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ABSTRACT

In recent years, design of wireless sensor networks using
methodologies and mechanisms from other disciplines has
gained popularity for addressing many networking aspects
and providing more flexible and robust algorithms. We ad-
dress in this paper the problem of random walk to model
routing for data gathering in wireless sensor networks. While
at first glance, this approach may seem to be overly sim-
plistic and highly inefficient, many encouraging results that
prove its comparability with other approaches have been ob-
tained over the years. In this approach, a packet generated
from a given sensor node performs a random motion until
reaching a sink node where it is collected. The objective of
this paper is to give an analytical model to evaluate the per-
formance of the envisioned routing scheme with special at-
tention to two metrics: the mean system data gathering de-
lay and the induced spatial distribution of energy consump-
tion. The main result shows that this approach achieves
acceptable performance for applications without too strin-
gent QoS requirements provided that the ratio of sink nodes
over the total number of sensor nodes is carefully tuned.
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1. INTRODUCTION
Random walks have been studied extensively in a large

number of interdisciplinary works, to which mathematicians,
physicists, chemists, engineers, and others have toiled and
all made significant contributions. More recently, connec-
tion with networking research area have been established
providing a variety of algorithms including routing, self-
stabilization, data gathering and query processing in wire-
less networks, peer-to-peer networks and other distributed
systems [14, 2, 7, 3, 9, 19]. In wireless sensor networks
(WSNs) research area, this approach is gaining popularity
because random walk techniques present locality, simplicity,
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low overhead and inherent robustness to structural changes.
Such networks, formed by a large number of small, sim-
ple, battery-operated and resource-constrained nodes, are
usually subject to dramatic structural changes created by
sleep modes, channel fluctuations, mobility, frequent device
failures, and other factors. Therefore, topology-driven al-
gorithms are at a disadvantage for such networks as they
induce high overhead to maintain up-to-date topology and
routing information, and also have to provide recovery mech-
anisms for critical points of failure (e.g., cluster heads, nodes
close to the root in a spanning tree). By contrast, stateless
algorithms, such as the random walk, require no knowledge
of network topology to make decisions, and thus, fit bet-
ter the WSN constraints but often at the expense of QoS
support.

Many earlier recent research efforts have raised this vision
by focusing primarily on basic properties of random walks.
For example, in [14] the authors addressed the problem of
data gathering in large-scale WSNs with static sensor nodes
and one mobile collector node that performs a random walk
on a square lattice. Whenever the collector node enters the
transmission range of a sensor node, the data are collected.
In this context, the authors derived analytical bounds for
the expected number of distinct visited sensor nodes within
a given time frame. To improve this performance metric,
they proposed a practical algorithm that constrains the ran-
dom walk and validated it by simulations. Constrained ran-
dom walk techniques, already suggested in [19] for multi-
path routing, have the advantage to achieve load balancing
property in uncontrolled dynamics characterized by random
ON-OFF transitions to save energy. Besides the load bal-
ancing property, which is difficult to achieve for other rout-
ing protocols, it is also proven in [20] that a random walk
based routing in regular patterned WSNs consumes the same
amount of energy as the shortest path routing provided that
messages are of small size, which characterizes many WSN
applications.

Throughout the variety of random walk based algorithms
in WSN area, we realize that most of the results are derived
from a qualitative view or by means of simulations and that
little analytical studies use the powerful techniques of ran-
dom walk theory. In addition, these results often provide
lower and upper bounds on system performance and not
a closed form analytical evaluation [14, 3, 19]. Instead, our
take in this paper is to obtain a fundamental insight into ran-
dom walk performance by constructing an analytical model
that owes much to the powerful analytic tools developed in
the physics community [15, 17, 16].
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Figure 1: Topological equivalence between the
hexagon lattice and the square lattice with addi-
tional diagonal bond inserted in each fundamental
square.

In particular, we address here the problem of data gath-
ering in WSNs comprised of a large number of sensor nodes
and a smaller number of sink nodes to gather, process and
control data. A packet generated at any sensor node per-
forms a random walk until it reaches a sink node for the first
time. At this moment, we consider that the data gathering
process occurs with success. Our motivation for consider-
ing random walks in this context comes from the following
observations. First, the many important papers of Scher
and his collaborators [18] for modeling stochastic transport
in the physics community strongly influenced us to use this
approach but from a networking view. Second, to cope with
the resource constraint, the multihop strategy is better, since
the transmission energy consumption dominates the total
power consumption induced by the circuitry of active nodes
[5, 6, 8]. Third, searching a large space of possible routes
derived from having a large number of nodes may prove com-
putationally prohibitive for low complexity devices such as
sensor nodes. Thus, without any state information, sensor
nodes would blindly forward data. This leads to the Unicast
Random Walk based Routing (URWR).

The remainder of this paper is organized as follows. A for-
mal network model description followed by backgrounds and
theoretical elements of random walk theory are given in Sec-
tion II. In section III, which forms our original contribution,
we focus on the URWR performance with prior attention
to two performance metrics: the mean system data gath-
ering delay and the induced spatial distribution of energy
consumption. Finally, we conclude this paper in section IV.

2. RANDOM WALK MODEL

2.1 Network Description
We consider a graph G(Ω, E) where Ω is a countable set

of nodes wirelessly connected pairwise by a set E of undi-
rected arcs or edges to represent communication links be-
tween nodes. At a given node ~r, let Z(~r) = {~s1, · · · ,~sl~r} be
the set of neighbors of ~r. Let π~r = {p1, · · · , pl~r} be nonneg-
ative reals such that

∑

i pi = 1. This defines a transition
probability distribution over the neighbors of ~r. When a
packet reaches node ~r, the next hop is chosen by tossing
a die whose i-th face occurs with probability pi, and the
packet is then forwarded over the link (~r,~si). The random
sequence of nodes selected this way is a random walk on
graph G(Ω, E).

