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Abstract

Crowdsensing is emerging as a powerful paradigm capable of leveraging the collective, though imprecise,
monitoring capabilities of common people carrying smartphones or other personal devices, which can
effectively become real-time mobile sensors, collecting information about the physical places they live in.
This unprecedented amount of information, considered collectively, offers new valuable opportunities to
understand more thoroughly the environment in which we live and, more importantly, gives the chance to
use this deeper knowledge to act and improve, in a virtuous loop, the environment itself. However, managing
this process is a hard technical challenge, spanning several socio-technical issues: here, we focus on the
related quality, reliability, and scalability trade-offs by proposing an architecture for crowdsensing platforms
that dynamically self-configure and self-adapt depending on application-specific quality requirements. In
the context of this general architecture, the paper will specifically focus on the Quasit distributed stream
processing middleware, and show how Quasit can be used to process and analyze crowdsensing-generated
data flows with differentiated quality requirements in a highly scalable and reliable way.
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1. Introduction

The vision of smart cities as urban areas where people,
places, environment, and administrations become
closer and get connected through novel ICT services
and networks, is becoming reality at an increasingly
faster pace. Thanks to disruptive technologies such
as location-based services and ubiquitous connectivity
via multiple interfaces, cities are promising candidates
to become, in the near future, a central development
and deployment platform for a novel and increasingly
important set of services. Confirming this trend, in the
last years there have been several initiatives led by
governments and industries directed toward the study
and development of smart urban areas. Examples of
these initiatives are the many European Digital Agenda
funded projects, such as European Digital Cities,
InfoCities, IntelCity roadmap, Intelligent Cities, and
EUROCITIES [15], or industry-led activities, such as the

IBM Smarter Cities project1, or the Intel Collaborative
Research Institute for Sustainable Connected Cities2. At
the same time, the widespread diffusion of smartphones
and tablets with heterogeneous connectivity and rich
sensing capabilities creates novel opportunities for
extending the reach of smart city services. Among them,
one of the most interesting and still open directions is
the exploitation of the new sensing paradigm that has
been usually defined as crowdsensing.

Crowdsensing shifts the principles of the more tra-
ditional crowdsourcing processes — mostly diffused in
static Internet scenarios (see, for example, Wikipedia3

1http://www.ibm.com/smarterplanet/us/en/smarter_cities/,
last visited in August 2013.
2https://www.intel-university-collaboration.net/?
page_id=1420, last visited in August 2013.
3http://www.wikipedia.org/, last visited in August 2013.
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or Amazon Mechanical Turk4) — to cyber-physical ur-
ban spaces, by leveraging the unprecedented monitor-
ing capabilities of mobile citizens and coupling them
with distributed actuation tasks to be completed col-
laboratively, for instance by moving data or physical
items (e.g., bikes of a smart city bike sharing service) to
maximize the targeted objective functions (e.g., uniform
coverage of traffic monitoring or uniform bike availabil-
ity at bike pickup points). This way, relatively complex
distributed goals can be achieved thanks to the weakly-
organized, and massive-scale cooperation of the mobile
crowd: in a typical crowdsensing application, people are
asked to perform simple and often very fine-grained
geo-based tasks that usually involve tracing some phys-
ical real-world measure through their mobile devices,
such as registering noise or environmental pollution in
some area, or taking photos of specific locations.
Connecting participatory sensing with crowd-based

actions in what we call the crowdsensing loop is a
fundamental, continuous step of real-time and large-
scale data monitoring and analysis: by aggregating
and processing the flowing streams of data coming
from collaborative citizens, it is possible to obtain
significant information about the current status of the
city and its inhabitants, and to build models that
can accurately forecast city dynamics, which, in turn,
can help decision-makers to determine the appropriate
actions and policies that improve the overall urban
quality-of-life. The very peculiar characteristics of these
new processing scenario pose several fundamental
challenges to existing data processing platforms, and
call for novel models/architectures that can satisfy
strong requirements of scalability, quality, reliability,
and cost-effectiveness.
This paper introduces a general and novel crowdsens-

ing architecture, whose ultimate goal is to guide the
realization of scalable and reliable crowdsensing plat-
forms that exploits the concept of quality at two comple-
mentary levels, i.e., i) at task generation/assignment level
and ii) at data processing level. After briefly introducing
our ongoing work to implement this architecture in a
working middleware-level solution, we concentrate the
focus on the main subject of this paper by describing in
detail Quasit, a novel data stream processing model and
middleware implementation specifically designed for
scenarios with strong scalability and quality require-
ments. Quasit is built to run effectively on large clusters
of commodity hardware and to automatically handle
various types of failures. Originally, Quasit allows to
annotate its processing elements with QoS specifica-
tions, which are leveraged at runtime to adapt their
behavior to both dynamic load conditions and user-
defined quality requirements. We present preliminary

4https://www.mturk.com/, last visited in August 2013.

results obtained with our under-development proto-
type (open-source and freely available for download5),
showing that out system combines the easy definition
of processing functionalities and QoS requirements,
with automatic scalability to the available processing
resources.
Let us note that the Quasit stream processing model

and framework can also be used to application domains
and scenarios other than smart city crowdsensing
applications described here. We claim that any big-data
stream-oriented application benefiting fromQoS-aware
task assignment and data processing could fruitfully
exploit the QoS-aware scalability of Quasit, with
significant performance improvements if compared
with traditional, non-QoS-aware stream processing
frameworks. However, in this paper, for the sake of
description focus, we will describe only how Quasit
may be usefully adopted in the wide domain of
crowdsensing applications.
The remainder of the paper is organized as follows.

In Section 1 we present our novel crowdsensing
architecture, by introducing the challenges that it tries
to solve and explaining the solution approach that
it proposes. In the context of this architecture, we
introduce Quasit, whose processing model is presented
in Section 3. A description of the design of the Quasit
prototype and some central implementation insights
is given in Section 4, followed, in Section 5, by a
set of preliminary evaluation results that show the
feasibility of the approach and the effectiveness of our
prototype implementation, also compared to a solid,
state-of-the-art alternative as Apache S4 [26]. Section 6
overviews the work in the literature sharing common
characteristics with Quasit, and clearly points out the
original aspects and technical elements of our proposal.
Conclusive remarks and directions of ongoing research
work end the paper.
This paper is an extended version of [9]. It

originally introduces Quasit within our broader vision
of crowdsensing in Smart Cities (Section 2), and
includes an extended discussion of the supported
QoS policies (Section 3) and additional experimental
results in the performance evaluation of our prototype
(Section 5).

