-
tations of a packet, shown in Figure 2. Before sending the packet,
these Wifi annotations are converted in a click_wifi_extra header
and placed in front of the packet. The driver decodes this header
and configures itself with the indicated options.

The ns-2 802.11 MAC was adapted to behave like the Madwifi
driver. The modified MAC interprets the click_wifi_extra header in
front of the packet, which is used to set the transmission rate, retry
count and usage of the RTS/CTS mechanism.

Besides controlling the behavior of the driver, the wifi elements
also provide a feedback mechanism to monitor the state of trans-
mitted packets. Packets delivered to the driver are handed over
again to Click after successful transmission or after failure of such
event. Routing algorithms in Click can thus benefit from link layer
information indicating success or failure of transmission and the
retransmission count to get a packet delivered.

Furthermore, we modified the Network Interface (netIF) to ac-
count for the different rates at which packets can be sent. The
higher the transmission rate is, the stronger the received signal has
to be for the receiving hardware to be able to decode it correctly.

For each rate a signal strength threshold is defined at which the
packet can successfully be decoded and received. If the packet can
be received, a received signal strength indication (RSSI) is saved
in the header of the packet, before the packet is sent up to Click
(Figure 4). An example configuration with four rates and the cor-
responding thresholds is given :
# set multi-rate PHY parameters
Phy/WirelessPhy set RateCount_ 4
Phy/WirelessPhy set Rate0 11e6
Phy/WirelessPhy set Rate1 5.5e6
Phy/WirelessPhy set Rate2 2e6
Phy/WirelessPhy set Rate3 1e6

# 100m , 150m , 200m and 250m
Phy/WirelessPhy set RXThresh0 1.427e-08
Phy/WirelessPhy set RXThresh1 2.818e-09
Phy/WirelessPhy set RXThresh2 8.916e-10
Phy/WirelessPhy set RXThresh3 3.652e-10

An additional function is the ability to switch between channels
from within Click. The ClickWirelessInfo element contains
all wireless configuration parameters like bssid, ssid and channel
id. Any change of channel id in this WirelessInfo element
will trigger a switch between channels in the ns-2 simulator. This
switch is executed by the following SwitchChannel function in
the ns-2 scenario:

#setting network channels [1..13]
set netchan Channel/WirelessChannel
for {set i 1} { $i < 14} {incr i} {

set chan_($i) [new $netchan]
}
#switch channel function
proc SwitchChannel { i whichif whichnewchannel } {

global ns_ chan_
[$ns_ set Node_($i)] changechannel \

$whichif $chan_($whichnewchannel)
}

In short, the nsmadwifi (Nsclick + MadWifi) extension presented
here, adds the following features of the MadWifi driver to the
Nsclick simulator platform:

• transmission of 802.11 raw frames, with the possibility to set
transmission parameters like transmission rate and the en-



abling of the RTS/CTS protection mechanism and with the
possibility to retrieve the received signal strength indication
(RSSI);

• availability of feedback information of the transmitted fra-
mes, indicating failure or success and the retry count;

• and the possibility to change the wireless channel from
within the Click Modular Router.

The nsmadwifi extension has been made publicly available and can
be downloaded from [4], together with a quick start guide. This
quick start guide describes three scenarios covering each one a ba-
sic feature of nsmadwifi.

4. CASE STUDIES
In this section, we present two case studies, briefly showing re-

search performed using the nsmadwifi extension, presented in this
paper. The first study will take advantage of the fact that using
the madwifi extensions, an IEEE 802.11 infrastructure mode ac-
cess network can be created with Click. The basic idea is, that
while ns-2 only takes care of the lower level 802.11 MAC protocol,
the higher level management functions of 802.11 are performed by
the Click Modular Router, creating plenty of opportunities to de-
velop cross layer handover schemes.

The second case study will show how to take advantage of the
extension to develop a new cross layer neighbor sensing protocol
for wireless mobile ad hoc networks. By making an ad hoc rout-
ing protocol aware of 802.11 messages, a more mobility sensitive
neighbor sensing protocol can be designed.

4.1 A Feedback based smooth Mobile IP Han-
dover

4.1.1 Introduction
In [7] we described a buffering mechanism that uses IEEE

802.11 feedback information in order to realize a smooth Mobile
IP handover. The results published in this work were obtained us-
ing a real-life testbed, but in order to have some more dynamic and
scalable results, we easily ported the used Click scripts to the ns-2
simulator using the MadWifi extensions we here introduced.

