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Abstract

Delay Tolerant Networks (DTNs) are an emerging type of networks which do not need a predefined
infrastructure. In fact, data forwarding in DTNs relies on the contacts among nodes which may possess
different features, radio range, battery consumption and radio interfaces. On the other hand, efficient message
delivery under limited resources, e.g., battery or storage, requires to optimize forwarding policies. We tackle
optimal forwarding control for a DTN composed of nodes of different types, forming a so-called heterogeneous
network. Using our model, we characterize the optimal policies and provide a suitable framework to design
a new class of multi-dimensional stochastic approximation algorithms working for heterogeneous DTNs.
Crucially, our proposed algorithms drive online the source node to the optimal operating point without
requiring explicit estimation of network parameters. A thorough analysis of the convergence properties and
stability of our algorithms is presented.
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1. Introduction
Delay Tolerant Networks (DTNs) are designed to sustain
communications in networked systems, where persis-
tent end-to-end connectivity cannot be guaranteed [1–
3]. In DTNs, messages are carried from source to desti-
nation via relay nodes adopting the so-called “store and
carry” forwarding, which leverages on nodes’ mobility
pattern. The key problem in DTNs is thus to efficiently
route messages towards the intended destination. It
is worth observing that traditional routing techniques
would fail in this context due to frequent disruptions.
Furthermore, mobile nodes rarely possess information
on the upcoming encounters they are going to experi-
ence [4]. A number of schemes have been proposed for
efficient message forwarding in DTNs [3, 5, 6].
Disseminating multiple copies of the message in

the network is the straightforward routing solution
to overcome disconnections. This ensures that at least
some of them will reach the destination within some
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deadline [7, 8] with high probability. This technique is
named epidemic forwarding [9], in analogy to spread of
infectious diseases.

In literature, several variants of epidemic forwarding
exist, including spray and wait [7] and two hop routing
protocol [10], implementing different trade-offs between
delay and number of released copies. We confine our
analysis to the two hop routing protocol because of two
major technical advantages: first, compared to plain
epidemic routing it performs natively a better trade-off
between the number of released copies and the delivery
probability [8]. Second, and most relevant with respect
to the algorithmic design we propose later, forwarding
control can be fully implemented on board of the source
node. Under two hop routing, the source transmits a
message copy to mobiles it encounters. A relay forwards
the message copy it has to the destination only.

In some literature on DTNs, a common simplifying
assumption (adopted for modeling reasons) is that
DTN nodes have all similar physical characteristics,
e.g., transmission range, mobility patterns, etc. Thus,
the network is assumed to be homogeneous. Under
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this assumption, recent work provides insight into the
performance of DTNs [8, 10, 11].
However, it is clear that DTN nodes may belong to

different categories, e.g., mobiles, laptops, PDAs and
thus differ in their transmission range, mobility, etc. A
DTN with different types of nodes in turn is classified
as heterogeneous [12–14]. To this respect, our starting
assumption, as in [12] and [13], is that according to
their physical characteristics, nodes group into classes
homogeneous with respect to routing. More precisely,
two nodes belong to the same class if they have same
intermeeting intensities with source and destination nodes,
i.e., the intensities by which they meet source and
destination are the same.
In this context, the fundamental question that

arises naturally when one models the trade off of
network resources for delivery probability (namely, the
number of messages or the energy expenditure), is
how to exploit diversity of contact patterns to improve
performance.
The structure of the paper is as follows. In the next

section, we discuss related work and then identify the
main contributions of the paper. Section 3 introduces
the model. We identify the problem in section 4.
In particular, we first aim at deriving the closed-
form structure of the optimal forwarding policy for
heterogeneous DTNs, both for static and dynamic
control policies. Leveraging on the properties of the so
determined optimal forwarding policy, in section 5 we
design online algorithms which are able to converge
to the optimal control policy over time. In particular,
we first present the static algorithm then we make a
step forward by introducing the dynamic algorithm
that uses two-time scale stochastic approximations. It is
worth noticing that one of our objectives is to show that
online implementation of these algorithms can be made
in such a way to depend only on local knowledge at
source nodes. We provide extensive numerical results to
validate our theoretical derivation in section 6. Section
7 concludes the paper.
In literature, some attempts to address optimal con-

trol for heterogeneous DTNs have been performed in
[14] and [13]. The algorithmic formulation that we
provide here introduces not only a closed form descrip-
tion of the optimal policy, but also an algorithmic
distributed implementation suitable for disconnected
operations.

2. Related Work and Contribution

With the aim of optimizing network performance,
several previous works addressed the control of
forwarding schemes in DTNs [4, 8, 10, 11]. The work
[10] proposed to control two-hop forwarding and
optimized the system performance by choosing the
average duration of timers for message discarding.

Authors of [8] considered a homogeneous network and
described a general framework for the optimal control
of monotone relay policies. The optimal control was
proved there to be of dynamic type; the first work
claiming the optimality of dynamic policies was [11],
limited to epidemic routing. In line with [14], our
formulation builds also on multidimensional control,
which results in existence of several thresholds. We go
a step forward by describing the closed form structure
of the optimal control. Also, we extend the approach
in [15] leveraging stochastic approximation algorithms
because they overcome the explicit estimation of
network parameters. In fact, such an estimation is
per se a difficult task in disconnected systems [16].
Furthermore, we observe that this operation becomes
critical in the case of multiple classes of mobiles since
a number of such estimates would be required.

In literature, the heterogeneity in mobile ad hoc
DTNs is well documented [17, 18]. However, very
few papers addressed this aspect from the modeling
perspective. One such work is [13]; the authors assume
that nodes may migrate from one class to another.
In our framework nodes are fixed within one class.
Also, in [19], the authors showed that the presence of
heterogeneity has controversial effect on the delivery
probability. I.e., it cannot be related in a straightforward
manner to the performance of the system. In [14] a
general setting for the optimality of controls of a DTN
was presented. In [12], a routing scheme was proposed
in heterogeneous DTNs based on the use of history
information to identify the nodes of "highest utility"
for routing. In algorithms we present here, source will
forward the message according to the node’s class and
no other a priori information is needed for the source to
take the forwarding decision.

Novel Contributions. The main contributions of this
work are the following. First, we introduce a new
perspective of the optimal forwarding problem in DTNs
and characterize its structure. Second, based on this
characterization we introduce a class of stochastic
approximation algorithms that attain optimality when
multiple classes of relays exist and can operate at
runtime in spite of the lack of full information on the
network state. Moreover, we deeply investigate these
algorithms’ performance and rigorously prove their
convergence to some limit set of Ordinary Differential
Equations (ODEs), then we use Lyapunov functions to
confirm their stability.

Our work focuses on proposing a general algorithmic
approach to optimize forwarding control in a distribu-
tive and energy efficient fashion when many classes
of nodes co-exist. We believe this approach could be
extended to account for protocols other than two hops.
In order for this method to be operational in such
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scenarios, message replication control could be decen-
tralized in a way that each relay node can control and
keep track of the number of message copies it forwards.