2. The Crowdsensing Loop
A crowdsensing platform supports the execution of
several sensing applications, each typically having one
high-level goal, which is decomposed in several small
geo-located sensing tasks to be executed by the crowd
by opportunistically exploiting people movements
through the city. The types of applications and tasks

5http://lia.deis.unibo.it/research/quasit, last visited in Au-
gust 2013.
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managed by the platform can be highly heterogeneous,
and can involve capturing, harvesting, and processing
very different physical features of the real world, as well
as performing actuation tasks that change the status of
the cyber-physical space.
A critical aspect to consider, in order to develop a

scalable crowdsensing platform, is the important trade-
off between the obtained sensing/actuation accuracy
and the crowdsensing cost. The execution of a task
instance by a citizen is intrinsically unreliable: a
person may simply refuse to execute a task, or be
unable to complete it; more importantly, the quality
of the crowd-sensed data can have a high variability
due to the poor accuracy/precision of the sensors
embedded into personal devices. Task replication, i.e.,
assigning copies of the same task to several people
in order to have higher confidence on the collected
data or to achieve monitoring reliability through
multiple source participation, is the normal solution
to this series of challenging issues. However, the
efficient determination of how much to replicate a
task, or to whom to assign different tasks in a
real crowdsensing urban scenario is still an open
problem. Moreover, as the result of the execution
of thousands, possibly replicated, sensing tasks from
different applications, large volumes of sensing data
are continuously produced and need to be processed
effectively and in almost real time. Notwithstanding the
recent advances in data-center/cloud data elaboration
technologies, managing this unprecedented volume
can still present unacceptable costs and scalability
limitations if the peculiar characteristics of crowd-
sensed data are neglected by the processing framework.
Our crowdsensing architecture, shown in Figure 1,

aims at tackling these fundamental quality/cost
trade-offs by putting the task generation/assignment
and the data processing phases in a closed loop,
and by leveraging at the same time user-provided
and autonomously-inferred quality requirements to
optimize the platform runtime execution. By processing
the data received from the crowd, the data processing
component builds two important artifacts. On the one
hand, it learns models that incorporate the history of
the sensed features and that can be queried by the user
to monitor or predict the status of the real world aspects
of interest for her sensing applications. On the other
hand, it builds and constantly updates profiles of users,
regions, and sensing features. These profiles are the
original core of our architecture, since they represent
the elements that close the crowdsensing loop.
This way, cross knowledge of user histories, of the

characteristics of different geographical regions, and
of the importance of the contribution that different
sensing features have on the output models, can be
leveraged by the platform to self-regulate the allocation
of the available human and computational resources,

also by taking into careful consideration application-
level quality/reliability requirements. For example,
task assignment strategies can be specifically tailored
to the citizens’ habits or can use personalized incentive
types [29] in order to maximize the chance of obtaining
the desired sensing accuracy while minimizing costs.
Similarly, data-processing components should use the
combination of the learned profiles to prioritize the
analysis of data streams that can potentially give a
more important contribution to the output models,
while delaying or discarding less critical information.
For instance, considering environmental pollution
monitoring, the number of replicas for the monitoring
task of a given area can beminimized by assigning them
to people who habitually or recently frequented that
area. Similarly, previous knowledge about the fact that
collecting traffic information in a green area has aminor
influence on the air pollution model than the humidity
information, can be used to configure the data analysis
phase to give priority (and hence more resources) to the
processing of humidity crowd-sensed data, by possibly
discarding less important monitored features.

2.1. A Scalable Platform for Quality-aware
Crowdsensing
By following the ideas, model, and architecture
presented above, we are developing a middleware-
level crowdsensing platform, based on the convergence
of the McSense6 middleware for crowdsensing task
management and the Quasit5 [10] stream processing
engine for quality-aware data analysis.
McSense, developed in collaboration with the New

Jersey Institute of Technology, is a middleware for
the management of crowdsensing flows; it consists of
a central control component, responsible of quality-
aware task generation and assignment, and a Software
Development Kit (SDK) (only available for the Android
platform at the time of writing) that can be used
to develop mobile sensing applications that support
users in accomplishing all the phases of their
crowdsensing tasks. The control component offers ad-
hoc tools to describe geo-based sensing tasks and to
specify their specific quality requirements, such as
the desired reliability (as the expected probability of
completing a task) or task completion time. These
quality parameters, in conjunction with the profiles
knowledge base, are leveraged by a pluggable task
assignment algorithm that allocate the appropriate
amount of human resources by concretely assigning and
dispatching task instances to citizens. Currently, two
algorithms can be alternatively chosen: one based on
the recency of people’s last visit to given target locations,

6http://lia.deis.unibo.it/research/McSense/, last visited in
August 2013.
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Figure 1. A general high-level architecture for quality-based crowdsensing platforms.

the other based on people habits of attendance to certain
places. Further details on the McSense platform can be
found in [11] or on the project Web site6.

The other core component of the architecture, i.e., the
data back-end processing platform, is being developed
by integrating the Quasit framework into the crowd-
sensing flow. Quasit is a quality-aware stream process-
ing framework for data-center environments designed
to handle large volumes of streaming data by seamlessly
scaling to the available computing/memory/network
resources. It gives developers a simplified process-
ing model that describes streaming problems as the
composition of processing graphs (called SIGs, see
the following), each made of an interconnected set of
reusable operators, which define the transformations
that, applied to the input data, produce the desired
output. Originally, Quasit offers advanced configura-
tion/customization features, by permitting to associate
QoS specifications to all the elements of its applica-
tion models (operators, communication channels, or
entire graphs). The set of supported QoS specifications
permits to configure the system through several QoS
parameters, ranging from high-level indications (e.g.,
output priorities) to low-level ones (e.g., detailed set-up
of network buffers). In addition, Quasit lets developers
define and reuse their custom stream processing opera-
tors, by supporting their easy dynamic arrangement in
graphs to be automatically deployed on the infrastruc-
ture of available computational resources. The design
of Quasit operators supports a functional-like program-
ming style that clearly separates operator behavior and
state, thus making it easier for the runtime framework
to support different and sophisticated strategies for QoS
provisioning.