MN

HA CN

GW

ARAR

I II

III

IV V

Figure 5: Reference network

In the testbed setup, all wireless communication was performed
using Atheros based wireless interface cards and the MadWifi
driver in monitor mode. This made it possible to implement the
higher level functions of an IEEE 802.11 infrastructure stack in
Click, which would handle all management tasks of the MAC layer
(scanning, authentication, association) while the basic lower level
MAC tasks (RTS/CTS, retransmissions,. . . ) were performed by the
firmware and/or nic. As stated before, the combination of Click
and the MadWifi driver enables us to create raw 802.11 frames and
inject them on the wireless medium.

Our testbed is unfortunately limited in space and mobility, thus
so far, we were only able to perform tests on a basic scenario, using
two static access points and a static mobile node, which was forced
to perform a handover by filtering out beacons and thus triggering
a new scanning phase. The reference network is shown in figure
5. Using ns-2, it is now easy to scale up the number of access
points and study the protocol behavior when multiple handovers
are performed.

The protocol itself also uses cross layer information from the
802.11 MAC to optimize the handover. The old Foreign Agent
(oFA) will need to buffer packets while the previously connected
Mobile Node (MN) will perform a hard handoff and scan for a new
Access Point (AP). Standard buffering is however likely to intro-
duce duplicate packets when buffers are over-dimensioned while
small buffers will introduce packet loss. By accounting which fra-
mes are successfully delivered by an AP to the connected Station
(STA), the oFA can decide to buffer only those frames on which
transmission failed, minimizing the total number of packets that
need to be buffered and avoiding duplicating packets. This trans-
mission feedback information was available on our testbed through
the MadWifi drivers. Frames which were delivered to the MadWifi
driver, are again delivered to Click when they are processed by the
driver. This results in a packet which now holds the transmission
state, delivered or dropped, of this packet and also the number of
retries which were needed to transmit the packet. Using the pre-
sented extensions to Nsclick, this information is now also transpar-
ently available in the simulator environment.

4.1.2 Implementation
A two stage buffering mechanism is used to implement the feed-

back based queuing. A FA will need to set up such a buffer mech-
anism for each of its registrated MNs. The general idea is to store
a newly arrived packet in a first stage regular queue at the IP layer
and deliver a copy of it to the link layer for transmission. When
a successful transmission is reported by the link layer, this packet
is removed from the queue and dropped at the FA. In case of a
transmission failure, the packet moves from the general queue to a
second stage circular queue, holding packets which recently failed
transmission. This is likely to occur at the handover of a MN as
the oFA unaware of the handover will continue to try delivering
packets which will not be received by the MN as it has broken its
connection. When the MN is later on connected with a new FA, this
nFA can request the oFA to forward all packets it failed to transmit
and thus are stored in its circular buffer along with those which are
scheduled for transmission and of which a copy is hold at the first
stage buffer.

The Click implementation of this buffering mechanism is illus-
trated in figure 6. The key elements are marked in grey and will be
further discussed here, a complete discussion would take us to far
and can be found in [7].

The PaintSwitch element at the top will distinguish between
newly arriving packets and feedback packets arriving at the buffer
compound. Firstly, newly arriving packets will be copied at the
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Figure 6: Click implementation of an IEEE 802.11 Feedback
based buffer

Tee element and while a copy is forwarded further on the Click
graph to get transmitted, a copy is stored at the SimpleQueue at
the left hand side, which implements the first stage buffer. Sec-
ondly, feedback packets holding the transmission information are
fed into the FeedBackUnqueue element which reacts by pulling a
packet from the first stage queue. In case of a successful feedback
packet, this packet will be dropped, otherwise it will be sent to the
FrontDropQueue at the right side via the second output port of the
FeedBackUnqueue element.

In case a flush of this buffer compound is requested, the Unqueue
element at the bottom will be activated and both the circular and the
regular queue will be emptied. The priority scheduler in front of the
unqueue element will ensure that the older packets which already
failed transmission will be pulled before the more recent packets
stored in the first stage queue.

4.1.3 Results
Using the nsmadwifi extension, we simulated an extended sce-

nario as an example of the use of this extension. The Click configu-
rations which were used on the testbed, were reused with only those
modifications already necessary to port Click to Nsclick. Nothing
was changed in the code of Click nor the Click configuration scripts
concerning the raw packet mode or the feedback mechanism.

