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Abstract

In k-anycasting, a sensor wants to report event information to any k sinks in the network. In this paper, we
describe KanGuRou, the first position-based energy efficient k-anycast routing which guarantees the packet
delivery to k sinks as long as the connected component that contains s also contains at least k sinks. A node
s running KanGuRou first computes a tree including k sinks with weight as low as possible. If this tree has
m ≥ 1 edges originated at node s, s duplicates the messagem times and runsm times KanGuRou over a subset
of defined sinks. We present two variants of KanGuRou, each of them being more efficient than the other
depending of application settings. Simulation results show that KanGuRou allows up to 62% of energy saving
compared to plain anycasting.
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1. Introduction
Wireless sensor networks have been receiving a lot
of attention in recent years due to their potential
applications in various areas such as monitoring
and data gathering. Sensor measurements from the
environment may be sent to a base station (sink) in
order to be analyzed. Other sensors may serve as
routers on a path established to deliver the report. In
large sensor networks, there may exist a bottleneck
(around sink) if a single sink collects reports from
all sensors. Scenarios with multiple sinks are then
being considered, where each sensor reports to at
least one sink, usually the nearest one. In wireless
multi-sink sensor networks, anycasting is performed
when several sinks are available, each offering same
services. Then any of sinks may receive the report
from sensors, and meet application demands. However,
the cost of anycasting may depend on the distance
between the receiving sinks and the reporting sensor.
It is therefore desirable that selected algorithm reaches
one of sinks close to the event. For reliability, load-
balancing and security purposes, it is then useful to
ensure that at least k sinks receive the messages (where
the overall number of sinks is greater than k) whatever
the k sinks. Although many anycasting protocols have
been deployed in wired networks [14], developing an

efficient anycast routing protocol for wireless networks
is challenging. Energy consumption and scalability
are two challenging issues in designing protocols for
sensor networks since they operate on limited capacity
batteries while the number of deployed sensors could
be very large. To the best of our knowledge, only few
protocols have been designed for anycasting (when k =
1) in wireless networks. Most of them are based on an
adaptation of an anycast routing for wired networks [1]
and need flooding techniques that do not scale. Other
ones [3, 7, 8] need a costly tree structure that is not
robust and does not scale well in dynamic networks.
Position based anycasting algorithm [8] is greedy and
localized but optimizes neither hop count nor power
consumption. Only algorithms proposed in [9] are
geographic localized anycast routing protocols that
guaranteed delivery (therefore loop-less), are memory-
less, and scalable. In case of localized position based
anycasting problem considered in this article, sensor
nodes are merely aware of their positions, positions
of their neighbors, and positions of all actors/sinks.
But to the best of our knowledge, so far, there is no
efficient position-based k-anycasting. To date, there is
no so much work in the literature. Most of works
are adaptation of wired solutions [13] and are thus
centralized. Others use flooding [15] and not suitable
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for high dynamic networks (such as wireless sensor
networks). A distributed k-anycast routing protocol
based on mobile agents is proposed in [16] but requires
a regular update of routing tables which also have to
maintain paths towards every sink.

In this paper, we introduce KanGuRou (k-ANycast
GUaranteed delivery ROUting protocol), a position-
based, energy-efficient localized k-anycast routing
protocol that guarantees delivery (therefore loop-less),
is memory-less, and scalable. Unlike [16], it does not
maintain any routing table and does not need to add
any information neither on nodes nor in the message,
which makes it scalable regardless of the number of
sinks/nodes. It inspires from energy-efficient anycast
EEGDA algorithm [9] and the splitting techniques of
MSTEAM [5], proposing a new tree construction to
ensure reaching k sinks. At each step, the current
node s computes a spanning tree over k sinks with
minimal cost. A message replication occurs when the
tree spanning s and the set of sinks has multiple edges
(later called branches) originated at the current node.
Since there may be more sinks than the k to be reached,
all of them are not spanned by the tree. The number of
sinks k′ spanned by each branch determines the number
of sinks to be reached by each message. All sinks (not
only the ones spanned by the tree) are distributed over
every edge. The next hop is chosen in a cost-over-
progress (COP) fashion, i.e. to the neighbor v which
minimizes the ratio between the cost to reach v and
the progress provided by v. The cost from s to v is
the cost of the energy-weighted shortest path (ESP).
The progress is computed as the difference between the
weight of the trees computed by s and v resp. If s has
no neighbor with positive progress, node s applies a
EEGDA-face like routing, which is a face-based recovery
mode. We prove that KanGuRou guarantees delivery to
exactly k sinks. We present two variants which differ in
the way the tree is computed. KanGuRou is evaluated
through extensive simulations and results show that
both variants of KanGuRou are energy efficient. Results
show that KanGuRou allows up to 62% of energy saving
and that every variant performs better regarding the
percentage of sinks to reach. When this latter is less
than 30% while the second one (KanGuRou-kPRIM)
offers better energy saving when the percentage of sinks
to reach is greater than 30%.