The original features of Quasit to auto-configure its
behavior depending on application-dependent QoS re-
quirements fit the needs of our crowdsensing vision.
Crowdsensing quality requirements, either explicitly
specified at the application level or autonomously in-
ferred through users, regions, and features profiles, are
automatically mapped to Quasit QoS specifications in

order to set up the most appropriate data processing
quality. Let us note that, for instance, the possibility
to consider only a subset of all available data sources
under critical congestion situations is particularly use-
ful in crowdsensing applications due to their intrinsic
nature with redundant data streams, typically with sim-
ilar values, concurrently originated by different smart
city “observers”. In these cases, proper QoS manage-
ment of stream processing can allow to achieve the
most suitable trade-off between latency and complete-
ness, only to mention a simple example. Developers
of crowdsensing applications define their own data
aggregation/processing algorithms by arranging pre-
built or custom operators into Quasit SIGs, and as-
sociate specific QoS parameters directly to the graphs
elements, this way expressing their application-specific
requirements (for example, to indicate fine grained low-
level resource needs of the various parts of their data
analysis steps). In the following sections, we describe
the Quasit processing model and the related prototype,
and we thoroughly analyze the unique design charac-
teristics that make the platform scalable, easy to use,
and capable to effectively support the specification of
quality requirements with arbitrary level of detail.

3. The Quasit Stream Processing Model
Quasit is used to process multiple input data streams
concurrently, to perform arbitrary transformations on
them, and to produce other data streams as output,
which can be fed to other systems for storage or further
processing. A Quasit data stream is modeled as a
temporal sequence of data samples, whose content is
a set of key-value attributes. Any stream is associated
with one data type that defines the keys and types of
the attributes of its samples.
The basic modeling unit in Quasit is the Streaming

Information Graph (SIG), a weakly connected acyclic and
directed graph that represents the information flow and
the transformations that, applied to one or more input
streams, produce an output data stream. The nodes
of a SIG represent data transformation stages, while
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Figure 2. Simple SIG example, with two data source nodes,
one sink node, and four operator nodes. source0 and source1
respectively produce a data stream of typeA and typeB; operator2
receives them as input and produces a typeC data stream,
received by operators 3 and 4, producing respectively typeD and
typeE data streams. Finally, the typeF data stream generated by
operator5 goes into data sink6, of the same type.

its edges model communication dependencies. Figure 2
depicts a simple example of SIG.
Three different kinds of SIG nodes are possible:

data source, data sink, or operator. A data source node
identifies a data stream that is conceptually out of the
SIG and its role is to abstract from the actual nature of
the stream producer; it can represent either an external
stream source or the output of another Quasit SIG. A
data sink node, conversely, represents the destination
of the data stream that is the output of the SIG; data
sinks can be used either to redirect output streams
to other systems for additional processing steps or
storage, or to connect the output of a SIG with the
input of another SIG. An operator node associates with
one or more input data streams and generates exactly
one output stream. SIG edges model communication
channels between nodes.
Every element of a SIG (either node or edge) may

be labeled with a QoS specification: QoS specifications
allow users to enrich their processing graphs with
additional information about non-functional quality
requirements. Given the centrality of QoS specifications
and their runtime support in Quasit, we will devote
Section 3.2 to their discussion; but, before that, let us
first present the basic building block of our SIG, i.e.,
the operator component, based on which developers
can model their stream processing issues in terms of
composition of simple transformation stages.

3.1. Operators
An operator performs arbitrary operations on the
data samples it receives as input, and produces
samples for its output stream. We designed Quasit
operators having in mind three main goals. First, an

Figure 3. Structure of a Quasit simple operator.

operator should be concurrency friendly: whenever the
application semantics allow it, the execution of different
operators should be parallelized across all the available
processing resources; this should require few or no
effort at all for the developer defining the operator.
Second, operators should be easily manageable in order
to allow the Quasit framework to effectively control
their execution at runtime, e.g., by moving them from
a processing node to another, saving and restoring their
processing state, or transparently recovering them from
failures. Third, the operator abstraction should favor
maximum reusability in order to let developers model
their problems in terms of SIGs by writing as less new
code as possible.
Quasit operators can be simple or composite, and both

types can be either stateful or stateless, depending on
whether they need a processing state to be kept or
not. A simple operator logically consists of several sub-
components, as shown schematically in Figure 3. It
always has one or more input ports and exactly one
output port: input ports model the input requirements
of the operator, while the output port represents its
output contract. The behavior of the operator depends
on the combination of its state and processing function, or
solely on the processing function in the case of stateless
operator.
The processing function is a user-defined function

that the Quasit framework invokes asynchronously as
data samples are available at input ports. If the operator
is stateless, the function takes one parameter, which
is bound at runtime to the incoming data samples;
if it is stateful, a further parameter is present and is
bound to the current state of the operator. The output
of the processing function is a tuple made of two
optional components: if present, the first is the data
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sample to send to the output port; the second, always
absent for stateless operators, represents the new state
the operator will assume. In other words, by defining
an operator’s processing function, developers specify
the set of transformations that, applied to the input,
produce its output and state transitions.
Quasit adopts an asynchronous and event-based pro-

cessing approach, according to which an operator pro-
duces output and/or changes its state only in response
to incoming data; this permits a large number of oper-
ators to share processing resources very efficiently, by
enabling high execution concurrency in multi-processor
and multi-core environments. Furthermore, the sharp
separation between the behavior of the operator, ex-
pressed through its (stateless) processing function, and
its processing/communication state gives Quasit great
flexibility in taking transparent management decisions
at runtime, in order to effectively support the execution
of operator components. For instance, Quasit can offer
complex and differentiated state persistence/reliability
policies, which would have been much more difficult to
realize if state was kept mixed with processing logic.
To achieve maximum reusability, Quasit introduces a

mechanism that permits to use already defined opera-
tors as building blocks for creating more complex and
powerful ones, i.e., composite operators. Developers can
define composite operators by arranging existing oper-
ators (either simple or composite) into a special type
of SIG that completely defines the execution charac-
teristics of the composite operator, called Operator Def-
inition SIG (OD-SIG). Operator composability permits
to easily encapsulate complex behavior into composite
operators, and leverage them to model many problems,
with evident reusability advantages.