In figure 7, the simulated environment is shown. In an area of
300 by 300 meters, four access points were deployed. Each AP
operates in a different channel than its neighbours. A MN will start
from one of the 10 start points, marked with a cross at the left side,
and will move at a speed of 20m/s towards one of the 10 endpoints
at the right side. Start and end points are chosen randomly at the
beginning of the simulation. Figure 7 also indicates the locations at
which a handover is expected to occur by a star.

As in the reference network shown in figure 5, all access points
are connected to a gateway which will relay to the Corresponding
Node (CN) and the Home Agent (HA). An RTP CBR stream of 30
packets per second was sent from the CN towards the MN. A STA
will detect a link failure when it misses 3 consecutive beacons and
will respond to this by scanning for new APs.

Figure 8 shows us a sequence graph of a single run. The three
handovers are distinctly present in the graph. The detail on the
graph, shows the first handover more clearly. It is clear that no
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Figure 10: Total transmission delay from HA to MN

packets were lost nor packets were duplicated when the buffered
packets at the old FA were forwarded towards the new FA. A suc-
cessful smooth handover took place. Figures 9 and 10 show some
more results from the same test-run. As the MN will need to scan
for a new AP, a connection gap will exist. This can be noted from
figure 9 which shows the interarrival time of packets arriving at
the MN. Again the three handovers are visible and the first one in-
troduces a lager delay due to the lesser channel conditions at that
point. Once the first packet has been flushed from its queue, all
packets follow back-to-back, which results in a temporary drop of
the interarrival time. Off course, the total delay, from CN to MN,
a packet experiences, depends on the moment at which the packet
arrives at the AP during the handover. Figure 10 shows us this to-
tal delay. The first packet which could not be delivered to the MN
while it was scanning will experience the largest delay, which grad-
ually decreases based on the constant interarrival time of the CBR
traffic.

In figures 11 and 12 we finally present a comparison of various
queue-sizes and the resulting packet loss and packet duplication.
Figure 11 shows us the average packet loss related to the combina-
tion of the size of the feedback queue (x-axis) and first stage buffer
(the various indexes). From the results it shows that a second stage
queue of minimum 7 packets will suffice to realise a lossless han-
dover when combined with a first stage buffer of at least 15 packets.

In [7] we also showed packet duplication was an issue that
needed attention. Figure 12 shows the average number of pack-
ets duplicated during an handover. From the scattered results for
the various combinations of queuesizes in this figure, it is clear that
increasing the buffersize, both in total as for the separate queues,
does not increase the number of duplicated packets as was the case
with a plain circular buffer. Buffersizes can be easily extended to
cope with various packet rates and handover delays without intro-
ducing packet duplication.

4.2 A cross layer neighbor sensing mechanism
for wireless ad hoc networks

4.2.1 Introduction
Common ad hoc routing protocols like the Ad hoc On demand

Distance Vector (AODV) [11] protocol and the Optimized Link
State Routing (OLSR) [6] protocol employ a hello advertisement
protocol as a neighbor sensing mechanism: each mobile station ad-
vertises itself by broadcasting periodically a "Hello" message to all
neighbors. Such a routing protocol only detects a link break when
the link times out, as there are no new Hello messages that arrive.
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Figure 12: Average number of packets duplicated in relation of
both buffer sizes

Inherently there is delay between the actual link break, i.e. the node
is out of range, and the link break detection, i.e. when the routing
protocol reacts upon this link break event by recomputing the rout-
ing table .

One possible solution [5] to decrease this gap is to increase the
rate at which the Hello messages are sent, in order to react to a
link break more quickly. However the authors of [12] showed that
this approach is not feasible as it increases the signaling overhead
on the network exponentially and thereby it reduces the available
capacity for normal communication. As an alternative solution,
they proposed a link layer feedback mechanism (similar to this ex-
tensions feedback mechanism) to notify the routing protocol when
a failed transmission occurred, triggering the removal of the link.
While this scheme works well in lightly loaded networks, it has an
adverse effect when the network is more loaded, because in a heav-
ily loaded network a packet transmission failure could also be the
result of contention of the medium.

In this case study we will show a cross layer neighbor sensing
mechanism for OLSR, which combines the ideas of both previous
solutions and which takes advantage of the features provided by
this extension.