By making different assumptions on the topology of the
underlying network and on constraints imposed on π~r, we are
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Figure 2: Equivalence between the infinite periodic
square lattice (a) and the torus lattice (b). For the
sake of clarity, we have deliberately missed some
transitions except for the origin.

able to explore a large space of possible routing schemes. In
particular, we consider in this paper a regular deployment
topology where nodes are spread over an area of interest
with a hexagon lattice pattern (or equivalently an equilat-
eral triangular lattice). This pattern is of fourfold interest.
First, many WSN applications are often desired to follow
regular patterns for at least two reasons: (i) convenience of
deployment and (ii) to achieve a higher degree of connec-
tivity. Second, under full sensing coverage requirement, the
hexagon lattice has the lowest node density [12], which is im-
portant for economic reasons. Third, sensor placement can
be viewed as spatial sampling from signal processing per-
spective. The literature there also suggests the superiority
of hexagonal sampling lattice over the square lattice when
the spatial spectrum of 2-D signal being measured (such as
a temperature field) is bandlimited with a circular support.
Finally, with a communication range rc ≥

√
3rs, where rs

stands for the sensing range, the hexagon lattice pattern
provides both coverage and connectivity [4].

In this paper, we consider the case where rc =
√

3rs which
corresponds to a 6-connectivity. Moreover, it is assumed
that there is unbiased random motion, so that all of the
6 possible next steps away from the current position are
equally likely, each having probability 1

6
. There exist two

kinds of network nodes: sensor nodes and a smaller number
of sink nodes distributed in a regular way, one sink node
for every N2 vertices without any specific mapping between
sensor and sink nodes. A packet generated at a given sensor
node performs then a random walk until it reaches a sink
node for the first time. At this moment, we consider that
the data gathering process occurs with success.

As illustrated in Figure 1, the induced network has a pe-
riodic structure, in which each unit cell of size N × N and
in the form of a rhombus contains N2 − 1 sensor nodes and
1 sink node. Since we are interested only in which nodes are
connected to which, not in the visual appearance of the unit
cell, we may transform this unit cell to obtain a new cell in
the form of a square lattice of size N×N with one additional
diagonal bond inserted in each fundamental square. The ob-
tained cell has the advantage that we can assign to nodes
integer coordinates while maintaining the original network
topology. With a large number of unit cells and recalling the
assumption that there is no specific mapping between sensor
nodes and sink nodes, we can assume that the formed net-
work is infinite and hence, it is equivalent to a torus lattice
T formed by connecting the opposite ends of the square unit



cell (Figure 2). Therefore, in the remainder of this paper we
investigate the URWR in reference to torus lattice T . Ev-
ery node ~s ∈ T is labeled with (s1, s2), where s1 and s2 are
integers such that 0 ≤ s1, s2 ≤ N − 1. The obtained results
will be valid for the original network. However, before in-
vestigating the performance of the URWR, we introduce in
the following backgrounds and theoretical elements of ran-
dom walk theory that will be used to evaluate the URWR.
Deeper discussions of random walk results can be found in
[11].

2.2 Elements of Random Theory

2.2.1 Node Occupation and First-Passage Probabil-
ities

We define, for n ≥ 1, Pn(~r,~s) the probability of being at
node ~s after n hops, given that the packet has been issued at
node ~r. We also define Fn(~r,~s) the probability of arriving at
node ~s for the first time on the nth hop, given that the walk
started at node ~r. We shall refer to these probabilities as
the node occupation probability and the first-passage proba-
bility respectively. By convention we have P0(~r,~s) = δ~r~s and
F0(~r,~s) = 0.

We make use in this paper of the generating function for-
malism [13] to deal with a sequence {cn}n∈N by capturing
all these coefficients into a formal infinite series defined as
C(z) =

∑∞
n=0 cn zn where the complex variable z is small

enough to ensure the convergence of this series. C(z) is
called the generating function associated with {cn}n∈N. The
interest of this formalism arises especially in probability the-
ory to completely characterize a discrete random variable by
associating a generating function to its probability distribu-
tion. Once the generating function is determined, a lot of
information about the random variable, such as the expec-
tation or the variance, can be then derived.

In the following, we denote the generating functions asso-
ciated with {Pn(~r,~s)}n∈N and {Fn(~r,~s)}n∈N as P (~r,~s|z) and
F (~r,~s|z) respectively. Hereafter we present two well-known
classical relations extensively used in random walk theory,
and upon which the theoretical results derived in this paper
rely.

Lemma 1. At fixed ~r, P (~r,~s | z) satisfies the normaliza-
tion condition

∑

~s∈T

P (~r,~s | z) =
1

1 − z
· (1)

Proof. As long as there is no possibility that the packet
is removed from T at any time n (this is so for the walks
considered here), Pn(~r,~s) is a distribution over the nodes of
T at fixed n and ~r, which leads to

∑

~s∈T Pn(~r,~s) = 1, for all
n ≥ 0. By taking the generating functions of both sides of
this relation, (1) follows.

Lemma 2. F (~r,~s | z) and P (~r,~s | z) are related to each
other according to the relation

F (~r,~s | z) =
P (~r,~s | z) − δ~r~s

P (~s,~s | z)
, ~r,~s ∈ T. (2)

Proof. The proof is presented in Appendix A.