3.2. QoS Support in Quasit
One of the most original aspects of Quasit is
its ability to let developers augment their stream
processing models with very rich and differentiated
QoS specifications, to be used at runtime to guide
the Quasit framework in the management of system
behavior and resource allocation according to the
desired quality requirements. Related to the design of
Quasit QoS-related features, our main goal is to support
a wide spectrum of QoS policies, ranging from simple
and high-level quality indications (allowing developers
to express their requirements quickly and with as few
effort as possible) to richer and lower-level parameters,
to be used for finer performance tuning when a deeper
and more QoS-aware control over processing is needed.
In particular, any SIG element can be augmented

with an optional QoS Specification, defining a set of
non-functional configuration parameters or constraints.
Depending on its target, a QoS specification can
consist of several QoS Policies, each policy influencing

Table 1. List of Quasit QoS Policies.

Element QoS Policy Possible values
Data Sink Output Priority Priority value
Operator Processing Cap Time threshold
Operator State Fault Tolerance Replication factor
Operator State Consistency Lazy, Snapshot, Strong
Operator Queueing Spec. Input queues size,

Scheduling policies
Operator Input Ordering No order, Causal
Channel Delivery Semantics Best Effort, At most once,

At least once, Exactly once,
Probabilistic

Channel Deadline Time threshold

a different quality aspect. Table 1 reports the list
of Quasit QoS policies, by concisely showing their
applicability scope and their possible values.
In order to provide readers with a high-level

overview of the practical aspects that can be regulated
through QoS augmentation of SIGs, in the following we
will give a short description of Quasit policies, also by
putting them into their practical applicability context
by presenting examples of their possible use within a
simple crowdsensing scenario. The considered scenario
is that of a smart-city application that combines car-
sharing services with urban pollution monitoring. A
fleet of cars is equipped with air-pollution meters and
are put on disposal to citizens, who can request, use, or
share them through amobile application.Whilemoving
through the city, cars report their position and real-
time pollution data (through their 3G radio) to a data
back-end application running on a Quasit deployment.
Similarly, the back-end processes and properly matches
citizen requests for car trips with car availability.

• Output Priority. By using this QoS policy, it is
possible to differentiate the way Quasit assigns
resources to parts of SIGs that contribute to
produce different outputs. In our reference
scenario, users may be provided with gold,
silver, or bronze services according to their
service membership level: these levels can be
mapped on different priorities for the operators
responsible for matching their requests with
possibly available cars.

• Processing Cap. This QoS policy determines a hard
constraint on the time available to an operator
to process a data sample. When this constraint
is violated, the computation is interrupted and a
default action executed. For instance, the operator
that classifies incoming car requests and maps
them to the appropriate subgraphs, needs to
complete this process fast, or else assign requests
to a default class; in this case default assignment
is considered better than too late but more precise
assignment.
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• State Fault Tolerance and Consistency. Both policies
determine how the state of an operator is
handled by the Quasit platform. A weaker state
consistency strategy/replication factor can save
resources when partial state loss can be tolerated.
For instance, the loss of partial updates on some
tiles of the urban pollution map is acceptable in
many related applications, especially given the
supposed high-update frequency.

• Queueing Specifications. This low-level policy
controls the way Quasit manages the operators
input queues. In our scenario, this policy could
be used to set blocking behavior for the input
queue of an operator that dispatches matched
user-car requests and, at the same time, to define
an ordering function that prioritizes only the
samples related to requests from gold members.

• Input Ordering. It determines whether samples
entering an operator marked with this policy
are to be processed in their arrival order, or if
their processing order should satisfy happened-
before [23] relations established by preceding
operators. For example, a request to modify the
destination for a car-shared trip should always be
handled after the related request for the trip.

• Delivery Semantics. This QoS policy, which may
be attached to SIG edges connecting a pair of
operators, configures the communication protocol
used by the Quasit platform to enable data
exchange between the two operators. For instance,
for reasons that are similar to the ones discussed
above for the State Fault Tolerance policy,
pollution-map updates can be transferred using a
best-effort communication protocol.

• Deadline. This policy controls how the samples
in an operator output queue are handled. In
particular, by setting a time-based deadline on a
channel, the Quasit network management layer is
instructed to adopt a network-scheduling policy
that tries to ensure that every tuple is transferred
from source to destination within a required time
threshold after its generation. In our example
scenario, a deadline could be set on the graph
path that manages application critical operations,
such as the management of payments for the car-
sharing service via users’ credit cards.

As far as we know, the rich variety of QoS modeling
options available in Quasit is unique in the stream
processing literature. Let us remark again that a proper
tuning of the various QoS Specifications attached to SIG
elements permits to flexibly adapt the Quasit runtime
to different application scenarios, by deeply influencing
its strategies for effectively allocating and scheduling

the dynamically available processing resources; some
details about how the Quasit framework effectively puts
into execution the Quasit SIG elements and manages
them at runtime are presented in the following part
of the paper about Quasit framework design and
implementation.

4. The Quasit Framework Prototype
In the following, we present the results of our research
work of design, implementation, experimental valida-
tion, and quantitative evaluation of a first prototype of
the Quasit framework, which implements the Quasit
stream processing model previously described; let us
remark once again that the source code of our frame-
work is freely available for download, evaluation, and
extension at our project Web site5.
This section is structured in three parts: in the first

(Section 4.1) we present the Quasit architecture; in
Section 4.2 we overview how QoS is achieved and
controlled at runtime, while in Section 4.3 we provide
some implementation insights about the current Quasit
prototype.