The remaining of the paper is organized as follows.
Section 2 gives an overview of the literature about k-
anycasting and present works on which KanGuRou is
based. Section 3 introduces our notations. Section 4
presents KanGuRou. Section 5 presents simulation
results. Finally Section 6 concludes the paper.

2. Related work

k-Anycast was first introduced in [13] for wired
networks. Propositions in wireless networks firstly
appeared in [12] proposing centralized solutions and
thus does not really meet wireless networks require-
ments. [15] presents a reactive approach (flooding) and
two advanced proactive approaches in which sinks have
previously been gathered into components of at most
k members and these components are then reached
during the routing. To the best of our knowledge, the
only distributed k-Anycast routing protocol is based
on mobile agents and proposed in [16]. The protocol
forms multiple components and each component has
at least k members. Each component can be treated as
a virtual server, so k-anycast service is distributed to
each component. In this protocol, each routing node
only needs to exchange routing information with its
neighbors, so the protocol saves much communication
cost and adapts to high dynamic networks. Neverthe-
less, although a first step toward, this algorithm needs
to maintain routing tables at each node with as many
entries as sinks and is not scalable.
Anycasting for wireless networks has first been

modeled in [1]. Although many anycast protocols
have been deployed in wired networks [14], there are
very few for anycasting in wireless networks in the
literature and only one of them [8] is geographical.
Most of existing solutions are based on anycast for
wired networks and need to build some structures.
For example, in [7] a shortest path anycast tree
rooted at each source is constructed for each event
source. Sinks are the only leaves of the tree, and
can dynamically join/leave the tree, which is updated
accordingly. Data is delivered to the nearest sink on
the tree. The algorithm thus simultaneously maintains
paths to all sinks, and requires memorization of
routing steps. Building a tree requires a lot of message
exchanges. Tree-based protocols are not scalable, since
the maintenance is costly when network has dynamic
changes or when actors are moving.
In this paper, we introduce KanGuRou which is a

position-based k-anycasting protocol. KanGuRou is an
extension of the anycasting protocol proposed in [9]
to the k anycasting. The only known position based
anycasting algorithm is proposed in [8], where energy
consumption needed to communicate at distance d is
proportional to u(d) = dα + c. In the startup phase, each
sensor node selects its next hop as follows. Let Q be
a sensor, N be one of its neighboring nodes, and A be
one of actors. Sensor Q selects neighbor N for which
u(|QN |) + u(|NA|) is minimized, over all neighbors and
over all actors. This localized anycasting algorithm does
not really optimize the power consumption (despite
the claim), because it makes decision in the neighbor
selection process based on long edges |NA| which are
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not power optimal (an analytical proof of this fact was
given in [5]). Further, it does not guarantee delivery
in the presence of void areas. Initial routes are then
used in a centralized data collection algorithm [8]
as follows. All sensors within a region, when events
occur, are reporting, each one to its actor selected by
initial anycasting step. Authors [8] formulate integer
linear program to construct data aggregation tree to
minimize overall energy spent for reporting. In [9],
authors describe EEGPA the first localized anycasting
algorithms that guarantee delivery for connected multi-
sink sensor networks based on a GFG approach. Three
geographic localized anycast routing protocols are
described loop-less, memory-less and scalable. They are
generalizations of the EtE [4] protocol itself based on
the well-known greedy-face-greedy (GFG) [2] unicast
routing protocol to anycasting. Let S(x) be the closest
actor/sink to sensor x, and |xS(x)| be distance between
them. In greedy phase, a node s forwards the packet
to its neighbor v that minimizes the ratio of cost of
sending packet to v through an ESP over the reduction
in distance (|sS(s)| − |vS(v)|) to the closest sink. EEGDA
variant is to forward to the first neighbor on the shortest
weighted path toward v. If none of neighbors reduces
that distance then recovery mode is invoked. It is done
by face traversal where edges are replaced by paths
optimizing given cost.
KanGuRou also inspires from the multicast routing

MSTEAM proposed in [5]. MSTEAM is a localized
geographic multicast scheme based on the construction
of local minimum spanning trees (MSTs), that requires
information only on 1-hop neighbors. A message
replication occurs when the MST spans the current
node and the set of destinations has multiple edges
originated at the current node. Destinations spanned
by these edges are grouped together, and for each of
these subsets the best neighbor is selected as the next
hop. MSTEAM has been proved to be loop-free and to
achieve delivery of the multicast message as long as a
path to the destinations exists. To date, MSTEAM is the
best known multicast algorithm.