3. System Model

Table 1. Glossary of Notations

Symbol Meaning
N + 2 number of nodes
Ni number of nodes of class i
λsi pairwise intermeeting intensity for

node i with the source
λid pairwise intermeeting intensity for

node i with the destination
τ timeout value
∆ time slot
K ⌊τ/∆⌋

Xi(n) number of infected nodes of class i at
time n∆, (xi at n=0)

Ψ energy constraint
Ψi Maximum number of nodes of class i

that can be infected
FD (t) delivery probability at (t)
U(.) transmission control vector
Ui(n) forwarding probability to class i at

time n∆
ΠI (w) projection over I of the value w
hi the switch time of a dynamic policy of

class i
θi =

∑K−1
k=0 Ui(k)

Consider a network ofN + 2mobile nodes (composed
of m classes), each equipped with some form of
proximity wireless communications. One node, source
node, has a message to be sent to a destination
node. The network is assumed to be sparse, so
that, at any time instant, nodes are isolated with
high probability. Communication opportunities arise
whenever, due to mobility, two nodes get within
reciprocal communication range; such events are often
named contacts. For the ease of reading, we collect all
the main symbols used in the paper in Table 1.
The time between contacts of any two nodes, referred

to as intermeeting times, is assumed to be exponentially
distributed 1. The contact rate is known to converge to a
quantity that is independent of number of mobiles N in
the network when the N grows large, under the fluid-
approximations (see [12, 21, 22]). The validity of such a
model has been discussed in [20], and its accuracy has
been shown for a number of mobility models (Random

1 The inter-meeting rate is a function of number of nodes, reciprocal
transmission power of nodes, mobility parameters, etc. [20]

Walker, Random Direction, Random Waypoint) [8, 15].
There exist studies based on traces collected from
real-life mobility [1] arguing that intermeeting times
may follow a power-law distribution. In [12], it has
been shown that the traces and many other exhibit
exponential tails after a cutoff point. We choose the
exponential intermeeting times model due to the
mathematical tractability and the above reasons.

Heterogeneity. Mobiles can have different physical
characteristics, such as transmission power, mobility,
etc. In our model, nodes’ heterogeneity is captured by
the distribution of intermeeting times. In particular,
intermeeting intensity parameters capture the physical
characteristics of nodes [21], dictating the rate at which
two nodes meet. More precisely, node i from class k
is represented by the tuple λki = {λsi , λid}

k where λsi
(resp. λid) refers to the inter-meeting intensity of the
node i from class k with the source node (resp. with the
destination node). We denote the number of mobiles in
class k by Nk ≥ 1, therefore the total number of mobile
nodes in m classes are

∑m
k=1Nk = N . We refer to the m

class system as the m-dimensional (mD) system for the
sake of brevity.
There can be multiple source-destination pairs, but

we assume that at a given time there is a single message,
generated by a tagged source node. The message may
eventually have many copies spread in the network.2

For simplicity, we assume that a message is generated at
time t = 0 and it remains relevant for some time τ . We
do not assume any feedback that allows the source or
other mobiles to know whether the message has made
it successfully to destination within the allotted time τ .
We adopt a probabilistic two-hop routing protocol

according to which the source passes the message to
mobiles that do not have it with some probability U ∈
[umin, umax]. But, a relay node transmits the message
only when it meets the destination node. Such relay
policy is monotone [8] because the number of copies of
the message increases over time. The message is called
delivered when the destination receives the first copy of
the message.
The problem we address in this paper is to design

online algorithms that drive the source node to an optimal
operating point. An optimal operating point is such if the
corresponding forwarding policy maximizes the probability
to deliver the message by time τ under the constraint on the
amount of energy spent by the source.

2Results in the subsequent sections are valid for multiple
simultaneous source-destination pairs. But, we should additionally
assume that the bandwidth is large enough to ensure that the different
forwarding processes are independent, though limited to one message
per source. Source s, destination d and theN relays can be accordingly
reindexed and the analysis in the subsequent sections remains valid
for any such pairs.
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The energy spent by the source node relates to the
number of message copies transmitted. We assume that
the energy spent by relay nodes is not a constraint. In
fact, under two hop forwarding relays have to transmit
at most once. In particular, we assume that i) each
transmission consumes a constant amount of energy,
and ii) all other activity requires negligible amount
of energy. Under these assumptions the source node
spends an energy amount that is proportional to the
number of message copies.
A naive way to maximize the delivery probability is

to maximize the number of infected nodes. However,
under the constraint on the source energy budget we
need to tackle an optimal forwarding control able to
account for heterogeneity of the relay nodes.
We adopt a discrete time model where the time axis is

divided into slots of small duration ∆. Time slot k is the
interval [k∆, (k + 1)∆] and the number of slots is equal
toK = [τ/∆]. Moreover, the control during [k∆, (k + 1)∆]
is a constant, denoted by U (k).

Forwarding Control. The source node has the possibility
to control dynamically the forwarding process to
relay nodes: it will forward to nodes in class i with
probability Ui . This will slow down the generation of
message copies within class i, where Ui : {0, . . . , K −
1} → [u

min
, u

max
], i = 1, . . . , m. The control policy the

source uses can be expressed by the m-dimensional
control vector U = {U1, . . . , Um}.

Message Delivery Distribution. The source node aims at
maximizing the fluid approximation for the cumulative
distribution function (CDF) of the delay3 FD (t) :=
P (Td ≤ t). It is based on a generalization of [8]:

FD (t) = 1 − exp
(
−
∑
j

λjd

∫ t

s=0
Xj (s)ds

)
. (1)

Note that because of monotonicity, maximizing FD (t)
in (1) is equivalent to maximizing

∑
i λis

∫ t
0 Xi(s)ds.

Energy Consumption. Let ϵ > 0 be the energy consumed
by the source for transmission of a single copy of the
message. As explained in the previous section, energy
consumed by the source is significant as compared
to the energy spent by other relay nodes under two
hop routing. Thus, the total energy consumed by the
network to generate message copies during [0, τ] is

E(τ) = ϵ
∑
i

[Xi(τ) − Xi(0)].

3The controlled version reported in (1) derives from the separable dif-

ferential equation in the form d
dt FD (t) = limh→0

P[Td>t+h]−P[Td>t]
h =

[1 − FD (t)]
∑
j λjdXj (s).

Notice that the total amount of energy spent by the
source is proportional to the sum of messages (to all
classes) and is the same for each message irrespectively
of the mobiles’ class.