4.1. Distributed Architecture
Like other systems for data management and process-
ing in data-centers [14, 17, 21, 26], the Quasit dis-
tributed architecture follows a simple master-workers
model, where a logically centralized node (the master)
implements management and coordination tasks, while
a possibly large number of worker nodes perform data
processing tasks. In particular, Quasit SIGs are de-
ployed and executed by a set of computing nodes called
Quasit Runtime Nodes (QRNs), which are monitored
and managed by one Quasit Domain Manager (QDM),
as shown in Figure 4. The set of QRN nodes and the
QDM that manages them are collectively called domain.
A domain runs one or more SIGs, providing advanced
runtime services, such as tolerance to operator/QRN
failures, and QoS-based management of SIG execution.
New SIGs can be added to the domain dynamically at
runtime. We assume that QRNs are connected through
a high-speed local area network (LAN), as typically
occurs in data-center scenarios.
In order to distribute the workload and leverage

all the dynamically available resources, Quasit decom-
poses arbitrarily complex user SIGs in smaller units,
which are then assigned to individual worker nodes.
The granularity of work decomposition and distribu-
tion is determined by the defined simple operators.
Clients submit SIGs to the QDM, which is responsible

of planning andmonitoring their distributed execution.
As soon as a new SIG is received, the QDM must
decide an initial partitioning, in order to determine
its distributed execution among the available QRNs.
The QDM takes this decision by running an operator
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Figure 4. A Quasit domain includes one QDM (conceptually cen-
tralized entity with monitoring and management responsibilities)
and several QRNs as middleware instances performing the actual
stream processing.

placement algorithm that exploits information about
the current status of the QRNs in the domain
(e.g., the list of operators already running and their
resource availability) to optimize the execution cost
of the SIG according to the enforced QoS-aware
cost function. The development of a proper cost
function and placement algorithm is one of our
main research challenges: in the current prototype
we are exploring a greedy algorithm, called affinity
placement, which sequentially assigns every operator
to the QRN that minimizes its local execution cost,
and two additional more trivial algorithms, primarily
used as comparison references, i.e., uniform and random
placement, which respectively distribute the operators
uniformly (according to a topological ordering of
graph vertices) and randomly on the QRNs. Although
conceptually centralized (and currently implemented
in a centralized way), let us point out that the
QDM does not represent a bottleneck for the Quasit
architecture, because it is not directly involved either
in data processing or in any data transfer. Moreover, we
plan to implement resilience to QDM failures through
traditional replication techniques applied to the only
QDM entity [18].
A QRN implements a QoS-aware execution container

for Quasit operators and is responsible for offering them
scheduling and communication support. Reflecting
the operator model, the QRN execution model is
asynchronous and event-based. Communication between
operators is managed by the set of distributed QRNs
according to a PUB/SUB interaction model: every
output port of operators (or data sinks) running on a
QRN associates with a named endpoint; QRNs subscribe

to all the endpoints associated with the input ports
of operators (and data sinks) that they are running,
and store the samples from these subscriptions in
event queues associated with the input ports. A pool
of executor threads is used to pick samples from the
queues, dispatch them to their destination operators,
and execute the associated processing function.

4.2. QoS Management
QoS policies defined at model-level on Quasit SIGs
are enforced at runtime thanks to a two level
QoS-management architecture, realized through the
interaction of one domain QoS manager, running within
the QDM, and several node QoS managers, one for
each QRN. The domain QoS manager performs global
admission control and QoS-based system configuration,
while node QoS managers leverage the computational
resources of the QRNs on which they execute to
implement and enforce the requested QoS policies on
locally running operators and I/O ports.
In order to provide deeper andmore detailed insights

about this QoS management scheme, let us briefly
examine its role in the process of deployment and
execution of a SIG. At deployment time, the domain
QoS manager, after having checked whether the QoS
policies applied to the SIG are self-consistent, performs
a translation phase, during which user-level QoS
policies are transformed to implementation specific
configuration parameters, which are sent to QRNs
inside operator deployment commands. For example,
QoS policies on channels, such as the delivery semantics
policy, are translated into configuration parameters for
the PUB/SUB protocol and for the network queues used
by the ports corresponding to the channel endpoints.
Node QoS managers use these data to provide an
initial configuration for the instances of operator
and ports they are responsible of. At execution time,
QoS monitoring tasks are cooperatively performed
by domain and node QoS managers: node managers
continuously collect data about the behavior of their
locally running components, and try to autonomously
adjust their configuration to avoid possible QoS
violations; for example, they can reallocate their local
resources by giving a greater share to operators with
higher priority. This way, most QoS management
decisions are taken and enforced locally by node
QoS managers, thus relieving the central domain QoS
manager from this load and improving the system
scalability. Actions by the domain QoS manager are
only necessary in a limited set of situations, when global
knowledge is needed or when the adaption actions
of single local managers are no longer sufficient to
avoid QoS violations. For example, it is up to the
global QoS manager to decide whether to move an
operator from a QRN to another in case of system
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overload. This design aims at avoiding the domain
QoS manager to represent a bottleneck for system
scalability, by demanding as many decision as possible
to the local managers. We are planning to perform
through measurements to quantitatively evaluate the
effectiveness of this solution (see Section 7). However, it
is possible that, for very large scale scenarios (e.g, with
thousands of nodes), the QoS management duties on
the single QDM could become overwhelming: to deal
with such cases a possible solution could be a further
hierarchical partition of management responsibilities,
where the set of all QRNs is divided into separate QoS-
management clusters, each supervised by a different
cluster head.

4.3. Implementation Insights
Our QDM and QRN components are realized using the
Scala6 programming language. Scala has been preferred
to other possible alternatives for three main reasons.
First, the language runtime comes with a rich library
that offers an excellent support for writing concurrent
and multi-threaded applications. Second, its elegant
and concise syntax allows us to simplify the design
of the user API through which developers model
their stream processing problems. Third, Scala code,
once compiled, is executed on the solid and widely
supported Java Runtime Environment.
Quasit PUB/SUB interactions are instead realized

on top of the OMG Data Distribution Service (DDS)
[27] middleware, which is used as the basis for both
reliable group membership management and inter-
QRN SIG channels. The choice of using a DDS-based
communication middleware grants several benefits.
First, DDS message dissemination uses an IP-multicast-
based protocol that well fits the typical one-to-
many communication patterns of Quasit operators
and perfectly adapts to network characteristics of
data-centers where nodes are commonly arranged
in a hierarchy of Ethernet segments, connected by
layer2 switches. Second, the DDS standard defines
a rich set of QoS parameters, that can be used to
configure and personalize many low-level details of the
communication middleware: using DDS to implement
our PUB/SUB communication layer has provided us
with a solid ground on which we build our ad-hoc
QoS enforcement mechanisms, especially those relative
to channels. Whenever possible, in fact, we exploit
mappings between high-level Quasit QoS policies
and possible configurations of the various DDS QoS
parameters, and set up the QRN networking layers
according to them.
Finally, the scheduling of actors and the management

of their queues is currently implemented using

6 http://www.scala-lang.org/, last accessed in August 2013.

the Scala Actors framework [20]: every operator is
represented by an actor instance, which perfectly
suits our event-based processing model. Currently, the
scheduling of these actors is taken care by a work-
stealing pool of threads based on the Java Fork/Join
framework [24]. This scheduler, in the currently
available version of the Quasit prototype, does not
permit any QoS-based configuration: we plan to add
this feature as a future implementation step.