3. Model and Notations
Network. We model the network as a graph G = (V , E)
where V is the set of sensor nodes and uv ∈ E iff
there exists a wireless link between u and v ∈ V . We
suppose that nodes are equipped with a location service
hardware such a GPS and are able to tune their range
between 0 and R. We note |uv| the Euclidean distance
between nodes u and v. We note N (u) the set of
physical neighbors of node u, i.e. the set of nodes in
communication range of node u (N (u) = {v |uv ∈ E})
and V (G) the set V of vertices inG. S = {si}i=0,1,..M is the
set of sinks, with M the number of sinks. Every node
is aware of every sink and of its position. We note as

CTS (s) the closest node in S to node s (CTS (s) = {v | |sv| =
minw∈S |sw|}). For a graphG = (V , E) and a set A ⊆ V , we
denote by G|A the subgraph of G which contains only
nodes of A: G|A = (A, E ∩ A2).

Tree. Let T = (V ′ , E′) be a tree and a ∈ V ′ a vertex of
T . st(T , a) is the subtree of T with root a. T is an MST
if its weight noted ||T || is minimal. The weight of the
tree denotes the sum of the weight over all tree edges
( ||T || =

∑
uv∈E′ |uv|). In an Euclidean MST, the weight

of an edge is equal to its Euclidean length. A tree T =
(V ′ , E′) ⊂ G is a k-MST if |V ′ | = k and that ||T || is the tree
with minimum weight over all trees of k vertices from
G.

Energy. We assume that every node is able to adapt its
transmission range. We use the energy model defined
in [11], i.e. the energy spent to send a message from
nodes u to v is such that cost(|uv|) = |uv|α + c if |uv| ,
0. where c is signal processing overhead; α is a real
constant (> 1) for signal attenuation. From this energy
cost, we introduce the cost of the energy-weighted
shortest path (costESP (s, d, t)) from nodes s to d when
aiming at target t. We compute the energy-weighted
shortest path (ESP) only over nodes that are in the
forwarding direction of the final target to avoid either
creating routing loops or embedding the path in the
message. Therefore, the shortest path computed from
node s to node d is relative to the final target t. Let
x0x1...xixi+1..xn, be the node IDs on the ESP from s = x0
to d = xn. We define the ESP cost as

costESP (s, d, t) =
n−1∑
i=0

cost(|xixi+1|) (1)

4. Contribution
4.1. General Idea
In this section, we present the main idea of KanGuRou
which goal is to reach any k sinks among all available
sinks in S. Nevertheless, given a source node s, the
k closest sinks to s in Euclidean distance are not
necessarily the k closest sinks in number of hops.
Therefore, the routing messages in KanGuRou may
change target sinks along the routing path. For instance,
on Fig. 1, 5 closest sinks of s are S1, S2, S5, S6 and S7.
But S1 is not reachable directly and the path to S1 will
get closer to S4 which may be reached also. In addition,
the source cannot determine the k sinks in advance
and send k messages, one toward each sink because (i)
several messages may follow the same path by sections
which is useless and costly and (ii) since targets may
change along the path, this cannot ensure that several
messages will not reach the same sink.
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KanGuRou (Algo. 1) proceeds as follows. Fig. 1
illustrates it.

1. Node s holding the message first checks whether
it is a sink. If so, it removes itself from the set
of available sinks and decrements the number of
sinks k to reach. If k = 0, the algorithm stops.
(Line 2).

2. Node s computes a tree T (s) by running
Algo. 3 (k-MST(s,S,k)) or Algo. 4 (k-Prim(s,S,k)))
detailed later in Section 4.4, depending of the
variant of KanGuRou (Line 7). T (s) contains
node s and exactly k sinks of S. If there are
several edges/branches originated at s, a message
duplication occurs. On Fig. 1, T (s) appear in red
and contains sinks S1, S3, S5, S6 and S7. There are
two branches originated at node s: one toward S1
and one toward S5.

3. s distributes the remaining sinks (Line 8), i.e. sinks
that are not in T (s) (Sinks S2, S4 and S8 on Fig. 1)
over every branch. Thus, for every successor a of s
in T (s) (a ∈ succT (s)), a subset Sa ⊂ S of the sinks is
assigned to a as detailed in Section 4.5. On Fig. 1,
branch of S1 is assigned with Sinks S1, S3 and S4
while Sinks S2, S5, S6, S7 and S8 are associated to
branch of S5.

At this step, node s knows: (i) its successors a ∈
succT (s) in T (s) (Sinks S1 and S5 on Fig. 1),
(ii) the number of sinks ka to reach per successor a,

i.e. the number of sinks in the subtree of a st(T , a) (2 in
branch of S1 and 3 in branch of S5 on Fig. 1),
(iii) the set of available sinks to reach per branch, i.e.