Optimization Problem. The source’s goal is to obtain the
multi class optimal policies by optimizing over the m-
dimensional control vector U = {U1, . . . , Um}, where Ui :
{0, . . . , K − 1} → [u

min
, u

max
], i = 1, . . . , m, which solves

max
U
FD (τ), subject to X(τ) · 1 ≤ Ψ , X(0) = x , (2)

where X(τ) · 1 =
∑
i Xi(τ). The initial condition X(0) =

{Xi(0), i ∈ {1, · · · , m}}, constraint Ψ and total number
of copies at time 0, i.e., x (where Ψ ≥ x 1) are input
for the optimization problem. The control vector is
U(·) ={Ui(·) : i ∈ [1, · · · , m]} with the m-dimensional
support U(·) ∈ [u

min
, 1]m. Recall that maximizing FD (τ)

is equivalent to maximizing
∑
j λjd

∫ τ
s=0 Xj (s)ds.

The optimal control problem reads

max
U

J =
K−1∑
t=1

∫ (k+1)∆

k∆

m∑
i=1

λidXi(t)dt, (3)

subject to X(τ) =
m∑
i=1

Xi(τ) ≤ ψ, (4)

where Xi(n) denotes number of mobiles, not including
the destination for class i, that have a copy of the
message at time n∆ (i.e. at the beginning of the n-
th slot), Xi(0) = xi . Under some standard assumptions,
it forms a Markov chain with possible states 1, . . . , N
(refer to [15]). It is characterized by

Xi(n + 1) = Xi(n) + (Ni − Xi(n))(1 − e−λsi∆Ui (n)), i = 1, . . . , m.
(5)

The objective functional can be rewritten (after
integrating (3)) as

J =
m∑
i=1

τNiλid −
λid
λsi

K−1∑
n=0

(Ni − Xi(n))
1 − e−λsi∆Ui (n)

Ui(n)
. (6)

This model provides a useful framework for the
subsequent algorithmic development that we detail
later in the paper.

4. Optimal Control
Our goal is to find the optimal transmission policy
for the problem stated in (2) for each class of
mobiles. In the following, we first obtain the optimal
policy from the static class of policies in which the
transmission control is time-invariant for each class
of mobile nodes. To avoid cumbersome notation, we
derive the optimal static control for two classes, which
can be easily extended for general m classes (we

EAI
European Alliance
for Innovation 4

ICST Transactions on Mobile Communications and Applications
01-12 2013 | Volume 01 | Issue 3 | e5



Online Algorithms in Delay Tolerant Networks

describe this extension later). Note that static control
is suboptimal with respect to dynamic optimal control
policies [8]. Yet, it is rather convenient for the sake of
implementation simplicity.
In the case of dynamic control policies, we will

also obtain the optimal policies, which turn out to
be of threshold type. Various methodologies have
been developed to establish the threshold structure
of optimal transmission policies in DTNs: one based
on the Pontryagin maximum principle [8], another
based on some sample path comparisons[15], some on
stochastic ordering, etc. These approaches, developed
in the context of DTNs with one type of population,
are not applicable to our problem since the model is no
longer scalar. Accordingly, we develop a new approach
that establishes the optimality of threshold type policies
for each class.
Denote Xi(τ) as the number of message copies the

source can transmit to nodes of class i by time τ without
any control, i.e. Ui = 1. Such transmissions are also
referred to as uncontrolled transmission [8]. Indeed,
a controlled dynamics simply refers to the slowed
down transmission [8, eq. 1] in which the number of
message under a control Ui is simply Xi(Uiτ). In our
multi-class structure, denoting U = {U1, · · · , Um} as the
control vector, we refer the total number of message
copies in the network by X ({Uτ}) which is the sum of
message copies over all classes, i.e. X ({U1τ, · · · , Umτ}) =∑m
i=1 Xi(Uiτ).

4.1. Optimal Static Control Policy
Our goal is to maximize FD (τ) while keeping E(τ) low
so as to satisfy

∑m
i=1 Xi(τ) ≤ ψ. In view of (1), this is

equivalent to maximizing
∑
i λis

∫ t
0 Xi(s)ds. The control

for class i is denoted by Ui under the static control
policy, a control that is constant over time. In what
follows, we derive the optimal static policy for 2D (2
node classes) for the sake of exposition clarity. In the
subsequent we illustrate that the method can be directly
extended for mD (m node classes).

Theorem 1. (Static Optimal Control-2D): Consider the
problem of maximizing FD (τ) subject to the energy
constraint E(τ) ≤ Ψ .

i. If X ({u
min
τ, u

min
τ}) > ψ, then there is no feasible

solution.

ii. If X ({τ, τ}) < ψ, then the policyU is optimal if and
only if U = {1, 1} for t ∈ [0, τ] a.e., otherwise,

iii. If X ({τ, u
min
τ}) ≤ ψ then the best static policy is

U = {1, v2}, where v2 is a constant.

iv. If X ({τ, u
min
τ}) > ψ, it is sufficient to swap the

class indexes in the above statement (for the case
iii)).

Static policy v2 is given as

v2 =
X
−1
1 (ψ − X −1(umin

τ))
τ

, and (7)

X −1(umin
τ) = X (u

min
τ) − X1(U1τ). (8)

Proof: Parts (i) and (ii) are obvious. We show part (iii)
and (iv) in the following. From (5), the number of nodes
with message copies for each class is simplyXi(t) = Ni −
(Ni − Xi(0))e−λsiUi t , 0 ≤ t ≤ τ . Hence, we can consider
ϕ the bijection such that ϕi(Ui) = Xi(τ), i = 1, 2. From
(1), maximizing FD (·) is equivalent to maximizing the
following (a function of (X1(τ), X2(τ))), and it reads in
particular

J(·) =
∑
i=1,2

λid

[
Niτ −

Xi(τ) − Xi(0)
λsiUi(Xi(τ))

]
, (9)

where ϕ−1(Xi(τ)) = Ui(Xi(τ)). Using (5), we have

Ui(Xi(τ)) = − 1
λsiτ

log
(
Ni−Xi (τ)
Ni−Xi (0)

)
. This (bijection) allows

the equivalence of maxima with respect to Xi(τ) to ui .

Denote L = {(X1(τ), X2(τ))|Xi(uτ) ≤ Xi(τ) ≤ Xi(τ), i =
1, 2, such that X1(τ) + X2(τ) ≤ ψ}. Indeed, since

∂Ui
∂Xi (τ)

>

0, it is easy to note that ∇J , 0 for all points that fall in
the interior of L. Moreover, we have

∂J
∂Xi(τ)

= − λidτ
λsiUi(Xi(τ))

[
1 +

Xi(τ) − Xi(0)
Ui(Xi(τ))

∂Ui
∂Xi(τ)

]
< 0,

where we used the fact that Xi(τ) > Xi(0), Ui(·) > 0 and
dXi (τ)
dUi

> 0 (from the rule of the derivative of the inverse
function) to determine the sign of the bracketed right
end product. Therefore, J(·) cannot attain its maximum
in the interior of L, so it does in the ∂L (on the
boundary). This is also depicted geometrically for the
cases ii) and iii) in Fig. 1.