5. Experimental Evaluation of Quasit Performance
In this section we present some first preliminary
results collected while testing our Quasit framework
prototype in a relatively small-scale deployment
environment. Although the deployment does not reflect
the characteristic of our target scenarios completely, its
simplicity permits to easily measure and evaluate basic
system characteristics, such as the effectiveness of the
platform communication and threading mechanisms.
We believe that the reported results demonstrate the
feasibility and the effectiveness of our approach, and
represent an important starting point for a future, large
scale evaluation campaign on real-world use cases.
The selected and simple test scenario consists of an

external source producing a periodic stream of image
frames. For instance, this stream could correspond to
the sequence of key frames of a video produced by a
security camera. These image samples are transformed
through a series of manipulation steps, and then
streamed again to an external destination. The samples
generated from the source correspond to the repetition
of a 192x128 24bpp PNG image, which is a scaled
version of one of the photos from a Kodak public test
set7. The size of each sample is approximately 43 KB.
We have modeled the image manipulation process

as a pipeline of Quasit operators, whose processing
function is implemented as stateless OpenCV8-based
transformations. The combination of these operators
forms a 30 steps pipeline-shaped SIG (as shown
in Figure 5) deployed and ran on top of the
Quasit framework prototype. All the stages of this
pipeline have approximately the same computational
complexity. Let us note that this simple scenario
is anyway highly representative because i) pipeline-
shaped patterns are very common in more complex
SIGs and ii) the number of involved operators (30) is
relatively high and close to the real size of many SIGs of
practical application interest.
The testbed Quasit domain consists of one machine

running the QDM component, plus from one up to

7kodim23.png, publicly available at http://r0k.us/graphics/

kodak/, last accessed in August 2013.
8OpenCV, http://opencv.willowgarage.com/wiki/, last accessed
in August 2013.
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Figure 5. The simple and pipeline-shaped SIG used in this
experimental evaluation.

Table 2. Hardware and software configuration of QRN nodes.

Host: Intel Pentium Dual-Core E2160 @ 1.80GHz
Main Memory: 2 GB
Network Interface: Gigabit Ethernet
OS: Ubuntu 11.04 (Linux kernel 3.0.0)
DDS: OpenSplice DDS 5.4.1 Community Edition
Scala: 2.9.1-final
JVM: OpenJDK 64-bit Server VM (IcedTea7-2.0 build 147)
JVM Flags: -Xms128M -Xmx512M -Xss4M

four different physical nodes having the role of QRNs.
The QRNs are interconnected through one Ethernet
segment, while the QDM, although in the same IP
subnet, is separated from the QRNs by two switches.
The machine hosting the QDM is also used as the
external source and sink of the image frames. The
hardware and software configuration of the machines
is shown in Table 2.
In each experiment run, we feed the deployed SIG

with 500 image samples, not counting “warm-up” and
“cool-down” sets of samples processed when the SIG
pipeline is not full. For each configuration, we have
collected the results of 15 to 50 runs of the same
experiment (depending on the variability of results).
The experimental results reported in the following

aim at discussing three main aspects that we have
measured on our testbed:

• The management overhead with respect to an
ideal parallel processing scenario.

• The ability to scale horizontally, by dynamically
adding QRNs to one Quasit domain.

• A preliminary performance comparison with
Apache S4, a state-of-the-art stream processing
engine by the Apache Software Foundation.

5.1. Comparison with Ideal Parallel Processing
In order to quantitatively evaluate the overhead
imposed by the Quasit middleware (if compared
with the maximum possible improvement of stream
processing performance thanks to parallel execution),
we have also designed a very simple simulator that
models our scenario but omits all the overhead
associated with middleware-level management of
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Figure 6. Distribution of sample processing time with 4 QRNs
and uniform operator placement. The dashed line represents the
performance upper bound in ideal conditions.

operators (including operator scheduling) and inter-
QRN network communication. The simulator models
a group of parallel workers arranged in a pipeline;
their number reflects the number of available CPUs
across all the QRNs. OpenCV transformations of the
original SIG are distributed evenly among workers,
and each of them executes sequentially, for each
incoming sample, the transformations it is responsible
for, before forwarding it to the next worker. In the
simulations, we measure the average time needed to
perform a complete processing of an image sample by
varying the rate at which new samples are produced,
and we compare the results with the performance
data obtained on a real deployment environment with
4 QRNs in a Quasit domain (operators deployed
according to the uniform placement strategy). In the
real deployment environment, image processing time
is measured as the sample round trip time (RTT), i.e.,
the time interval between the generation of a new
frame and the reception of the processed version of
that frame (recall that the external source/sink of the
input/output streams coincide in our simple pipeline-
shaped test SIG). Figure 6 shows the distribution of the
measured RTTs while increasing generation rates in the
real deployment and the average processing time in the
“ideal” simulated scenario.
Clearly, in both cases, the processing time increases

abruptly as soon as our Quasit framework is no longer
able to keep up with image production rate and the
input queue of the first operator (worker) starts filling
up. For low sample rates, Quasit performance is very
close to the ideal one, thus demonstrating the very
limited platform overhead in unloaded conditions; the
difference tends to grow as the input rate increases;
we experienced that this is mainly due to the overhead
introduced by operator scheduling, which is completely
neglected in the simplified simulated scenario.
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Table 3. Critical input rates and speed-up with different numbers
of QRNs