Sa defined at the previous step.
Node s then sends as many packets as the number of

its successors in T (s). (Loop line 9)
Thus, for each branch of T (s), i.e. ∀a ∈ succT (s), s

selects a next hop based on a Greedy-Face-Greedy
approach as follows. For every a, s computes the weight
of the ka-MST for each of its neighbors u ∈ N (s) over Sa
targets ||k-MST(u, Sa, ka)||. On Fig. 1, s will compute 3-
MST over Sinks S2, S5, S6, S7 and S8 to find the next hop
for branch S5 and 2-MST over Sinks S1, S3 and S4 for
branch S1. If there exists no neighbor u for which the
weight of tree over Sa ||k-MST(u, Sa, ka)|| is smaller than
||sT (T , a)|| + |sa| (weight of the branch of T (s) dedicated
to a), node s switches to recovery mode (line 16) till
reaching a node with positive progress towards a. If so,
next hop v for branch toward a is determined through
the greedy mode in a COP fashion (Line 18). Message
is sent to node v with parameters ka and Sa which will
run KanGuRou again (Line 19) and so on till ka sinks
have been reached in this branch. As shown in [9], this
ensures the packet delivery as soon as the network is
connected.

Algorithm 1 KanGuRou(s, k, S) – Run at node s to reach
k targets in S.

1: if s ∈ S then
2: k ← k − 1; S ← S \ {s}
3: if k = 0 then
4: exit {All sinks of this branch have been reached}
5: end if
6: end if
7: T (s)← k-MST(s, S, k) or k-Prim(s, S, k) {k-MST of

S ∪ {s} rooted in s}
8: T ′(s)← AllocateMST(s, S, T (s)) {Allocate remaining

targets to T (s)}
9: for all a ∈ succT (s)(s) do

10: Sa ← V (st(T ′ , a)) {Nodes in sub-tree of T ′ rooted
in a}

11: ka ← |T ∩ Sa| {Number of targets to be reached in
Sa.}

12: v ← CTSa(s)
13: W ← ||sT (T , a)|| + |sa|
14: A← {v ∈ N (s) | ||k-MST(v, Sa, ka)|| < W }
15: if A = ∅ then
16: RECOVERY(s, ka, Sa,W )
17: else
18: v ← u ∈ A which minimizes costESP (s,u,a)

W−||k-MST(u,Sa,ka)||
19: KanGuRou(v, ka, Sa)
20: end if
21: end for

To sum up, let us assume that node s on Fig. 1
runs KanGuRou toward k = 5 sinks. First, s computes
a 5-MST, T (s) (red tree). T (s) has two branches, so s
duplicates the message. First message is sent toward
branch of S1 and has to reach 2 sinks among S1, S3 and
S4. s computes the COP and selects node a. To reach
node a, message is sent to node f since path sf a is less
energy consuming than following the direct edge sa.
Node a runs KanGuRou and its tree has two branches.
So node a duplicates again the message. First copy has
to reach one sink among S1 and S3 while second copy
has to reach S4. S4 is reached via path aeS4 in a greedy
way while other copy is sent along path boS3. Second
message sent by node s has to reach 3 sinks among
S2, S5, S6, S7 and S8. Greedy algorithm chooses node q.
Tree computed on node q has 2 branches originated at q,
so q duplicates the message. First copy is sent to node g
which forwards it to Sink S7. Second copy is sent to S5.
S5 is a sink but the message still has to reach another
sink so S5 forwards it to its neighbor i which directly
forwards the message to S6. At last, 5 sinks have been
reached: S3, S4, S5, S6 and S7.

4.2. The greedy mode
Greedy mode is similar to the one used in [9].
When node s runs greedy algorithm toward Sink
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Figure 1. Sinks appear in red. Red links represent the 5-MST rooted in s, blue links the 2-MST rooted in a over S1, S3 and S4,
green links the 3-MST rooted in q over S2, S5, S6, S7 and S8. Arrows show the message path.

a, it computes the subtree sT (T (s), a) of T (s) rooted
in a. The weight W of the subtree issued from s
toward a is thus the weight of ||sT (T (s), a)|| plus the
weight of the edge sa to reach it: W = ||sT (T (s), a)|| +
|sa|. Then, to select the next hop, node s performs
a COP approach in which (i) the cost considered is
the cost of the energy weighted shorted path (Eq. 1)
from node u to its neighbor v,(ii) the progress is the
reduction of the weight of trees W − ||k-MST(u, Sa, ka)||.
Only neighbors providing a positive progress are
considered. If no such node exists, the greedy approach
fails and s switches to recovery mode. If there exist
neighbors u such that W > ||k-MST(u, Sa, ka)||, node u

which minimizes costESP (s,v,a)
W−||k-MST(u,Sa,ka)||

is selected. Note
that when computing k-MST(u, Sa, ka), all potential
sinks are considered, not only the ones in sT (T (s), a).
Therefore, k-MST(u, Sa, ka) can include different sinks
than sT (T (s), a). For instance, on Fig. 1, 2-MST
computed by node a (blue tree) over S1, S3 and S4
includes S1 and S4 (while the one rooted in s includes
S1 and S3).