Note, the term Xi (τ)−Xi (0)
Ui (Xi (τ))

has a negative gradient with
respect to Xi(τ), so that the maximum can only be
attained on the intersection of L with the line X1(τ) +
X2(τ) = Ψ . In the following, concavity of J(·) ensures
unique maxima on one of the boundaries.

The vectorial maximization of J(·) reduces to single
variable maximization due to restricting J(·) in the
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case iv)

X1(umin
τ) X1(τ)

X2(umin
τ)

X2(τ)

X1(τ) + X2(τ) = ψ

A

B

case iii)

X1(umin
τ) X1(τ)

X2(umin
τ)

X2(τ)

X1(τ) + X2(τ) = ψ
A

B

Figure 1. Geometric interpretation of Theorem. 1: case ii) and iii). The feasible region of X1(τ) and X2(τ) is depicted by horizontal
and vertical axis respectively. The shaded area represents the set of points satisfying X1(τ) + X2(τ) ≤ Ψ .

region ( X1(τ) + X2(τ) = Ψ ), e.g., Xi(τ),

J(X1(τ)) = λ1dτ

N1 +
X1(τ) − X1(0)

log
(
N1−X1(τ)
N1−X1(0)

)


+ λ2dτ

N2 +
Ψ − X1(τ) − X2(0)

log
(
N2−Ψ +X1(τ)
N2−X2(0)

)


= λ1dτN1

[
1 +

N1 − X1(0)
N1

f

(
X1(τ) − X1(0)
N1 − X1(0)

)]
+ λ2dτN2

[
1 +

N2 − X2(0)
N2

f

(
Ψ − X1(τ) − X2(0)

N2 − X2(0)

)]
,

where f (x) = x/ log(1 − x). To see that J(X1(τ)) is
concave, firstly f (x) = x/ log(1 − x) is a concave function
in [0, 1], since it is differentiable and f̈ (x) > 0 in (0, 1).
Furthermore, f (Ax + B) is still concave for any linear
combination of the argument Ax + B. Finally, any linear
combination of convex functions through nonnegative
coefficients is still a concave function.
Now, since J(X1(τ)) is a concave function in

[X1(umin
τ), X2(τ)], it attains its maximum at the extrema

of the segment, the points corresponding to A and
B in Fig. 1. The explicit form for parts (iii) and
(iv) is obtained calculating X1(v1τ), X2(v2τ) under
the assumption that U2 = u

min
and U1 = 1 is optimal,

respectively. This concludes the proof. ⋄

Remark 1. The explicit closed form of the optimal static
policy in parts (iii) and (iv) of theorem 1 can be easily
computed as

• The optimal policy for part (iii) is U = {1, v2} =
{1, −1λs2τ

log( N−ψ
N2−X2(0)

− N1−X1(0)
N2−X2(0)

e−λs1τ )}.

• The optimal policy for part (iv) is U = {v1, umin
} =

{ −1λs1τ
log( N−ψ

N1−X1(0)
− N2−X2(0)
N1−X1(0)

e−λs2τumin ), u
min
}.

Having illustrated the 2D optimal policy for static
control, we note that it can be directly extended to m-
dimensions. Without loss of generality, we assume that
the indexing of nodes is in the increasing order of the
value of λi for the following theorem. We denote by
ek(c) for the m-dimensional vector which has 0 on all
its components but for the k-th component has a value
c.

Theorem 2. (Static Optimal Control-mD): Consider the
problem of maximizing F̄D (τ), in a static policy for the
case of m classes (mD case), the following holds

i. If X ({1u
min
τ}) > ψ there is no feasible solution.

ii. If X ({1τ}) < ψ then the optimal control policy is
U = 1, otherwise,

iii. Counting down k from m to 1, for every k :

a. If X ({(1 − ek(1 − umin
))τ}) < ψ, then the opti-

mal control policy isU = {1 − ek(1 − vk)}, oth-
erwise,

b. If X ({(1 − ek−1(1 − umin
) − ek(1 − umin

))τ}) < ψ,
then the optimal control policy is U = {1 −
ek−1(1 − vk−1) − ek(1 − umin

)}.

iv. If X ({(1 −
∑m
k=1 ek(1 − umin

))τ}) < ψ, then the
optimal control policy is U = {1 − e1(1 − v1) −∑m
k=2 ek(1 − umin

)}.

The constant vk is given by

vk =
X
−1
k (ψ −

∑k−1
i=1 Xi(τ) −

∑m
i=k+1 Xi(umin

τ))
τ

.

Proof: The proof is a direct extension of the 2D case. ⋄

EAI
European Alliance
for Innovation 6

ICST Transactions on Mobile Communications and Applications
01-12 2013 | Volume 01 | Issue 3 | e5



Online Algorithms in Delay Tolerant Networks

4.2. Optimal Dynamic Control Policy
In what follows, we consider the problem of maxi-
mizing FD (τ) under the control U(k) ∈ [u

min
, 1]m. The

solution to the dynamic control problem will be shown
to consist of polices involving thresholds. With no loss
of generality, we consider the case of two classes (2D)
in the following analysis. It can be easily extended
to the mD case. This subsection provides the suitable
framework for the two-time scale dynamic algorithm
introduced later in the paper.

Definition 1 (Threshold policy). A mD threshold policy is a
control policy U : [0, τ]→ {u

min
, u

max
}m with the related

switching parameter hi for the i-th class if Ui(k) = umax
for k ≤ hi a.e. and Ui(k) = umin

for k > hi i.e. component
switches from u

max
to u

min
at most once. We denote hi

the switch time (the threshold) of a dynamic policy with
respect to the i–th component.

Let ψ1 be the maximum number of nodes of class 1
that can be infected: then the source can infect (ψ2 =
ψ − ψ1) nodes of class 2. Then, when the constraint is
saturated, the optimal threshold policy (U ∗1, U

∗
2) satisfies

the following relation

Si(ψi)
def=
K−1∑
k=0

U ∗i (k, ψi) = −
1

λsi∆
log

( Ni − ψi
Ni − Xi(0)

)
.

Let hi(ψi) the threshold for the optimal policy U ∗i . Then
we have

Si(ψi) = hi(ψi) · umax + (K − 1 − hi(ψi)) · umin + g(ψi),
(10)

where g(ψi) = − 1
λsi∆

log( Ni−ψi
Ni−Xi (0)

) − (hi(ψi) · umax + (K −
1 − hi(ψi)) · umin). Notice that (10) defines a bijection,
so that (U ∗1, U

∗
2) ∼ (ψ∗1, ψ − ψ

∗
1): we can now consider

the problem from slightly different perspective. The
source goal is to find the optimal ψ∗1 that maximizes
the delivery probability. The advantage of the new
formulation is that the joint constraint is replaced by
two separate constraints, one per class. In turn we can
express our initial optimization as

max
ψ1

J̄(ψ1) = max
ψ1

(J̄1(ψ1) + J̄2(ψ − ψ1))

s.t. X1(τ) ≤ ψ1, X2(τ) ≤ ψ − ψ1, (11)

where J̄i(·) is

J̄i(ψi) = τNiλid −
λid
λsi

K−1∑
k=0

(Ni − Xi(k, ψi))
1 − e−λsi∆.Ui (k,ψi )

Ui(k, ψi)
,

for i = 1, 2. Clearly, the solution of this new problem
solves directly the original optimization problem (3).