# of QRNs critical input rate speed-up
1 5 samples/s 1
2 9.10 samples/s 1.82
3 12.5 samples/s 2.5
4 16.7 samples/s 3.34

5.2. Quasit Horizontal Scalability
About our second evaluation goal of verifying the
ability of Quasit to scale as additional QRNs are added
to a domain, we have deployed the same test pipeline-
shaped SIG on four different execution environments,
with respectively one, two, three, or four QRNs. In all
cases we have deployed the graph using the uniform
placement strategy.
Figure 7 shows the results. The trend of the

curves is the same in all the examined domains:
as long as the production rate does not exceed the
maximum processing rate in unloaded conditions, the
average sample RTT is constant and low (around 450
milliseconds); as soon as Quasit is no longer able to keep
up with the sample arrival rate, the average processing
time starts to grow. However, the results show that
by adding processing resources to one Quasit domain,
it is seamlessly possible to increase the Quasit ability
to serve more aggressive input rates, with reasonably
limited overhead. Table 3 shows how the critical sample-
rate (i.e. the data rate at which the system starts to
be overloaded and accumulate samples at the operator
queues) varies by adding additional QRNs. Clearly, the
speed-up values do not grow with a perfect linear trend
with the number of QRNs, because of the overhead
due to management and network communication, but
still the performance degradation is very limited.
However, the system ability to scale horizontally also
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Figure 8. Overhead (in terms of extra resources needed) when
adding additional QRNs

depends strongly on the characteristics of the SIGs
being executed: for this reason, Quasit fosters a SIG
design made of many fine grained components sharing
no state, giving the framework many parallelization
opportunities to be exploited according to the required
QoS level and resource availability.
In order to estimate the cost of the management over-

head when a Quasit deployment is scaled horizontally,
we focused on the scenario with the lowest input rate
(i.e. 2 samples/s). Note that, in this scenario, a single
QRN has enough resources to keep up with the data
input rate: by measuring the amount of extra resources
needed to process the same data stream in deployments
with 2, 3 and 4 QRNs we can effectively estimate the
management overhead cause by the additional running
processing nodes. Figure 8 shows the percentage of
extra CPU Time and memory needed to process the
same stream of 500 image samples, when the Quasit
deployment is over-provisioned with additional QRNs.
The amount of CPU Time required, which in the 1 QRN
case amounts in average to 201.81 seconds, increases
up to 239.40 seconds in the case of 4 QRNs (less than
20% more). The increase in the amount of memory
consumed, instead, is remarkably more significant: if
105.86 MB are consumed on average on a 1 QRN de-
ployment, the 4 QRNs one consumes on average, in the
same scenario, about 223 MB, i.e. more than double the
resources. This is not really surprising, since the extra
nodes running the additional QRNs need to instantiate
their own Java Virtual Machines, which in turns load all
the classes and instantiate all the objects needed for the
management of the QRN itself.

5.3. Preliminary Performance Comparison with
Apache S4

Finally, we report here a set of results that compare the
performance of our systemwith Apache S4. The Apache
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S4 project8, initially developed and maintained by
Yahoo! [26], is probably the research effort closest to our
Quasit proposal. As Quasit, S4 lets users freely define
stream analysis graphs and PEs; in addition, inspired by
MapReduce, S4 permits to partition streams according
to user defined keys. The platform instantiates PEs
based on the graph layout and on the keys dynamically
found in the data, guaranteeing that, within a stream,
samples with the same key are always processed by
a unique PE instance. According to the project Web
site, S4 has been used in several production systems at
Yahoo! before being released to the public under open-
source license in October 2010; by the end of 2011 it was
accepted under the Apache Incubator project umbrella.
In the experiments presented here, we used the 0.6
release, code-named piper, which we pulled from the
project’s git repository.
Through the S4 API we modeled the same pipelined

OpenCV image processing scenario we implemented in
Quasit, and executed it on our testbed. Unfortunately,
we were not able to control the placement algorithm
used by S4 to deploy operators on different nodes, and
we had to adopt the default algorithm, which assigns
PE instances to nodes according to a hash function
applied to stream keys; in our pipeline scenario, where
the key of each edge connecting consecutive processing
steps is constant, this means that S4 will create one
PE instance for each processing step. Note that, being
the placement of these instances based on the result
of a hashing function, it will be, in general, totally
unaware of the graph communication characteristics.
For this reason, to avoid an unfair comparison, for the
following set of results we configured Quasit to use
a random placement algorithm, which is equivalently
unaware of any graph characteristic. As in the previous
group of experiments, in each run, we feed the pipeline
application deployed on S4 with 500 samples and
measure the sample processing time. Again, before
starting the measurements, we perform an initial
warm-up by generating a preliminary low-rate input
sequence. All the reported results are average values
over 10 runs for each configuration.
In Figure 9 we show the results for the cluster con-

figuration with four QRNs/S4 nodes, and in Figure 10
we summarize the variation in the average sample RTT
for all the tested deployment configurations. It can be
observed that Quasit outperforms S4 for what concerns
the average sample processing time, thus showing that
our prototype exhibits a very limited overhead. More-
over, the difference between the two system is largely
more marked in the deployment with just one process-
ing node. It is likely that this is the consequence of

8Apache S4 project Web site, http://incubator.apache.org/s4/.
Last visited in August 2013.
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the different threading architecture of the two systems:
while Quasit leverages a pool of threads whose size
is proportional to the available CPU cores (two on
the machines in our testbed) and independent from
the number of locally deployed operators, S4 creates
a new thread for each data stream in the application
graph (in our scenario this corresponds to one thread
per local PE instance, plus one on the node where the
sink is deployed). This causes higher contention for
the available processing resources and greater thread
scheduling overhead, in the common cases where the
number of “active” components on a single host (oper-
ators for Quasit, streams for S4) is significantly bigger
than the number of available processing units. Our
DDS-based networking solution should also give us
some advantage, in terms of serialization space effi-
ciency (DDS serialization format is based on the OMG
CDR standard, while S4 uses a custom solution based
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on the Kyro9 serialization framework), but also, and
most importantly, in scenarios presenting several one-
to-many communication patterns: in these situations,
the implementation of operator channels over IP mul-
ticast could provide significantly reduce network over-
head compared to the TCP based solution used by S4
(internally based on the JBoss Netty framework10). We
are planning extended comparative analysis focusing
on the usage of the network in different scenarios to
validate the above claims.
As a final remark, it is important to consider that,

while in this scenario we used very simple placement
strategies (uniform and random) due to the simplicity
of the pipelined processing scenario, in a more general
scenario Quasit could effectively exploit additional
application-level knowledge, provided in the form of
QoS specification attached to part of user graphs,
for example by using smarter placement strategies,
or by dynamically modifying its thread scheduling
mechanisms (e.g., enlarging the thread pool size if
operators perform many I/O operations).