4.3. The Recovery Mode
Recovery mode is detailed in Algo. 2. A node u enters
the recoverymode while trying to reach k targets among
the sinks in S if it has no neighbor which k-MST has
a smaller weight than its own weight W toward the
considered branch. u runs RECOVERY till reaching a
sink or a node v for which ||k-MST(v, k, S)|| is smaller

than W (Line 4 in Algo. 2). Unlike in anycasting,
recovery in k-anycasting may reach a sink since the
distance considered is not between a node and the
closest sink but to the closest k sinks.. Yet, the weight
of the tree issued in t may have a highest weight than
the tree issued on the node which have launched the
recovery step.
To determine what neighbor to reach, it applies an

EtE-like Face routing [4]. EtE-like Face routing differs
from the traditional Face [2] routing in the way that
it does not run over the planar of the whole graph
but on the planar of a connected dominated set (CDS)
graph only (Lines 1-2). This allows considering longer
edges. Face algorithm is applied to determine next hop
v to reach over the faces on the CDS (Line 5). v is
then reached by following an ESP (Line 7) and not
necessarily by following the direct edge.

4.4. Computing the k-MST
Note that computing an exact k-MST is NP-complete.
Also note that a k-MST is not necessarily included
in the MST as example plotted on Fig. 2 shows.
Thus, KanGuRou proposes to use two different tree
constructions, both of them being an approximation of
the k-MST algorithm. As we will see later, the choice of
the variant used in the tree construction will depend
on the number of sinks M available in the network
and the number k of sinks that need to receive the
information. It is important to highlight that this tree
is computed on the complete graph of sinks ς = (S, Eς)
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Algorithm 2 RECOVERY(u,k,S,W) - Run at node u.

1: (V ′ , E′)←CDS(V , E) ∪ S ∪ {u} {Extract a CDS graph
from G}

2: (V ′ , E′′)←GG(V ′ , E′) {Build the Gabriel Graph of
G′}

3: u′ ← u, T ← k-MST(u′ , S, k)
4: while ||k −MST (v, k, S || > W do
5: v ← FACE(u′ , T ) {Compute the next node on the

proper face}
6: while u′ , v do
7: u′ ←ESP(u′ , v, CTT (u′)) {Compute the ESP

from u′ to v}
8: end while
9: end while

10: KanGuRou(v, k, S)

with Eς = {uv |u, v ∈ S2}. This is independent from the
underlying topology.
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g
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Figure 2. Illustration of MST and k-MST for k = 4. If root
is node d, the optimal 4-MST (in blue) includes edges
da, ae, af , ag while edge ad will not be included in the MST
(in red). So, k-MST is not always included in the MST.

First variant: The first variant (later called KanGuRou)
applies Algo. 3 and builds a tree with exactly k + 1
vertices (k sinks and the source) in an iterative way. It
starts with a tree which only contains the root (Line 1),
node s on Fig. 1. It then has to choose exactly k sinks
in S to add in T . To do so, at each step, it computes
the shortest path from any vertex to the tree in exactly
i hops, for all i from 1 to k − i for all vertices. On Fig. 1,
for i = 1, s computes the distance from itself to every
sink. For i = 2, s considers 2-hop paths from itself to
every sink and keeps the shorter one as sS1S3 to reach
S3. To reduce the complexity of computing a path from
a node u to T , it only considers nodes closer than u to
T . On Fig. 1, node s will not compute any 2-hop path
from s to S2 since S2 is the closest sink. Weight of every
path is then normalized by the progress it provides, i.e.

Algorithm 3 k-MST(u, S, k) – Return a k-MST of S ∪ {u}
rooted in u.
1: T ← ({u}, ∅) {initialize the tree with root u}
2: A← S {set of nodes to be considered.}
3: while k > 0 do
4: for v ∈ A do
5: w← x ∈ T which minimizes |xv|
6: P (v, 1)← w {Path from v to T in 1 hop with

minimum cost.}
7: l(v, 1)← |vw| {Weight of the path from v to T in

1 hop with minimum cost.}
8: end for
9: for i = 2 to k do

10: for all v ∈ A do
11: y ← x ∈ T which minimizes |vx|
12: ∀w ∈ A z← x ∈ T which minimizes |wx|
13: Select w ∈ A such that |wz| < |vy| which

minimizes (l(w, i − 1) + |vw|)/i
14: p(v, i)← p(w, i − 1).w {Path from v to T in i

hops with minimum cost.}
15: l(v, i)← l(w, i − 1) + |vw|{Weight of p(v, i).}
16: end for
17: end for
18: select v ∈ A and j ∈ [1 . . . k] which minimizes

l(v, l)/j
19: while p(v, j) , ∅ do
20: (w, x)← first edge in p(v, j) {w is supposed to

be in T while x is not in T }
21: T ← T ∪ ({x}, {(w, x)}); A← A \ {x}; k ← k − 1
22: p(v, j)← p(v, j) \ {(w, x)}
23: end while
24: end while
25: Return T.

the number of sinks on the path (Line 18) and the path
with the lowest weight is then added to the tree. And so
on till the final tree includes k sinks. In this way, note
that S2 is not included in path since step 1, path sS5S7
(weight 2) is chosen ( |sS5 |+|S5S7 |2 is smaller than all other

path ratios as |sS1 |+|S1S3 |2 or sS2
1 ). Then at step 2, path

sS1S3 is added ( |sS1 |+|S1S3 |2 < |sS1 |+|S1S3 |+|S3S6 |3 , etc) and at
last, path S5S6 is added.