Theorem 3. There exists an unique optimal value (ψ∗1)
that maximizes the delivery probability in (11).

Proof:
In order to prove the uniqueness, it is sufficient to

prove that J is concave in ψ1. We start by proving that
J̄1(ψ1) is concave. From equation (10), it follows that
dg(ψ1)
dψ1

= 1
λs1∆

, then the derivative of function J̄1 can be

expressed as follows:dJ̄1(ψ1)
dψ1

=

−λ1d
λs1

(N − Xh11 (ψ1).
λs1∆.g(ψ1)e−λs1∆.g(ψ1) − 1 + e−λs1∆.g(ψ1)

U
h1
1 (ψ1)2

+
λ1d
λs1

1 − e−λsi∆.umin
umin

.
K−1∑

k=h1+1

dXk1(ψ1)

dψ1
(12)

The first term is clearly decreasing in ψ1, since g(ψ1) is
an increasing function in ψ1. Let us now determine the
derivative of second term as follows:

• For k = h1 + 1, we have

Xh1+11 (ψ1) = X
h1
1 + (N1 − X

h1
1 )(1 − e−λs1∆.g(ψ1)),

then

dXh1+11 (ψ1)
dψ1

= (N1 − X
h1
1 )e−λs1∆.g(ψ1).

• For k = h1 + 2, we have

Xh1+21 (ψ1) = X
h1+1
1 (ψ1) + (N1 − X

h1+1
1 (ψ1))(1 − e−λs1∆.umin ),

then

dXh1+21 (ψ1)
dψ1

=
dXh1+11 (ψ1)

dψ1
e−λs1∆.umin .

• Making all the steps up to k = K − 1 we can derive
the useful formula of the derivative of the second
term in (12):

K−1∑
k=h1+1

dXk1(ψ1)
dψ1

=
dXh1+11 (ψ1)

dψ1
e
−λs1∆.

∑K−1
k=h1+2

umin , (13)

Since g(ψ1) is increasing function in ψ1, it is easy to
check that the derivative of function Xh1+11 (ψ1) is a
decreasing function, It follows from (13) that the second
term is decreasing function in ψ1. Hence the function J̄1
is a concave function. Using the same steps we can show
that J̄2(ψ − ψ1) is a concave function in ψ1, and since
the sum of two concave functions is a concave function,
J̄(ψ1) is a concave function, hence proved. ⋄
Having characterized the optimal forwarding policies

for the m-class DTN, in the following we focus
on algorithms that the source can adapt to achieve
the optimal performance. In particular, we propose
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algorithms in which source node does not require a
prior knowledge of system parameters, rather has the
ability to estimate online and adjust the forwarding
accordingly, we call blind online algorithms. We resort on
stochastic approximation based approach to design the
algorithms.

5. Blind Online Algorithms for Adaptive
Optimization
In this section, we propose two online algorithms to
attain optimal control of forwarding by the source node:
i) Algorithm 1 applies to the static control case , and ii)
Algorithm 2 applies to the dynamic control case. Both
algorithms are blind, do not require a-priori knowledge
of network parameters which is intermeeting intensities
and number of mobiles in our context. Observe that
in the heterogeneous case, each class of nodes has its
own (unknown) parameters: intermeeting intensities
(λsi and λid) and the number of nodes (Ni) for each
class i. These algorithms will only depend on the source
ability to distinguish between classes, e.g., according to
node’s type (whether it is a throwbox, a smartphone,
etc): leveraging on the structure of the optimal solution,
this will be enough to find the optimal forwarding
control that the source should adopt without explicit
estimation of such parameters.

Remark 2. Let θi =
∑K−1
k=0 Ui(k), i = 1, 2, then θi identifies

both the static and dynamic policies: the static policy
is Ui = θi /K , while for the dynamic policy threshold
writes hi = max{h ∈ N : v(h) = h · umax + (K − h) · umin ≤
θi}, and Ui(h) = θi − v(h).

5.1. Blind Online Algorithm for Static Control
Our static algorithm is an extension of [15] to the
multi-dimensional case. Each step of the algorithm
corresponds to a round of duration τ . For the sake
of notation, let X̂(θki , t), i = 1, 2 the number of nodes
of the ith class that are potentially infected by the
source in the current round up to time t, by averaging
over several consecutive rounds, using interpolation,
the source node is able to obtain an estimate of the
average number of copies (X̂(θki )) that could potentially
be attained using the current set of K policies. X̂(θki )
is used to update θi according to the formula showed
in Algorithm 1, in which, for I = [θmin, θmax], the
projection function ΠI is defined as follows:

ΠI (θi) =


θmax if θi ≥ θmax,
θi if θmin ≤ θi ≤ θmax,
θmax if θi ≤ θmin.

This stochastic approximation algorithm will implic-
itly discover the fastest class. This permits to adjust the
values of (θ1, θ2) for the next round in order to, eventu-
ally, estimate the optimal (θ1, θ2) in I , which uniquely

Algorithm 1 Stochastic approximation of the optimal
policy using online estimation (2D static case)

1: input: I = [0, K − 1], θ01 = θ02 = K/2, k = 0

2: while max(|θk+11 − θk1 |, |θ
k+1
2 − θk2 |) > ϵ do

3: X̂1(θ
k
1) = interp

(
X̂1(θ

k
1), θ

k
1

)
4: X̂2(θ

k
2) = interp

(
X̂2(θ

k
2), θ

k
2

)
5: if X̂1(θ

k
1) >= X̂2(θ

k
2) then

6: θk+11 = ΠI

(
θk1 + ak(Ψ − X̂1(θ

k
1))

)
7: θk+12 = ΠI

(
θk2 + ak(Ψ − X̂1(θ

k
1)) − X̂2(θ

k
2))

)
8: else
9: θk+11 = ΠI

(
θk1 + ak(Ψ − X̂1(θ

k
1)) − X̂2(θ

k
2))

)
10: θk+12 = ΠI

(
θk2 + ak(Ψ − X̂2(θ

k
2))

11: end if
12: k ← k + 1
13: end while

determine the optimal static policy U = (U ∗1, U
∗
2). In the

following theorem we discuss the convergence of our
algorithm.