2.2.2 Random Walk Characterization

A key issue in the problem of random walk is the reso-
lution of the following question: how likely does the walk

evolve in the future under some initial conditions? Answer-
ing this question consists in finding an explicit expression
of P (~r,~s | z), which completely determines the node occupa-
tion probability distribution. Globally, throughout the large
number of interdisciplinary works in random walk theory,
the exact closed-form solution was mostly carried out under
restrictive conditions such as the periodicity of the network,
the homogeneity of the system and the infiniteness of the
structure on which the random walk takes place. Among
these special cases, the problem of random walk on finite
lattice with periodic boundary conditions (i.e., toroidal lat-
tices) has been extensively studied. The investigation of this
type of system was motivated by many situations and pro-
cess encountered in statistical mechanics, solid state theory
(e.g., diffusion of electrons, excitons, energy transfer, con-
ductivity, dislocations). Montroll and Weiss [17] originally
proposed this special problem and solved it for k-dimension.
In particular, in case of square lattice with diagonal bond,
they established an explicit expression of P (0,~s | z), that is

P (0,~s | z) =
1

N2

∑

~m∈T

e−i 2π

N
~m·~s

1 − zλ( 2π
N

~m)
(3)

where function λ(~θ) is defined on R
2 as

λ(~θ) =
1

3

(

cos(θ1) + cos(θ2) + cos(θ1 − θ2)
)

.

Even though relation (3) does not give a simple form of
P (0,~s | z), it is of great importance and represents our basic
relation upon which relies most of our contribution in this
paper.

3. PERFORMANCE ANALYSIS
In the present section, we investigate the performance of

the URWR. We shall focus our attention primarily on two
performance metrics: (i) how long does it take for the data
gathering process and (ii) how much energy does it require?
These two metrics, which characterize the global system be-
havior, are analytically studied by using the general formal-
ism introduced in subsection 2.2. We first focus on (i) the
system data gathering delay and then (ii) the spatial distri-
bution of the energy consumption.

3.1 System Data Gathering Delay
We define the data gathering delay of a packet at a given

sensor node ~s as the time or the number of hops it takes to
reach the sink node for the first time after it leaves sensor
node ~s. The system data gathering delay is then obtained by
averaging the packet delay over all sensor nodes contained
in T . This time is a random variable denoted by DN . We
consider here a uniform traffic distribution, that is, a packet
has the probability 1

N2−1
of being generated at any sensor

node in T . For studying the mean system data gathering
delay, we determine first the generating function associated
with the probability distribution of random variable DN .

3.1.1 Generating Function Analysis of DN

Suppose that at time n = 0 a packet has the probability
1

N2−1
of being generated at any sensor node in T . If Gn(N)

denotes the probability that the packet will reach the sink
node for the first time on the nth hop, then in terms of
probability notation we have

Pr
{

DN = n
}

= Gn(N), n ≥ 0.



Using now the law of total probability, it is possible to de-
compose the event that a packet generated anywhere will
reach the sink node for the first time on the nth hop, which
has the probability Gn(N), into the N2 − 1 mutually exclu-
sive events that the packet is initially released at sensor node
~s with probability 1

N2−1
, and then arrives at the sink node

for the first time after n hops, which has the probability
Fn(~s,0). Thus, Gn(N) can be expressed as

Gn(N) =
1

N2 − 1

∑

~s 6=0

Fn(~s,0), n ≥ 0.

Multiplying both sides of this relation by zn and summing
over all n yield

G(N | z) =
1

N2 − 1

∑

~s6=0

F (~s,0 | z),

where G(N | z) stands for the generating function associated
with sequence {Gn(N)}n∈N. Then, from (2) we obtain

G(N | z) =
1

N2 − 1

∑

~s6=0

P (~s,0 | z)

P (0,0 | z)

=
1

(N2 − 1)P (0,0 | z)

{

∑

~s∈T

P (~s,0 | z) − P (0,0 | z)

}

.

However, since it it assumed that there is no directional bias
on any hop, the considered random walk is symmetric and
therefore we have P (~s, 0 | z) = P (0,~s | z). Further, using the
normalization condition stated in (1), we find

G(N | z) =
1

N2 − 1

{

1

(1 − z)P (0,0 | z)
− 1

}

· (4)

Various statistics of the system data gathering delay can
be now extracted from this key relation using the general
formalism of generating function. In particular, we propose
next to derive the mean system data gathering delay, i.e.,
the expectation of DN denoted by E(DN ).

3.1.2 Mean System Data Gathering Delay

The mean system data gathering delay can be written as

E(DN ) =

∞
∑

n=0

n Gn(N)

= lim
z→1−

∂

∂z
G(N | z)·

Although this formula does not give an explicit expression
of the mean system data gathering delay, we can fortu-
nately extract a closed-form by a Taylor ’s series expansion
of G(N | z) at point z = 1. Indeed, the limit of the first
derivative of G(N | z) as z → 1− is nothing but the first-
order term of its Taylor ’s series. To obtain the first order
Taylor ’s series expansion of G(N | z) at point z = 1, we pro-
ceed as follows. We first calculate the asymptotic expansion
of P (0,0 | z) as z → 1, which is obtained by setting ~s = 0
in the asymptotic expansion of P (0,~s | z) as z → 1 given by
(19) in Appendix B. Second, by plugging the asymptotic
expansion of P (0,0 | z) as z → 1 into (4), we obtain

G(N | z) = 1 +
N4

(

1 + 4ϕN (0, 1)
)

− N2

4(N2 − 1)
(z − 1) + o(z − 1)

where ϕN (0, 1) is an N-dependent series obtained by setting
~s = 0 and z = 1 in ϕN (~s, z) defined by (18) in Appendix B.