Second variant: Original Prim algorithm [10] consists
in adding iteratively to the current tree (initialized with
the root node) the edge with minimum weight which
has exactly one extremity vertex in the tree, and so on
till every vertex has been added to the tree. KanGuRou-
kPrim (Algo. 4) performs similarly but stops when the
tree includes and exactly k sinks.
To illustrate the difference between both variants, let

us consider Fig. 2 and assume a tree construction rooted
in node d with k = 4. Algo. 4 adds iteratively the edge
(and corresponding nodes) with the lowest weight, i.e.
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Algorithm 4 k-Prim(u, S, k) – Return a k-MST of S ∪ {u}
rooted in u.
1: T ← ({u}, ∅) {initialize the tree with root u}
2: A← S {set of nodes to be considered.}
3: while k > 0 do
4: w← x ∈ A which minimizes |xCTT (x)|
5: T ← T ∪ ({w}, {(w,CTT (w))})
6: A← A \ {w}; k ← k − 1
7: end while
8: Return T.

nodes c, b, a and e (in the order). Resulting tree has a
weight of 22. Algo. 3 does not consider edges one by one
but multi-hop paths. It thus adds nodes a and e at once
( |da|+|ae|2 is the best ratio), then nodes f and g. Resulting
tree has a weight of 12.

4.5. Distributing Sinks over Branches

Once the k-tree rooted in current node has been
computed, the set of sinks has to be distributed over
each branch. The number of sinks to be reached by
branch is given by the number of sinks actually part of
the branch. If s is the node in charge of the message,
it computes its k-MST T (s). If ka is the number of
sinks to be reached in the branch of T (s) rooted in
a, we have

∑
a∈succT (s) ka = k. Nevertheless, the ka sinks

attached to branch of a are not necessarily the closest
ones in number of hops while other sinks which are
not in the tree can be closer (like S1 on Fig. 1 which
is the closest sink to s but not in hop count). The set
of potential sinks to reach Sa is sent with the message
over each branch a. Sa includes the ka sinks included
in the tree but also part of ’free’ ones. Sa sinks have
to be selected carefully in order to ensure that exactly
k sinks will receive the message. They are such that:
(i)

∪
a∈succT (s) Sa = S since every sink is candidate and

(ii) Sa ∪ Sb = ∅∀ a, b ∈ succT (s) in order to avoid that
a message sent on 2 different branches reaches the
same sink in which case, the overall number of sinks
receiving the message will be less than k.
Algo. 5 details how the remaining sinks can be

attached to every branch. In KanGuRou, each sink is
assigned to the closest branch regardless of the size of
the branches. However, we are aware that this solution
is not necessarily the most adequate one since most of
remaining sinks may be assigned to the same branch
which might be the smallest one. Alternative solutions
might be:

• Sinks may be distributed evenly between both
branches, based on distance. For instance,
on Fig. 3, SA = {u1, u2, u3, u4, u6, u7} and
SB = {u5, u8, u9, u10, u11, u12}.
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Figure 3. Illustration of sink allocation over branches.

• Sinks may be distributed proportionally to the
number of sinks to reach per branch. For instance,
on Fig. 3, since branch A is supposed to reach 3
sinks over 4, it will be assigned 3

4 = 9 sinks (sinks
u1, u2, u3, u4, u5, u6, u7, u8, u10) while branch B
will receive 3 sinks (Sinks u9, u11, u12).

However, setting in advance the number of sinks to
assign to each branch will lead to some other issues.
Indeed, issue will appear when sinks are at equal
distance of several branches and when a sink p is
closer to Branch A, but that Branch A has already been
assigned enough sinks, all closer than p. We leave to
further work a deeper study on this point.

Algorithm 5 AllocateMST(u, S, T ). Allocate nodes in S
not in T over T branches.
1: A← S \ T
2: while A , ∅ do
3: select edge uv in V (T ) × A which minimizes |uv|
4: T ← ({u}, {(u, v)})
5: A← A \ {v}
6: end while
7: Return T

4.6. Packet delivery to exactly k sinks guaranteed
We show that KanGuRou delivers a message to exactly
k sinks as long as the underlying network is connected.
To do so, we first need to introduce some lemma.

Lemma 1. Greedy step is loop free.
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Proof. Greedy step reduces the distance between
current node s and the closest set of k sinks T (s). Loop
cannot be created, since it is impossible to go back to a
larger distance at a given node by repeated applications
of greedy algorithm.