Theorem 4. If the sequence {ak} verifies that ak >
0,∀k,

∑+∞
k=0 = +∞ and

∑+∞
k=0 a

2
k < +∞, then the sequence

(θk1, θ
k
2) converges to the optimal solution (θ∗1, θ

∗
2).

Proof: First, we show that the sequence (θk1, θ
k
2)

converges to some limit set of the following Ordinary
Differential Equation (ODE)

θ̇1 = G1(θ
1) + z1 = Ψ − E[X1 + X2| (θ1, θmin)] + z1, (14)

θ̇2 = G2(θ
1, θ2) + z2 = Ψ − E[X1 + X2| (θ1, θ2)] + z2, (15)

z = (z1, z2) ∈ −C((θ1, θ2)),

where zi , i = 1, 2, is the projection or constrain term,
the minimum force needed to keep the trajectory of
the ODEs in [θmin, θmax] and the set C(θ⃗) is defined
as follows [23]: for θ⃗ = (θ1, θ2) ∈ (θmin, θmax)2, we have
C(θ⃗) = {(0, 0)}; and for (θ1, θ2) in the boundary of
[θmin, θmax]2 , we let C(θ⃗) be the infinite convex cone
generated by the outer normals at θ⃗ of the faces on
which θ⃗ lies. Put simply, C(θ⃗) contains the possible
values needed to keep θ⃗ in [θmin, θmax]. For example,
if θ1 = θmax and G1(θ1) point out of [θmin, θmax] then
z1(t) = G1(θ1). Hence the function z(·) is determined by
[θmin, θmax]2 and the functions Gi(·), i = 1, 2.
Since G1(θ1) (resp. G2(θ1, θ2)) is decreasing function

in θ1 (resp. θ1 and θ2), then the equilibrium is
unique. Moreover, it is easy to check that the
optimal solution (θ∗1, θ

∗
2) (see theorem 1) is the unique

equilibrium of (14)-(15). As discussed in [23], the
convergence of such stochastic algorithm is guaranteed
when the sequence (ak) verifies, ak > 0,∀k,

∑+∞
k=0 ak =

+∞ and
∑+∞
k=0 a

2
k < +∞. We now need to show that
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Figure 2. Projection of the value θi over I

(θ∗1, θ
∗
2) is globally asymptotically stable of the system

(14)-(15). We use the Lyapunov function V (θ1, θ2) =
(θ1 − θ∗1)2 + (θ2 − θ∗2)2. Then we have

V̇ (θ⃗) = 2θ̇1(θ1 − θ∗1) + 2θ̇1(θ2 − θ∗2)
= 2(G1(θ1) + z1)(θ1 − θ∗1)

+2(G2(θ1, θ2) + z2)(θ2 − θ∗2). (16)

Since there is at most one active constraint, we have two
cases (see Fig. 2):

• If θmin < θi < θmax for i = 1, 2, then z1 = 0 and
z2 = 0.

• If θi = θmax (resp. θmin) and Gi(θmax) > 0 (resp.
Gi(θmin) < 0) for only one class i, then zi =
−Gi(θmax) (resp. zi = −Gi(θmin)) and z−i = 0 for
other class.

And because G1(θ1) and G2(θ1, θ2) are strictly decreas-
ing functions, it is easy to check that V̇ (θ⃗) is decreasing.
Hence the optimal solution is asymptotically stable.

5.2. Blind Online Algorithm for Dynamic Control
We apply the two-time-scale stochastic approximation
algorithm, which is a stochastic recursive algorithm.
Compared to standard stochastic approximation tech-
niques in literature [23], here some of the components
are updated using a step-size much smaller than those
of the remaining components. For further insight into
the convergence properties of this class of algorithms,
the reader is referred to [24].
The algorithm introduced here drives the source

to the optimal (ψ1) that maximizes J(ψ1), i.e. max-

imizes the probability of success FD (τ) = 1 − exp
(
−∑

j λjd
∫ t
s=0 Xj (ψ1, s)ds

)
. Since the system parameters

(such as Ni and λi , i = 1, 2) are unknown, the value
of J(ψ1) is also unknown, but a noisy estimate of it is
known, namely f (ψ1) such that E[f |ψ1] = J(ψ1).

The two-time-scale stochastic approximation algo-
rithm is then formulated as follows:

θk+1i = ΠI

(
θki + ak(ψ

k
i − Xi(θ

k
i ))

)
,

ψk2 = ψ − ψk1, i = 1, 2, (17)

ψk+11 = ΠH

(
ψk1 + bk

f (ψk1 + ck) − f (ψ
k
1 − ck)

ck

)
, (18)

where I = [0, K − 1], H = [0, ψ] and {ak}, {bk} are
sequences of non-increasing positive constants
satisfying

∑+∞
k=0 ak = +∞,

∑+∞
k=0 a

2
k < +∞,

∑+∞
k=0 bk =

+∞,
∑+∞
k=0 b

2
k < +∞, and limk→+∞

bk
ak

= 0. The last
condition implies that bk → 0 at a faster rate than
ak , implying that (18) moves on a slower timescale
than (17). An example of such stepsizes are ak =

1
k ,

bk =
1

1+k log k and so on. Further requirements are
imposed on sequence (ck), which we defer to Thm. 6 for
the sake of clearness.
More in detail, at each round k the following steps are

executed:

1: Fix (ψ1) at the value (ψk1) and learn the optimal
values of θk1, θ

k
2 for (ψk1 + ck),(ψ

k
1 − ck) using the

following algorithm:

θk+11 = ΠI

(
θk1 + ak(ψ

k
1 − X1(θ

k
1))

)
,

θk+12 = ΠI

(
θk2 + ak(ψ

k
2 − X2(θ

k
2))

)
. (19)

2: Measure the noisy estimate of the success
probability, f (ψ1), at (ψk1 + ck),(ψ

k
1 − ck) when

θk1, θ
k
2, obtained at the first step, are applied.

3: Use f (ψki + ck), f (ψ
k
i − ck) to update the value of

(ψk1) according to Kiefer-Wolfowitz algorithm as
shown at step (11) of algorithm 2.

In the following theorem we proof the convergence of
the Kiefer-Wolfowitz part of the algorithm that appears
in (18); this serves as an introduction to theorem 6.

Theorem 5. If the sequence (bk) verifies: bk > 0, ∀k,
and

∑+∞
k=0 bk = +∞,

∑+∞
k=0 b

2
k < +∞ and ck → 0, then (ψk1)

converges to the optimal solution (ψ∗1).

Proof: Consider two sequences {bk , ck , k ≥ 1} satisfying
ck → 0,

∑
k bk = ∞,

∑
k bkck < ∞,

∑
k(bk/ck)

2 < ∞, and
the recursive updates of ψ1:

ψk+11 = ψk1 + bk
f (ψk1 + ck) − f (ψ

k
1 − ck)

ck
. (20)

This recursive schema converges stochastically to the
optimal value (ψ∗1) that maximizes J(ψ1) provided that
J(ψ1) satisfies the following conditions:

1. J(ψ1) is a strictly quasi-concave function.
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2. There exists β and B such that |ψa1 − ψ
∗
1| + |ψ

b
1 −

ψ∗1| < β implies |J(ψa1) − J(ψ
b
1)| < B|ψ

a
1 − ψ

b
1 |.