By differentiating this Taylor ’s series expansion with respect
to z and then taking the limit as z → 1−, we obtain the
following closed-form expression of the mean system data
gathering delay

E(DN ) =
1

4
N2 +

N4

N2 − 1
ϕN (0, 1). (5)

Some general remarks can be drawn from the previous
results. First, from the first-order Taylor ’s series expan-
sion, the value of G(N | z) at point z = 1 is equal to unit,
which represents the probability that the sink node is ever
reached by a packet generated anywhere in the network.
This means that the data gathering process ensured by the
URWR is certain. Second, referring to (5), the mean system
data gathering delay is finite and depends only on the size
of a unit cell via parameter N . To study this dependence,
one has to estimate series ϕN (0, 1). Two ways are possible.
First, the mean system data gathering delay is estimated
by a numerical calculation of series ϕN (0, 1). A second way
consists in approximating E(DN ) by an asymptotic expan-
sion of series ϕN (0, 1) as N → ∞, which is provided by (21)
in Appendix C. Plugging (21) into (5), we obtain our first
analytical result

Result 1.

E(DN ) =

√
3

π
N2 ln(N) + N2

(

√
3

π
γ +

√
3

π
ln(

√
3

π
) + ℓ +

1

4

)

+

√
3

π
ln(N) +

√
3

π

(

γ + ln(

√
3

π
) +

√
3

3
πℓ

)

+

√
3

π

ln(N)

N2
+ O(

1

N2
)·

(6)

where “O” stands for the “Big-O” Landau symbol, γ is the
Euler’s constant (γ = 0.5772156649) and ℓ = −0.0047473394.

3.1.3 Discussion

As mentioned earlier, the main question we want to ask in
this paper is to what extend the URWR can be efficient while
being simple and light. In this section, we have focused on
the mean system data gathering delay as a performance met-
ric of the URWR. As shown by Result 1, this performance
metric depends only on cell size or equivalently on the num-
ber of sensor nodes to be spread per sink node. This result
is of threefold interest. First, the dependence of the achiev-
able mean system data gathering delay on cell size alone and
not on the overall network size shows that the URWR can
scale up with the network size. Second, it is not necessary
that N be very large for approximation formula (6) to be
numerically useful. For N = 3, (6) gives E(D3) = 8.226
hops, which is only about 0.29 per cent different from the
exact result from (5) that E(D3) = 8.25 hops. Third, it is al-
ways possible to guarantee an acceptable mean system data
gathering delay provided that the number of sensor node per
sink node is carefully tuned. Thus, approximation formula
(6) can be put into practical use for WSN dimensioning with
respect to crucial parameters such as the minimum ratio of
sink nodes to be deployed over the total number of sensor
nodes while ensuring a required threshold mean system data
gathering delay.

Concretely, consider now IEEE 802.15.4 enabled network
nodes with maximum and minimum supported data rates
of 250 kbps and 20 kbps respectively. Since in many ap-
plications of WSNs, sensor nodes often send only beep-like
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Figure 3: Mean system data gathering delay E(DN )
vs. cell size N for IEEE 802.15.4 enabled network
nodes, and with an average packet size of 10 bytes.

small packets to the sink node to report their status, we
can assume here an average packet size of about 10 bytes.
Therefore, the minimum achievable mean system data gath-
ering delay for the maximum data rate is about 938 µs while
for the minimum data rate, it is about 11.7 ms. This cor-
responds to 2.93 hops for a unit cell of size N2 = 4 nodes.
However, as illustrated in Figure 3, to guarantee a mean sys-
tem data gathering delay threshold of 1 s, the unit cell size
should not exceed N2 = 372 nodes for the maximum data
rate, and N2 = 122 for the minimum data rate. As these
values approach upper bounds of practical interest, we can
conclude that for applications without too stringent required
delay, which often characterize a large range of WSN appli-
cations, the URWR can perform acceptable performance in
terms of delay provided that the number of sensor nodes to
be deployed per sink node is well managed.

3.2 Energy Consumption
Besides the mean system data gathering delay, another

important performance metric of the URWR is the energy
consumption: how much energy does it require for a packet
to be gathered by a sink node? We do not take here into
account all possible sources of energy consumption, but only
the contribution of the URWR induced by successive trans-
missions/receptions at relay sensor nodes. A straightforward
metric that measures the successive transmissions/receptions
cost is the number of visits of a packet to a relay sensor
node before reaching the sink node. At a given relay sensor
node ~s, we denote by VN (~s) the number of visits during the
random walk before visiting the sink node, and we assume
again a uniform traffic distribution. In the following, we first
put this physical picture into a mathematical form and then
evaluate at relay sensor node ~s the mean number of visits
denoted by E

(

VN(~s)
)

.

3.2.1 Sink-Avoiding Node Occupation Probability

Let us define P †
n(~r,~s) as the probability of being at re-

lay sensor node ~s on the nth hop before reaching the sink
node, given that the packet has been initially issued at sen-
sor node ~r. We refer to this probability as the sink-avoiding
node occupation probability. We show next how P †

n(~r,~s) and
Pn(~r,~s) are related to each other. Indeed, using the law of
total probability, it is possible to decompose the event that
a packet generated at sensor node ~r will be at relay sensor
node ~s on the nth hop, which has the probability Pn(~r,~s),

into the two exclusive events: (i) the packet visits sensor
node ~s on the nth hop before visiting the sink node, which
has the probability P †

n(~r,~s), (ii) the packet first arrived at
the sink node after j hops and subsequently performed a
walk of n − j hops arriving at sensor node ~s, which has the
probability Fj(~r,0)Pn−j(~0,~s). Thus,

Pn(~r,~s) = P †
n(~r,~s) +

n
∑

j=0

Fj(~r,0)Pn−j(0,~s), n ≥ 0.