Theorem 2. KanGuRou guarantees the packet delivery to
exactly k sinks as long as the network is connected and
that the number of sinks in the connected component
including s is greater or equal to k.

Proof. We apply a mathematical induction demonstrat-
ing that Theorem 2 is true. Initial step. Theorem 2 is
true for k = 1. When k = 1, the 1-MST computed by s
running KanGuRou comes to finding CTS (s), i.e. the
closest sink to s. The greedy step of KanGuRou thus
computes the progress provided by neighbor u of s as
|sCT S(s) − uCT S(u)|. Recovery step initiated in node v
will switch back to greedy step as soon as it has reached
a node w such that |vCT S(v)| > |wCT S(w)|. Yet, Kan-
GuRou comes to EEGDA [9], been proven to guarantee
packet delivery as long as the underlying network is
connected. Yet, Theorem 2 is true for k = 1. Induction
step. Assuming that Theorem 2 is true for k = i − 1, 1 < i,
we have to prove that Theorem 2 is true for k = i. When
a node s runs KanGuRou, it may either duplicate and
forward several times the message or just forward it
once. Let us consider these two cases singly.

1. CASE 1: the message is sent on every branch
originated at s in the k-MST, i.e. between 2 and
k times. (On Fig. 1, the message is sent over 2
branches in s.) Since in KanGuRou:

• (i)when a sink is reached, it is removed from
the list of available sinks,

• (ii) the set of available sinks is split over
every branch such that an available sink is
assigned to exactly one branch,

• (iii) the sum of the number of sinks to reach
per branch is equal to k,

• (iv) a message forwarding stops if and only
if it has reached k sinks among sinks it has
been assigned,

then node s runs independently KanGuRouwith k
such that 1 ≤ k ≤ i − 1. for every branch. Thus, as
Theorem 2 is true for k < i, the theorem is proven
in this case.

2. CASE 2 (message is only forwarded), the message
is forwarded in a repeated application of greedy
and recovery phases. Greedy step is only applied
if distance of current node u to the closest
set of k actors/sinks W = ||T (s)|| can be reduced
(Lemma 1). The recovery step also has the same
goal (reducing W ) after following a face. Gabriel

graph preserves connectivity, and following very
first face recover reduces distanceW [6]. Distance
W continues to decrease, and loop cannot be
created until either delivery to a sink or a node on
which a duplication of the message will be made.
The delivery is guaranteed either to a sink in the
set of available sinks assigned to the message or to
a node which duplicates the message because its
k-tree has several edges originating at itself since
W , at each iteration, can always be reduced, until
it eventually becomes 0.

• CASE 2.1 (a sink is reached): the sink will
remove itself from the list of available sinks
and runs KanGuRou with k = i − 1, which
guarantees delivery to exactly i − 1 sinks.
Thus, in this case, KanGuRou eventually
reaches exactly i sinks. Theorem 2 is true for
k = i.

• CASE 2.2 (a node which will split the
message is reached): the current node u
initiates between 2 and i duplications and
thus runs between 2 and i times KanGuRou
with 1 ≤ k ≤ i − 1. As shown for Case 1 of
this proof, every branch guarantees delivery
to the number of sinks they have been asked.
Since a sink may be assigned to at most one
branch, a same sink cannot be reached by
several branches (and counted as it), thus,
the overall number of sinks reached is k = i.
Therefore, in this case, KanGuRou reaches
exactly i sinks.

Theorem 2 is true.

5. Simulation Results
In this section, we evaluate the performances of
KanGuRou under the WSNet1 simulator with an
IEEE 802.15.4 MAC layer. As there is no comparable
algorithm in the literature since KanGuRou is the
first position-based algorithm from the literature, we
compare the two variants KanGuRou and KanGuRou-
kPrim to running k times the plain EEGDA anycast
routing protocol [9] to measure the gain provided by
KanGuRou. We deploy N nodes (from 35 to 115) at
random in a square of 100m × 100m, every node can
adapt its range between 0 and 30m.
We first evaluate the behavior of different algorithms.

Fig. 4 shows the number of times the message is
split/duplicated for each algorithm. Obviously, the
number of splits performed by EEGDA is equal to
1 whatever the parameters since EEGDA performs

1WSNet: http://wsnet.gforge.inria.fr/
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Figure 4. Number of splits for each algorithm. M = number of sinks.