3. There exists ρ and R such that |ψa1 − ψ
b
1 | < ρ

implies |J(ψa1) − J(ψ
b
1)| < R.

4. For every δ > 0 there exists a positive π(δ) such
that |ψ1 − ψ∗1| > δ implies

inf
0<ϵ< δ2

|J(ψ1 + ϵ) − J(ψ1 − ϵ)|
ϵ

> π(δ).

In order to prove that J(ψ1) satisfies these conditions,
we only need to prove that J(ψ1) is concave and has a
unique maximum solution ψ∗1 ([25]-lemma 2, theorem
1), which is already proved in theorem 3, hence proved.
⋄

Theorem 6. The sequence (θki , ψ
k
1) defined in the iteration

(17) and (18) converges a.s. to (θi(ψ∗1), ψ
∗
1).

Proof:This can be proved directly by the results of ([26],
Chapter 6) together with the sure convergence of the
two related single-time-scale stochastic approximation
algorithms – those defined in (17) and (18), respectively
– and that each algorithm has a globally asymptotically
stable equilibrium, appearing in the following.
The first algorithm is the aforementioned algo-

rithm (Alg. 1) taking as entries the fixed values of
X̂1(θ

k
1), X̂2(θ

k
2) (which are ψk1, ψ

k
2 for the current round

k). In fact, (17) sees ψ1 as quasi-static (i.e., ‘almost a
constant’) and it is easy to prove that the sequence
(θk1, θ

k
2) converges to some limit set of the following

Ordinary Differential Equation (ODE)

θ̇1 = G1(θ1) + z1
= ψ1 − E[X1| θ1] + z1, z1 ∈ −C1(θ1), (21)

θ̇2 = G2(θ2) + z2
= (ψ − ψ1) − E[X2| θ2] + z2, z2 ∈ −C2(θ2),(22)

where zi , i = 1, 2, is the minimum force needed to keep
the solution θi in I = [θmin, θmax].
If θi is in I on some time interval, then zi(·) is zero on

that interval (Ci(θi) contains only the zero element). If
θi is on the interior of a boundary of I (i.e., θi equals
either θmin or θmax ) and Gi(θi) points out of I , then
zi(·) points backward inside I , i.e. Ci(θi) is the infinite
convex cone generated by the outer normals at θi of the
faces on which θi lies. For example, let θi = θmax, with
Gi(θi) > 0, then, zi(t) = −Gi(θi). ⋄
Following the same reasoning in the proof of theorem

4, it is easy to verify that each of the ODEs (21) and (22)
has a globally asymptotically stable equilibrium θ∗i (ψ1).
The second algorithm is the Kiefer-Wolfowitz whose

convergence is proved in theorem 5 and its asymptotic
behavior is characterized [23] by the ODE

Algorithm 2 Stochastic approximation of the optimal
policy using online estimation (2D Dynamic case)

1: input: I = [0, K − 1],H = [0, ψ], θ01 = θ02 = K/2, ψ0
1 = ψ,

ck = 1
k0.001

2: while |ψk+11 − ψk1 | > ϵ do
3: set ψ+

1 = min(ψk1 + ck , ψ), ψ
+
2 = ψ − ψ+

1
4: θk1 = ΠI

(
θk1 + ak(ψ

+
1 − X̂1(θ

k
1))

)
5: θk2 = ΠI

(
θk2 + ak(ψ

+
2 − X̂2(θ

k
2))

)
6: Measure f (ψ+

1 ) = f unc(θ
k
1 , θ

k
2)

7: set ψ−1 = max(ψk1 − ck , 0), ψ
−
2 = ψ − ψ−1

8: θk1 = ΠI

(
θk1 + ak(ψ

−
1 − X̂1(θ

k
1))

)
9: θk2 = ΠI

(
θk2 + ak(ψ

−
2 − X̂2(θ

k
2))

)
10: Measure f (ψ−1 ) = f unc(θ

k
1 , θ

k
2)

11: ψk+11 = ΠH

(
ψk1 + bk(

f (ψ+
1 )−f (ψ

−
1 )

ck
)
)

12: k ← k + 1
13: end while

ψ̇1 = G(θ1(ψ1), θ2(ψ1), ψ1) + z3

=
∂J(ψ1)
∂ψ1

+ z3, z3 ∈ −C3(ψ1), (23)

where z3, is the minimum force needed to keep the
solution ψ1 in H = [0, ψ]. In order to prove that (ψ∗1)
is globally asymptotically stable of the ODE (23), we
use the Lyapunov function V (ψ1) = (ψ1 − ψ∗1)2. Then we
have

V̇ (ψ⃗1) = 2ψ̇1(ψ1 − ψ∗1)

= 2
∂J(ψ1)
∂ψ1

(ψ1 − ψ∗1) < 0. (24)

Asymptotic global stability follows from Lyapunov’s
theorem. ⋄

5.3. Discussion on Implementation Issues
Since the proposed algorithms do not require a-priori
knowledge of network parameters like intermeeting
intensities and number of mobiles of each class, they
can be easily implemented in real scenario. In other
words, for relay nodes to apply those algorithms, a
simple coded version of the proposed algorithms can
be loaded on each device’s memory. Each time a node
needs to transmit a message, i.e., becomes a source,
it executes this code. Moreover, as the forwarding
protocol employed here is two hop, source can keep
track of number of message copies in the network.
After few rounds, as we will show in next section,
the source will be driven to apply the optimal policies
characterized in the previous sections. Certainly timers
should be set for algorithm rounds, but those timers will
operate distributively on each node.
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6. Numerical Investigation
In this section we illustrate numerical experiments
that validate our results. Using Matlab scripts, we
have studied the impact of the inter-meeting intensity
and the energy constraint (ψ) on the 2-D system
optimal dynamic policies. We are also interested
in the performance of the stochastic approximation
algorithms described earlier; we will investigate their
ability to drive the two hop forwarding, both in the
static as well as dynamic scenario, to the optimal
operating point.
In Fig. 3, we reported the optimal control in the case

when intermeeting intensities with both the source and
the destination are the same (λsi = λid for i=1,2), we can
temporarily refer to both intensities by mentioning one
of them, let us say λs1.
The first observation on Fig. 3(a) is that when λs1

is small, the control tends to infect both classes over
a larger interval. However, as long as λs1 < λs2, the
switch time for class 2 is higher and the source infects
more nodes of class 2 (Fig. 3(c)). As λs1 increases, an
interesting case is when λs1 = λs2: the switch times are
equal and the source infects the same number of nodes
per class.
The situation is flipped after equality is reached:

when λs1 exceeds λs2, the source tends to depend
more on class 1 and infects more nodes of that class.
This can be explained by the fact that class 1 nodes
meet the source and destination with higher frequency
(λ1d = λs1 > λs2). Intuitively, the probability of success
improves as λs1 increases as in Fig. 3(b).
In Fig. 4, we depict the switch times for both classes

when each class’s nodes meet the source at a rate
that is different from the rate at which they meet the
destination (λsi , λid for i=1,2). Fig. 4(a) shows that
the switch time of class 1 increases as λ1d increases
but still is smaller than the switch time for class 2,
as long as (λ1d < λ2d), after this point the source will
infect class 1 nodes for longer time because they have
higher chance now to meet the destination. The same
observation is captured in Fig. 4(b). In Fig. 4(c) we
observe that at the beginning when (λ1d < λ2d), the
source infects more nodes of class 2 than class 1, then
X1 keeps increasing until it becomes larger than X2
when (λ1d > λ2d). Intuitively, the probability of success
improves as λ1d increases as in Fig. 4(d).
Another important aspect is the impact of the energy

constraint on the dynamic policies adopted by the
source (see Fig. 5). We notice that the larger the energy
constraint is, the higher the switch times are (Fig. 5(a)
and 5(c)). This is because increasing ψ allows the source
to infect more nodes by augmenting the optimal switch
times while satisfying the constraint (Fig. 5(b) and
5(d)). An interesting observation is captured in Fig. 5(b)
(Fig.5(d)): when ψ has a small value (ψ = 10), the source
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Figure 3. The impact of the inter-meeting intensity (λsi = λid
for i=1,2) on switching times, delivery probability and number
of infected nodes in the 2-D case, where ψ = 20, N1 = N2 =
50, λs2 = 0.4 × 10−3 ,τ = 1000 s.
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(c) λs2 = λ2d = 0.4 ×
10−3, λs1 = 0.6 × 10−3
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Figure 4. The impact of the inter-meeting intensity (λs1 , λ1d )
on switching times and number of infected nodes in the 2-D case,
where ψ = 20, N1 = N2 = 50, τ = 1000 s.
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Figure 5. The impact of the energy constraint (ψ) on switching
times and number of infected nodes in the 2-D case, where
N1 = N2 = 50.

forwards the message only to class 1 (class 2) nodes,
respectively. This indicates that under a tight energy
constraint, the source can rely on one class only (the one
with higher λs) to have its message delivered. For the
case where ψ = 40, the source will forward the message
all the time to both classes in order to saturate the
constraint.

Fig. 6 shows sample paths of our learning algorithm
for the problem of static control. In Fig. 6(a) the
algorithm is showed to converge to (U ∗1, U

∗
2) = (u∗1, umin

)
with 0 < U ∗1 < 1. Indeed, since the source may infect
at most 30 nodes, from theorem (1, case (iv)) and
remark (1), the optimal solution is (v1, umin

) with v1 =
−1
λs1τ

log
(

N−ψ
N1−X1(0)

− N2−X2(0)
N1−X1(0)

e−λs2τu
)
, we can see that U1

converges to v1 and U2 to umin
.

In Fig. 6(b) we plot case (iii) of theorem 1 where
the energy constraint is 60 and the algorithm con-

verges to (U ∗1, U
∗
2) = (1, v2) with v2 = −1

λs2τ
log

(
N−ψ

N2−X2(0)
−

N1−X1(0)
N2−X2(0)

e−λs1τ
)
. In this case the source will infect nodes

of both classes in order to saturate the constraint by
giving the message with probability 1 to the class with
larger intermeeting intensities {λsi , λid} (class 1) and
with some probability v2 to the other class.

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Round Index

u

 

 

u
1

u
2

(a) ψ = 30

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Round Index

u

 

 

u
1

u
2

(b) ψ = 60

0 100 200 300 400 500
0

0.5

1

1.5

2

Round Index

u

 

 

u
1

u
2

(c) ψ = 90

Figure 6. The stochastic approximation using online esti-
mation (λs1 > λs2) in the 2-D case (static algorithm
1), where τ = 1000, N1 = N2 = 1000, λs1 = λ1d = 0.34 ×
10−4, λs2 = λ2d = 0.14 × 10−4.

Fig. 6(c) shows the case where the constraint has a
large value (ψ = 90) and the source can not reach the
constraint even when forwarding to both classes with
probability 1.
The performance of our learning algorithm in the

dynamic case is shown in Fig. 7. In Figs. 7(a) and
7(b) we depict the convergence of ψ1 (recall that ψ1
is the maximum number of nodes of class 1 that can
be infected) to the optimal value that maximizes the
delivery probability under two different values of the
energy constraint (ψ = 20, ψ = 50), and in Figs. 7(c) and
7(d) we show the corresponding switch times for both
cases.
To better understand Fig. 7, let us observe Figs.

7(a) and 7(c) where the energy constraint has a small
value (Ψ = 20), we notice that since class 1 has bigger
intermeeting intensities (λs1, λ1d), the algorithm drives
the source to forward the message to class 1 for longer
time resulting in more infected nodes in class 1 (19
infected nodes out of 20), which is the value at which
the probability of success attains its maximum Fig.7(e).
While in Figs. 7(b) and 7(d) where ψ is large (ψ = 50),
the algorithm converges to (ψ∗1 = 32) the value that
maximizes the success probability in Fig.7(f). Note that
since it meets nodes of class 1 more often (λs1 > λs2),
the source can infect more nodes of class 1 with smaller
switching time for this class while it has to forward
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Figure 7. The stochastic approximation using online esti-
mation (λs1 > λs2) in the 2-D case (Dynamic algorithm
2), where τ = 1000, N1 = N2 = 1000, λs1 = λ1d = 0.34 ×
10−4, λs2 = λ2d = 0.14 × 10−4.

all the time to class 2 in order to saturate the energy
constraint.

7. Conclusion
In this paper we studied the problem of optimal
relaying for DTNs consisting of heterogeneous mobile
nodes. We have considered controlled two hop
forwarding policies for source-destination message
delivery using multiple classes of relays. Using our
model we characterized the optimal forwarding policy
in the family of the multi-dimensional DTNs for both
static and dynamic control cases.
Finally, we have designed novel algorithms based

on the theory of stochastic approximations. Those
algorithms enable nodes in a heterogeneous DTN to

tune up independently and optimally the parameters
for both static and dynamic optimal forwarding
policies. Thus, nodes autonomously adapt to the
operating point of a system comprising multiple classes
of nodes. The distinctive feature of our so-called blind
online algorithms is that the source node does not need to
know explicitly the system parameters a priory. Instead,
our novel implementation works at runtime permitting
online adaptation to the specific existing conditions.
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