6. Related Work
In recent years, there has been an increasing trend
shifting the processing load of complex application
and services inside data-centers [8] thanks to the ease
at which cheap storage and computational resources
can be reached on the cloud [5], but also thanks to
the flourishing of highly parallel, scalable, and fault-
tolerant hardware and software architectures and data
processing paradigms. The most popular model for
processing large datasets inside data-centers is certainly
MapReduce [14], which has received a lot of attention
thanks to its ease of use and the diffusion of open
source implementations, such as Apache Hadoop11. In
MapReduce, developers have to model their processing
problems in terms of map and reduce functions.
Leveraging this constraint, the MapReduce runtime
takes care of efficiently running the defined functions
against input data while providing fault-tolerance and
horizontal scalability. This programming model makes
the simplifying assumption that input consists of static
datasets stored in a distributed file system such as
GFS [17], and, thus, is not appropriate for dynamic
streaming processing scenarios where input data cannot
be statically known.
Given the industrial success of MapReduce, several

authors have tried to enhance it with more dynamic and
advanced stream processing capabilities. For example,

9Kyro project Web site, http://code.google.com/p/kryo/. Last
visited in August 2013.
10Netty project Web Site https://netty.io/. Last visited in August
2013.
11http://hadoop.apache.org, last accessed in August 2013.

[4, 19, 25] leverage a map-reduce-merge strategy
(originally proposed by [28]) to run MapReduce jobs on
datasets that are dynamically created as the result of
windowing operations on data streams; partial output
from these jobs is then joined through the additional
merge step. DEDUCE [22] permits to define MapReduce
operators through an extension of the SPADE language
[16], and to use these operators within an IBM
InfoSphere Streams processing graph; DEDUCE jobs
can run on either static datasets or, as in the previously
cited approaches, sliding windows over streaming data.
In [13], instead, the authors propose HOP, a modified
version of Hadoop that, by supporting intra- and
inter-job pipelined communication between map and
reduce tasks, permits to run continuous MapReduce
jobs. All these examples show the interest in extending
MapReduce to solve stream processing problems that
can be modeled as a sequence of batch jobs working
on slices of input streams. However, we claim that,
by using a model that is inherently designed to work
with static input, these solutions cannot offer the
flexibility of a native stream-oriented programming
model and are often inadequate to effectively deal with
the dynamic characteristics of streaming data, such as
highly variable sample rate.
Some existing solutions, similarly to Quasit, use di-

rected graphs to model stream processing problems
and to distribute processing responsibilities on avail-
able nodes. The Stanford Stream Data Manager [7],
and the Aurora [12] projects are two early examples
of data stream management systems; coming from the
databases community, they introduced the concept of
continuous queries over data streams by defining specific
query languages and algebras [1]. The two systems have
a centralized architectures that limit their ability to
scale to large data-streams. The Borealis Stream Pro-
cessing Engine [2, 3] extends its predecessor Aurora,
and it leverages the resources of a set of distributed
nodes to handle user-defined query diagrams, in which
a limited set of pre-defined relational-like operators are
arranged. Very interestingly, Borealis allows developers
to define QoS specifications for the output of their
query diagrams: it is possible to estimate the output
quality as a function of response times, event drops, or
specific (and user-defined) event values. Quasit adopts
these solution guidelines by improving and extending
them: Quasit users can additionally define their own
operators by directly programming them, and acquire
a more direct control of quality-related parameters of
every part of the processing graph.
Dryad [21] by Microsoft Research also models

computations as directed acyclic graphs. In Dryad
graphs, vertices are mapped to native programs that are
executed — each in its own process — by the Dryad
framework: mainly because of the overhead associated
to spawning and managing full processes, the grain
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of Dryad computational components is coarser than
Quasit operators, which, instead, are very lightweight
objects confined in the Java Runtime Environment. In
addition, while Quasit specifically targets continuous
stream processing, Dryad, like MapReduce, seems more
oriented to the execution of batch-like jobs where input
datasets are fixed and known a priori.
Also SPC [6], the core of IBM Infosphere Streams [16],

and S4 [26], a project initially developed by Yahoo!
and now maintained by the Apache Foundation8, share
some similarities with Quasit in terms of goals and
solution guidelines. Both let developers model their
continuous stream processing problems as graphs of
Processing Elements (PEs), which, similarly to Quasit
simple operators, may be user-defined. The main
difference between Quasit and these two projects is that
our proposal is primarily focused on the support of a
rich set of QoS-related parameters to customize stream
processing behavior, while SPC and S4 do not allow rich
QoS specifications.

7. Conclusive Remarks and Future Work
In this paper we have introduced Quasit, both a
programming model and a framework prototype for
scalable, reliable, and quality-aware stream processing.
The design of Quasit was guided by the need of
having a robust and cost-effective data processing
layer, capable of well fitting large-scale deployment
scenarios where the awareness of differentiated quality
requirements could be exploited to take proper
decisions about the most suitable dynamic trade-off
among latency, completeness, precision, and accuracy.
These characteristics make Quasit especially suited
to crowdsensing application scenarios, with i) large
variability and unpredictability of input load (with
possible frequent peaks, also including very redundant
information) and ii) variable quality of the data to
analyze and of the contribution that these data can
bring to different application goals.
Our first prototype of the Quasit runtime, although

still partial, represents a concrete proof-of-concept of a
possible implementation of the proposed model (avail-
able for extension and refinement to the community
of researchers/practitioners in the field), is showing
the feasibility of the approach, and is encouraging our
further development efforts. In particular, we are con-
centrating our future work along two main directions.
On the one hand, we will extend our prototype toward
the implementation of a richer set of QoS policies for
SIG operators and channels, and we will experiment
alternative operator placement andmanagement strate-
gies. On the other hand, we are performing a more
significant set of experiments to verify the ability of
our Quasit model and prototype to sustain challenging
large-scale deployment environments, with a special

focus on dynamic differentiation of stream processing
services depending on QoS requirements specified at
the SIG level. In this context, we plan to extensively
evaluate the effectiveness of our distributed and hierar-
chical QoS management architecture, especially when
the scale of applications and data grow.
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