independent anycast routings. For both versions of
KanGuRou, it is worth noting that when k increases for
a given number of available sinksM and of nodesN , the
number of splits also increases. This is expected since
algorithms need to reach more sinks and respective
trees are bigger and thus the message is more likely to
be duplicated to reach sinks.
Also, for a fixed k, the number of splits increases

when the number of nodes (and thus of available sinks)
increases. This is due to the fact that more choices
are given to the algorithm and thus more ramifications
appear (Fig. 4(a)). We can also note (Fig. 4(b)) that
the number of duplications is not really impacted
by the overall number of available sinks M in the
network (number of splits for a given k). At last, we
can observe that the number of duplications increases
when M increases (in proportion of N ) more quickly
for KanGuRou than for KanGuRou-kPrim. Yet, for
a low value of M, KanGuRou-kPrim produces more
duplications than KanGuRou while for high values of
M, KanGuRou duplicates more often messages.
First, the number of sinks M is set to be 10%

of the total deployed nodes N . We simulate the
performance of three algorithms (EEGDA, KanGuRou,
KanGuRou-kPrim) for 100 times in terms of N as
well as k, and calculate the average values of results.
We generate in random a new distribution of N
nodes for each simulation. Fig.5 shows the energy
consumption (computed based on Eq. 1) and the path
length in terms of N and k (k varies from 1 to
M). Note that for k = 1, results are the same for all
three algorithms since KanGuRou comes to EEGDA
independently of the tree construction. Simulation
results show clearly that KanGuRou, KanGuRou-kPrim
result in significant gains on the energy consumption
(up to 62.51% (44.33% in average) and up to 74.22%

(53.84% in average) respectively) and path length (up
to 62.17% (49.07% in average) and up to 56.61%
(21.90% in average) respectively) compared to the
traditional algorithm EEGDA. An amelioration was
indeed expected since in KanGuRou, part of the path is
mutualized. Nevertheless, the gain remains important.
Globally, we can see that behavior of every algorithm
is similar whatever the parameters. Regarding the
energy consumption, results show that KanGuRou-
kPrim consumes less energy compared to KanGuRou
when k is important, and KanGuRou performs better
for low k. This is due to the fact that when k increases
(for a constant M), k-Prim algorithm gets closer and
closer to the optimal k-MST construction. This is
also linked to the number of message duplications
illustrated by Fig. 4. A high number of splits implies
shorter paths.
Figure 6 gives a closer look at the energy consumption

and the path length in terms of k when the total
deployed nodes N is a constant (N = 75) and M is set
to be 8 sinks. We can see KanGuRou-kPrim performs
better regarding energy consumption when k is greater
than 3, and KanGuRou always has a gain of the path
length compared to the other two algorithms in this
case.
In the second scenario (Fig. 7), we fix the number

of the total deployed nodes N to 75 and evaluate
the performances of the three algorithms (EEGDA,
KanGuRou, KanGuRou-kPrim) regarding the overall
number of sinks M in the network. Obviously, when k
increases for a given number of available sinks M, the
path and the energy consumption increase since there
are more sinks to reach. Similarly, when the number of
sinks to reach k is fixed and that the number of available
sinksM increases, the path and the energy consumption
decrease since algorithms have more choice among
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Figure 5. Algorithms performances with regards to N and k for M = 10% ×N .
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Figure 6. Algorithms performance in terms of k over M = 8 sinks among N = 75 nodes.
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Figure 7. Algorithms performances with regards to M and k for N = 75 nodes.

sinks and can join closer ones. An important feature is that results show that KanGuRou-kPrim performs
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Figure 8. Algorithms performances for M = 20 sinks and N = 75 nodes.

better than KanGuRou for high values ofM and k. Once
again, this is linked to the number of path splitting and
that the greater k, the closer to the optimal k-MST, k-
Prim algorithm is.
Figure 8 shows the impact of the number of sinks

to reach for a fixed number of nodes and a constant
side of sink set. It shows that for a lo k, KanGuRou
outperforms other solutions while it is not so efficient
when k increases.
To sum up, the simulation results of different

scenarios clearly show that (i) KanGuRou variants
result in a significant gain of energy consumption
and path length compared to the traditional algorithm
EEGDA, (ii) depending of the percentage of sinks
to be reached, one variant of KanGuRou performs
better than the other one. When k is small (when
k ≤ 30% ×M), KanGuRou always consumes less energy
than KanGuRou-kPrim, (iii)when k is important (when
k > 30% ∗M), KanGuRou-kPrim brings a significant
gain compared to KanGuRou especially when M is
important. This is also highlighted by Fig. 9 which has a
closer look at this feature. Figure clearly shows that up
to a given number of available sinks, KanGuRou-kPrim
performs better than KanGuRou (M = 23 on figure).

6. Conclusion and Future Work
In this paper, we have introduced KanGuRou, the very
first position-based k-anycast routing protocol which is
energy efficient and guarantees the packet delivery. Two
variants are proposed for the construction of the tree.
KanGuRou performs well when the number of sinks to
reach is lower than 30% of the available sinks in the
network while KanGuRou-kPrim performs better for
higher values of k. In future work, we intend to claim
theoretically how far KanGuRou is from the optimal
centralized algorithm and provide some complexity
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Figure 9. Algorithms performances for k = 5 and N = 75 nodes.

analysis. We also intend evaluate the properties of
KanGuRou more deeply (robustness toward mobility,
wireless instability, etc).
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