4.2.2 Protocols
The first feature of the nsmadwifi extension we use is the possi-

bility to receive and transmit raw 802.11 frames, including 802.11
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beacons. The 802.11 standard mandates the use of IBSS beacons
for a wireless network interface in infrastructure-less mode. These
IBSS beacons are similar to the beacons of a wireless access point
and their purpose is to advertise the presence of a mobile station
to other ad hoc stations in the network (on the MAC layer). These
IBSS beacons are typically sent at a 100 ms interval, which is 10 to
20 times faster than the typical OLSR Hello interval rate.

We propose a cross layer neighbor sensing for the OLSR proto-
col (figure 13), which combines the fast presence advertisements
contained in 802.11 beacons (layer 2), with the link symmetry in-
formation contained in the slower hello messages (layer 3) to in-
crease the sensitivity of the OLSR to a link break. This cross layer
neighbor sensing comprises two key components:

• the hello message signaling (layer 3): link sensing is per-
formed using regular HELLO messages as described in the
OLSR RFC, but instead of updating the validity time of links
to three times the HELLO emission interval, it is only up-
dated to one time the HELLO interval. Additionally the eth-
ernet address of the neighbors interface is registered in the
link information entry.

• the 802.11 beacon tracker (layer 2): the beacon tracker up-
dates the validity time of each link for which it receives an
802.11 IBSS beacon from the corresponding neighbor. It per-
forms its task by analyzing incoming beacons and looking up
the correct OLSR link information entry using the ethernet
source address as a key. Finally the beacon tracker extends
the validity time of the link with 1 second.

The synergy between these two components allows OLSR to dis-
cover more quickly a link break, while avoiding the increase in
OLSR signaling overhead.

To complement this cross layer neighbor sensing scheme we pro-
pose a "fallback" scheme to close the intermediate gap between the
link break event and the link break trigger. The "fallback" scheme
augments the classic OLSR packet forwarding with a forwarding
path for failed packets, as illustrated in figure 14. This path con-
sists of a FilterFailures element and Reforwarding element. The
FilterFailures element analyzes the layer 2 transmission feedback
packets and sends the failed packets to the Reforwarding element,
which in turn sends these failed packets to a different neighbor than
the original next hop neighbor. A failed packet is forwarded as fol-
lows: first the original next hop IP address is determined by looking
up the destination ethernet address in the link information entries;
secondly based on this next hop IP address, a suitable neighbor is
determined using the two hop information table of OLSR. In case
of multiple possible neighbors, the neighbor, which has most re-
cently seen the required next hop, will be selected. And at last the
packet will be forwarded to this neighbor, marked with a flag in
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Figure 14: Fallback scheme

Table 1: OLSR parameters
Parameter Value
HELLO_INTERVAL 1s
TC_INTERVAL 5s
NEIGHBOR_HOLD_TIME 3s
TOP_HOLD_TIME 15s

the IP header that is has been forwarded by the fallback scheme
to avoid loops. Figure 15(b) illustrates the "fallback" scheme for a
strip topology scenario, which we will discuss in the next section.

The main disadvantage of the "fallback" scheme is that it wastes
bandwidth. As long as the routing protocol does not discover
the link break it will continue to retransmit packets to a disap-
peared neighbor, before it forwards these packets using an alter-
native route. Only when the routing protocol detects the link break
and recomputes the routing table, the transmission failures of these
packets can be avoided. By combining the cross layer neighbor
sensing with the "fallback" scheme into a hybrid scheme, the dis-
advantages of both can be mitigated. The cross layer neighbor sens-
ing increases the reactiveness of the routing protocol to link breaks,
while the "fallback" scheme covers the gap between the link break
and the detection of it.

4.2.3 Results

Basic Scenario.
The first scenario we have analyzed is the strip scenario (figure

15(a)), consisting of eight stationary nodes in line and a nineth mo-
bile node moving in parallel away from the first node. The distance
between the stationary nodes is 175m and the transmission range
was reduced to 200m at 2Mbps. The velocity of the mobile node
varied from from 2m/s , 5m/s , 10m/s ,15m/s to 20 m/s. A 128Kbps
CBR stream flows from the first node to the mobile node and the
packet size was 1000 bytes. The OLSR parameters are shown in
table 1.

The simplicity of this scenario allows us to trace the reactions
of the routing protocol and the network as a whole back to one
single link break event. In a more complex scenario it would have
been more difficult to correlate the multiple events to different link
breaks.