Multiplying both sides by zn, summing over all n and ob-
serving that the convolution of two sequences corresponds to
the multiplication of their generating functions, we obtain

P (~r,~s | z) = P †(~r,~s | z) + F (~r,0 | z)P (0,~s | z) (7)

where P †(~r,~s | z) stands for the generating function associ-
ated with {P †

n(~r,~s)}n∈N. Then, substituting the expression
of F (~r, 0 | z) given by (2) into (7) yields this key relation

P †(~r,~s | z) = P (~r,~s | z) − P (0,~s | z)
P (~r,0 | z)

P (0,0 | z)
. (8)

Next, we evaluate the mean number of visits E
(

VN(~s)
)

based
on this relation.

3.2.2 Mean Number of Visits

Let us suppose that at time n = 0 a packet has the prob-
ability 1

N2−1
of being generated at any sensor node in T . At

a given relay sensor node ~s, we define an indicator random
variable In(~s), which takes the value 1 if relay sensor node ~s
is visited by the packet on the nth hop before reaching the
sink node, and is zero otherwise. Let us also define Hn(~s)
and H(~s | z) the probability that relay sensor node ~s is vis-
ited on the nth hop by the packet before reaching the sink
node and its associated generating function respectively, so
that, in terms of probability notation we have

Pr
{

In(~s) = 1
}

= Hn(~s).

Therefore, it can be deduced that the number of visits of the
packet to relay sensor node ~s before reaching the sink node
during the walk is simply

VN(~s) =
∞

∑

n=0

In(~s),

and hence,

E
(

VN(~s)
)

= E
(

∞
∑

n=0

In(~s)
)

=
∞

∑

n=0

E
(

In(~s)
)

=
∞

∑

n=0

Hn(~s) = lim
z→1−

H(~s | z).

Now, it remains to make explicit H(~s | z). Using the law of
total probability, it is possible to decompose the event that
a packet generated at any sensor node will visit relay sensor
node ~s on the nth hop before visiting the sink node, which
has the probability Hn(~s), into the N2−1 mutually exclusive
events that the packet is initially generated at sensor node
~r with probability 1

N2−1
, and then visits relay sensor node

~s after n hops before visiting the sink node, which occurs
with probability P †

n(~r,~s). Thus, we obtain

Hn(~s) =
1

N2 − 1

∑

~r 6=0

P †
n(~r,~s), n ≥ 0.
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By multiplying both sides by zn and summing over all n, we
obtain

H(~s | z) =
1

N2 − 1

∑

~r6=0

P †(~r,~s | z). (9)

Finally, by plugging (8) into (9), using successively the sym-
metric property of P (~r, 0 | z) and the normalization condi-
tion stated in (1), we find

H(~s | z) =
1

(N2 − 1)(1 − z)

{

1 − P (0,~s | z)

P (0,0 | z)

}

· (10)

Since the mean number of visits is defined as the limit of
H(~s | z) as z → 1−, a zero-order Taylor ’s series expansion
of H(~s | z) at point z = 1 is sufficient to derive E

(

VN (~s)
)

.
Likewise the calculation of the mean system data gathering
delay, we proceed first to evaluate the asymptotic expansion

of P (0,~s | z)
P (0,0 | z)

as z → 1−, which can be derived from (19) in

Appendix B. Second, after elementary calculus, we obtain
the limit of H(~s | z) as z → 1−, i.e., E

(

VN (~s)
)

as follows

Result 2.

E
(

VN(~s)
)

=
N2

N2 − 1

(

ϕN (0, 1) − ϕN (~s, 1)
)

+
3s2(N − s2)

2(N2 − 1)
·

(11)

where ϕN (~s, 1) is a series obtained by setting z = 1 in
ϕN (~s, z) defined by (18) in Appendix B.

3.2.3 Discussion

Some general remarks can be drawn from Result 2. First,
note that the mean number of visits depends on both cell
size via parameter N , and the position of relay sensor node
~s. This is predictable since the nodes of T are not equivalent:
sensor nodes in the vicinity of the sink node are not equiva-
lent to those in the middle of the cell. Second, as shown in
Figure 4, the mean number of visits achieved far away from
the sink node is much closer to uniform and with higher
values than the one in the vicinity of the sink node. Then
we can conclude that the URWR achieves a load balancing
property. Intuitively, this can be explained by the fact that
a packet visiting a relay sensor node located in the vicinity
of the sink node is more likely to reach it during the next
fewer hops than when visiting a relay sensor node far away
from the sink node, and thus, it is more likely to return once
again to the latter relay sensor node. In other words, the
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Figure 5: Maximum mean number of visits vs. cell
size N .

proximity to the sink node decreases the likelihood of the
return to the initial position. In this way, relay sensor nodes
in the middle of the cell are expected to be more visited than
the others. This is consistent with Figure 4. Interestingly
enough, and at first glance surprising to us –although rather
obviously with the benefit of hindsight– is the fact that the
energy consumption distribution achieved along the diago-
nal between the upper left corner and the lower right corner
is lower than the one along the opposite diagonal. This can
be explained by the fact that only hops along the former
diagonal are allowed and hence, accelerating random walks
along this direction.

Although there is no unified definition of network lifetime,
as this concept depends on the objective of an application,
we adopt here a common definition which characterizes the
network lifetime as the time until the first node in the net-
work depletes its energy. In case of the URWR, the first
node that depletes its energy corresponds to the most vis-
ited node during the data gathering process. As illustrated
in Figure 5, the maximum mean number of visits grows log-
arithmically with large values of N . Therefore, the network
lifetime does not degrade quickly when the number of sensor
nodes per sink node increases.

Let us now consider a practical case where nodes are
equipped with the MC13192, an IEEE 802.15.4 compliant
radio transceiver from Freescale Semiconductor [1], which of-
fers a data rate of 250 kbps and operates in transmit/receive
mode at (30 mA, 2.7 V) and (37 mA, 2.7 V) respectively.
Since a visit to a sensor node counts for one reception fol-
lowed by one transmission, the energy required for a 10 byte
message per visit is about 57.88 µJ. Therfore, for a given
energy source and a frequency for measure updates, it is
possible to derive the network lifetime for a given cell size
based on Figure 5.

4. CONCLUSION
In this paper we addressed the problem of random walk

to model data gathering in large-scale WSNs with regular
structure. Our motivation for this approach comes from the
inherent properties of random walks such as the locality,
the simplicity and the robustness to structural changes. We
presented a mathematical formulation of the problem of ran-
dom walk that largely owes to the powerful theoretical tools
developed in the physics community. Using the generating
function formalism, we established closed-form expressions



for the mean system data gathering delay and the energy
consumption based on the mean number of visits.

Our main results could be summarized as follows. First,
the dependence of the achievable mean system data gath-
ering delay on only the ratio of sink nodes over the total
number of sensor nodes shows that the random walk can
scale with the network size. Second, it is always possible
to guarantee an acceptable mean system data gathering de-
lay for delay-tolerant applications provided that this ratio is
carefully tuned and that the packets are of small size. Third,
as regards to energy consumption, the random walk achieves
a load balancing property.

There are several interesting directions that extend the
model presented in this paper. This consists for instance
in deriving other significant statistics of the random walk
such as the dispersion of the system data gathering delay,
studying biased random walks to improve performance and
considering other network topologies such as the square lat-
tice, which will be soon published.

APPENDIX

A. PROOF OF LEMMA 2
The event “the packet is at node ~s after n hops, given

that the walk started at node ~r”, which has the probabil-
ity Pn(~r,~s), can be decomposed into n mutually exclusive
events “the packet first arrived at node ~s after j hops and
subsequently performed a walk of n − j hops returning to
node ~s”, with probabilities Fj(~r,~s)Pn−j(~s,~s). Thus

Pn(~r,~s) =
n

∑

j=1

Fj(~r,~s)Pn−j(~s,~s), n ≥ 1.

If this sum is interpreted as void when n = 0, recalling the
convention that P0(~r,~s) = δ~r~s and F0(~r,~s) = 0, we may
rewrite this relation as

Pn(~r,~s) = δ~r~s δ0n +

n
∑

j=0

Fj(~r,~s)Pn−j(~s,~s), n ≥ 0.

Taking the generating functions of both sides yields (2).

B. ASYMPTOTIC ANALYSIS OF P (0, ~S |Z)

B.1 Singularity of P (0,~s | z) at z = 1

We propose here to simplify the expression of P (0,~s | z)
given by (3) and to study its singularity at point z = 1. By
factorizing the denominator of the summand and using the
addition theorems of trigonometric functions, we obtain

P (0,~s | z) =
1

N2

N−1
∑

m1=0

N−1
∑

m2=0

{

e−i 2π

N
m1s1

1 − z
3

cos( 2π
N

m1)

× e−i 2π

N
m2s2

1 − cm1(z) cos
(

π
N

(m1 − 2m2)
)

}

=
1

N2

N−1
∑

m1=0

e−i 2π

N
m1s1

1 − z
3

cos( 2π
N

m1)
× Sm1(z)

(12)

where functions cm1(z) and Sm1(z) are defined as

cm1(z) =
2z cos( π

N
m1)

3 − z cos( 2π
N

m1)
(13a)

Sm1(z) =
N−1
∑

m2=0

e−i 2π

N
m2s2

1 − cm1(z) cos
(

π
N

(m1 − 2m2)
) ·(13b)

Next, we propose to simplify Sm1(z). The first step is to
see from (13a) that 0 < |cm1(z)| < 1 for 0 < z < 1 unless
m1 = N

2
, which occurs only when N is even. In this case,

c N

2
(z) = 0 and we find S N

2
(z) = Nδ0, s2 where the delta

symbol stands for the Kronecker symbol. Let us now as-
sume that m1 6= N

2
, so that, by using the exponential repre-

sentation of trigonometric functions, Sm1(z) can be written
as follows

Sm1(z) = − 2

cm1(z)

N−1
∑

m2=0

{

ei π

N
(m1−2m2(1+s2))

ei π

N
(m1−2m2) − αm1(z)

× 1

ei π

N
(m1−2m2) − α−1

m1 (z)

}

where αm1(z) is the smaller root of the equation

X2 − 2

cm1(z)
X + 1 = 0

whose discriminant is nonnegative. Thus, we find

αm1(z) =
1 −

√

1 − c2
m1

(z)

cm1(z)
· (14)

Using partial fraction decomposition, Sm1(z) becomes

Sm1(z) =
(

1 − c2
m1

(z)
)− 1

2

N−1
∑

m2=0

{

e−i 2π

N
m2s2

1 − αm1 (z) e−i π

N
(m1−2m2)

+
αm1(z) ei π

N
(m1−2m2(1+s2))

1 − αm1 (z) ei π

N
(m1−2m2)

}

·

Noting that |αm1 (z)| < 1, it is then possible to expand each
sum involved in Sm1(z) by using successively the expansion
1/(1 − x) =

∑∞
k=0 xk and the identity

N−1
∑

m=0

ei 2π

N
mn =

{

N for n = 0,±N,± 2N, · · ·
0 otherwise.

which can be derived by remarking that the vectors ei 2π

N
mn

form an orthogonal basis over the set of N-dimensional com-
plex vectors. Therefore, we obtain

Sm1(z) =
N e−i π

N
m1s2

(

1 − c2
m1

(z)
) 1

2

× αs2
m1

(z) + αN−s2
m1

(z) cos(πm1)

1 − αN
m1

(z) cos(πm1)

(15)
which is established for m1 6= N

2
and 0 < z < 1. However,

when cm1(z) → 0, which occurs at m1 → N
2

, αm1 (z) goes
to zero. Thus, if we extend the expression (15) to include
m1 = N

2
, we obtain S N

2
(z) = Nδ0, s2 , which is consistent

with (13b). Therefore (15) holds for all 0 ≤ m1 ≤ N − 1.