The sequence graph in figure 16(a) shows seven distinct link
breaks for a mobile speed of 5m/s. As can be seen, the last two
link breaks have a much greater impact. This is caused by the fact
that OLSR only disseminates partial topology information, instead
of full topology information. When the mobile node reaches the
end of the line topology, it will have a direct link with station seven
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and eight, and therefore this mobile only select one single multi-
point relay (MPR). As MPRs only advertise links to its selectors to
the ad hoc network, only a partial topology is disseminated. When
the mobile station moves out of range of its MPR, the relay will in-
form the network about this link break, causing the whole network
to lose track of the mobile node’s whereabouts. This continues until
a new MPR has been selected and this new relay starts advertising
the link with the mobile node. To tackle this issue OLSR can dis-
seminate the full topology information. The schemes, where full
topology dissemination is active, are denoted with FT (Full Topol-
ogy), however we omitted the sequence graphs as they add no value
to understanding the cross layer schemes.

When we compare the sequence graph of the basic OLSR
scheme (figure 16(a)) with the sequence graph of the cross layer
neighbor sensing mechanism (figure 16(b)), it becomes clear that
the cross layer neighbor sensing mechanism decreases the gap be-
tween a link break and the detection of this event, although not
completely.

The sequence graph of the fallback scheme (figure 16(c)) shows
that packet loss can be avoided, but at the expense of increasing
the end-to-end delay and packet reordering (figure 17(b)). When a
link break occurs, the packets will still be forwarded by the routing
protocol using the broken link until it notices this link break. All
these packets, which are retried by the 802.11 MAC until the retry
count has exceeded, add up significantly to the total delay as multi-
ple retransmission not only take up a lot of time itself, but also de-
lay other frames waiting for a transmission attempt in the interface
queue. However figure 17(a) shows that the cross layer neighbor
sensing mechanism does not suffer from this problem. Therefore
the combination of both schemes keeps their respective advantages
while mitigating their disadvantages (figures 16(d) and 17(c)), i.e.
increasing packet delivery while avoiding the increased delay.

Figure 18 shows for different velocities of the mobile node that
both the cross layer neighbor sensing and the fallback scheme de-
crease the packet drop ratio significantly. The combination of both
schemes, the hybrid scheme, eliminates almost all packet loss for
this scenario, when the routing protocol disseminates the full topo-
logy information.

Random waypoint scenario.
The second scenario is a random way point scenario, consist-

ing of 32 mobile stations placed in a 1000m by 1000m square to-
pology. The mobile stations have a 250m transmission range at
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(b) Cross layer neighbor sensing scheme
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(c) Fallback scheme
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Figure 16: Strip scenario 5m/s
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Figure 17: Delay Strip scenario 5m/s

Figure 18: Strip scenario packet drop

Figure 19: Random scenario packet drop

2Mbps and depending on the performed scenario, a fixed velocity
of 2m/s, 5m/s or 10 m/s. From the 32 nodes, eight pairs are chosen
randomly and each pair of nodes will build up a one way 16Kbps
CBR stream with packet sizes of 250 bytes. This low stream rate
was selected in order to avoid link saturation. The results were
averaged over 10 runs. Figure 19 shows that both schemes (cross
layer scheme and the fallback scheme) manage to decrease packet
loss with 5 to 10%, both combined they provide a much stronger
reduction, by halving the packet loss ratio.

5. CONCLUSION
In this paper we first described how we adapted the Nsclick sim-

ulator in order to support the Wifi extensions already available in
Click. Furthermore we illustrated its use in the development, de-
bugging, and validation of cross layer design techniques in wire-
less networks. We presented two case studies, showing its use in
the development of cross layer algorithms for wireless infrastruc-
ture networks and mobile ad hoc networks. Both cases are heavily
dependent on link layer information otherwise not easily available
in a Nsclick environment. This MadWifi extension introduces this
functionality in a uniform and reusable way in Nsclick, making the
development of other cross layer protocols in Click straight for-
ward.

The power of the combination of the MadWifi driver and the
Click Modular Router and hence this extension lies in its simplic-
ity: it provides access to the core of the 802.11 standard: the MAC
protocol. This simplicity offers the researcher the necessary free-
dom to quickly and easily develop and analyze its own protocols
or cross layer algorithms using an 802.11 MAC. It does so by pro-
viding three core functions: raw frame transmission, feedback of
transmission and reception information and controlling the trans-
mission parameters on a per packet basis.
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