Finally, by substituting (15) into (12), we obtain

P (0,~s | z) =
1

N

N−1
∑

m1=0

{

e−i π

N
m1(2s1+s2)

(

1 − z
3

cos( 2π
N

m1)
)(

1 − c2
m1

(z)
) 1

2

× αs2
m1

(z) + αN−s2
m1

(z) cos(πm1)

1 − αN
m1

(z) cos(πm1)

}

·

(16)

Note that the summand involved in (16) is holomorphic over
0 < z < 1 for all 0 ≤ m1 ≤ N − 1. However, it diverges at
z = 1 when m1 = 0. Thus, the singularity of P (0,~s | z) at
z = 1 comes only from the first term of the sum given by
(16). It is convenient therefore to separate out the singular
and non-singular parts of P (0,~s | z) as follows

P (0,~s | z) =

√
3

N(1 − z)
1
2 (3 + z)

1
2

× αs2
0 (z) + αN−s2

0 (z)

1 − αN
0 (z)

+ ϕN (~s, z)

(17)

where

ϕN (~s, z) =
1

N

N−1
∑

m1=1

{

e−i π

N
m1(2s1+s2)

(

1 − z
3

cos( 2π
N

m1)
)(

1 − c2
m1

(z)
) 1

2

× αs2
m1

(z) + αN−s2
m1

(z) cos(πm1)

1 − αN
m1

(z) cos(πm1)

}

(18)

is holomorphic at z = 1. The first term involved in (17)
corresponds to the term m1 = 0 in (16), and the second
term, ϕN (~s, z), corresponds to the sum 1 ≤ m1 ≤ N − 1.

B.2 Asymptotic expansion of P (0,~s | z) as z → 1

To obtain the zero-order asymptotic expansion of P (0,~s | z)
as z → 1, let us successively expand the first term of P (0,~s | z)
involved in (17) and then function ϕN (~s, z) close to z = 1.
After expanding function α0(z), it can be deduced that

√
3

N(1 − z)
1
2 (3 + z)

1
2

× αs2
0 (z) + αN−s2

0 (z)

1 − αN
0 (z)

=
1

N2(1 − z)

+
N2 − 6Ns2 + 6s2

2 − 1

4N2
+ o

(

(1 − z)
1
2
)

.

Using now the Taylor ’s Theorem, ϕN(~s, z) can be repre-
sented by its zero-order Taylor series expansion at z = 1

ϕN (~s, z) = ϕN (~s, 1) + o
(

(1 − z)
1
2
)

.

Finally, combining this asymptotic expansion with the one
of the first term of P (0,~s | z), we obtain

P (0,~s | z) =
1

N2(1 − z)

+
N2

(

1 + 4ϕN (~s, 1)
)

− 6Ns2 + 6s2
2 − 1

4N2
+ o

(

(1 − z)
1
2
)

.

(19)

C. ASYMPTOTIC EXPANSION OF ϕN (0, 1)

Setting ~s = 0 and z = 1 in (18), we obtain

ϕN (0, 1) =

√
3

2N

N−1
∑

m1=1

{

1

sin( π
N

m1)
(

1 + 1
3

sin2( π
N

m1)
) 1

2

× 1 + αN
m1

(1) cos(πm1)

1 − αN
m1

(1) cos(πm1)

}

·
(20)

In this section, we show that series ϕN (0, 1) has the following
asymptotic expansion as N → ∞

ϕN (0, 1) =

√
3

π
ln(N) +

√
3

π

(

γ + ln(

√
3

π
) +

√
3π

3
ℓ
)

+ O
( 1

N4

)

(21)

where γ is the Euler ’s constant and ℓ is a constant. This
asymptotic expansion is obtained by writing ϕN (0, 1) as

ϕN (0, 1) = Q1(N) + Q2(N) + Q3(N),

where

Q1(N) =

√
3

2N

N−1
∑

m1=1

1

sin( π
N

m1)
,

Q2(N) =

√
3

2N

N−1
∑

m1=1

(

1 + 1
3

sin2( π
N

m1)
)− 1

2 − 1

sin( π
N

m1)
,

Q3(N) =

√
3

N

N−1
∑

m1=1

(

1 + 1
3

sin2( π
N

m1)
)− 1

2 αN
m1

(1) cos(πm1)

sin( π
N

m1)
(

1 − αN
m1

(1) cos(πm1)
)

and then by calculating separately the asymptotic expansion
of each sum as N → ∞.

C.1 Asymptotic expansion of Q1(N) as N → ∞
Let f(x) be the function defined for all real numbers x

between 0 and π as follows

f(x) =











1

sin(x)
− 1

x
− 1

π − x
, x ∈]0, π[

− 1

π
, x = 0, π.

We can show that f is indefinitely differentiable, in particu-
lar

f (1)(0) =
1

6
− 1

π2
and f (1)(π) = −1

6
+

1

π2
·

Remark also that Q1(N) can be expressed as

Q1(N) =

√
3

2N

N−1
∑

m1=1

f(
π

N
m1) +

√
3

π

N−1
∑

m1=1

1

m1
· (22)

Therefore, using the Euler-Maclaurin summation formula
[10]

1

N

N−1
∑

m1=1

h(
π

N
m1) =

1

π

∫ π

0

h(x) dx − 1

2N

(

h(π) + h(0)
)

+
π

12N2

(

h(1)(π) − h(1)(0)
)

+ O(
1

N4
)

(23)



where h is an indefinitely differentiable function, and since
∫ π

0
f(x) dx = 2 ln( 2

π
), we obtain

1

N

N−1
∑

m1=1

f(
π

N
m1) =

2

π
ln(

2

π
)+

1

Nπ
− π

6N2

(1

6
− 1

π2

)

+O(
1

N4
)·

(24)
It remains now to expand the second sum involved in (22),
which can be recognized as the Harmonic series, that is
HN =

∑N−1
m1=1

1
m1

· According to [10], HN has the follow-
ing asymptotic expansion

HN = ln(N) + γ − 1

2N
− 1

12N2
+ O(

1

N4
), (25)

where γ is the Euler ’s constant (γ = 0.5772156649). By
plugging (24) and (25) into (22), we find

Q1(N) =

√
3

π
ln(N) +

√
3

π

(

γ + ln(
2

π
)
)

−
√

3π

72N2
+ O(

1

N4
)·

(26)

C.2 Asymptotic expansion of Q2(N) as N → ∞
Let g(x) be the function defined for all real numbers x

between 0 and π as follows

g(x) =











(

1 + 1
3

sin2(x)
)− 1

2 − 1

sin(x)
, x ∈]0, π[

0, x = 0, π.

We can show that g is indefinitely differentiable, in particu-
lar

g(1)(0) = −1

6
and g(1)(π) =

1

6
·

Note that Q2(N) can be expressed as

Q2(N) =

√
3

2N

N−1
∑

m1=1

g(
π

N
m1)·

Using the Euler-Maclaurin summation formula, we obtain

1

N

N−1
∑

m1=1

g(
π

N
m1) =

1

π

∫ π

0

g(x)dx − 1

2N

(

g(π) + g(0)
)

+
π

12N2

(

g(1)(π) − g(1)(0)
)

+ O(
1

N4
)·

The integral has the value
∫ π

0

g(x)dx = ln(
3

4
)

so that

Q2(N) =

√
3

2π
ln(

3

4
) +

√
3π

72N2
+ O(

1

N4
)· (27)

C.3 Asymptotic expansion of Q3(N) as N → ∞
Before evaluating Q3(N), note that the terms correspond-

ing to the values of m1 near 1 or N −1 contributes to Q3(N)
more significantly than the ones corresponding to the values
of m1 near ⌊N

2
⌋ when N is large. Indeed, from (14) we see

that when m1 ≃ 1 or N − 1, sin( π
N

m1) is close to 0 and
|αm1 (1)| close to 1. In this range, the summand of Q3(N)
diverges as N → ∞. However, when m1 is close to ⌊N

2
⌋,

sin( π
N

m1) is close to 1 and αm1(1) close to 0, and hence,

αN
m1

(1) vanishes exponentially to zero as N → ∞. There-
fore, the summand of Q3(N) decreases to zero faster than
any power of 1

N
and consequently can be neglected.

We can see also that the summand of Q3(N) is symmetric
about the N

2
-axis, that is, the (N − m1)-term equals to the

m1-term. Therefore, by neglecting the N
2
-term only when

N is even, Q3(N) can be rewritten as

Q3(N) =
2
√

3

N

⌊ N−1
2

⌋
∑

m1=1

(

1 + 1
3

sin2( π
N

m1)
)− 1

2 αN
m1

(1) cos(πm1)

sin( π
N

m1)
(

1 − αN
m1

(1) cos(πm1)
) ·

(28)
In order to approximate Q3(N) when N is very large, we

use a method pioneered by Laplace and described in [10].
It consists in breaking the sum into two disjoint ranges DN

and TN . The summation over DN should be the dominant
part, in the sense that it includes enough terms to determine
the significant digits of the sum when N is very large. The
summation over the other range TN should be just the tail
end, which contributes little to the overall total. As the
big contributions to Q3(N) occur when m1 is small, we can
consider DN as the range of small values of m1, and TN the
range of large values of m1. In the following we construct
the asymptotic expansion of Q3(N) by separating out the
dominant and the tail ranges, and then bounding the tail
range contributions.

Let am1(N) denote the summand involved in (28). By
separating out the dominant and the tail ranges, Q3(N) can
be then expressed as

Q3(N) =
∑

m1∈DN

am1(N) +
∑

m1∈TN

am1(N). (29)

As long as m1 is held in the dominant range, πm
N

goes to
zero as N → ∞. Therefore, am1(N) can be expanded as

am1(N) = bm1(N) + O(cm1(N)) (30)

where

bm1(N) =
2
√

3 e−
√

3πm1 cos(πm1)

πm1

(

1 − e−
√

3πm1 cos(πm1)
)

cm1(N) =
m3

1 e−
√

3πm1 cos(πm1)

N4
(

1 − e−
√

3πm1 cos(πm1)
) ·

This asymptotic expansion is valid as long as m1 ∈ DN and
thus, it is allowed to take the summation of both sides of
(30). Hence

∑

m1∈DN

am1(N) =
∑

m1∈DN

bm1(N) + O
(

∑

m1∈DN

| cm1(N) |
)

.

(31)
However,

∑

m1∈DN

| cm1(N) |≤ 1

N4

∞
∑

m1=1

m3
1 e−

√
3πm1

1 − e−
√

3πm1 cos(πm1)

where the series
∑ m3

1 e−
√

3πm1

1 − e−
√

3πm1 cos(πm1)
converges. Thus,

∑

m1∈DN

| cm1(N) |= O(
1

N4
), so that,

∑

m1∈DN

am1(N) =
∑

m1∈DN

bm1(N) + O
( 1

N4

)

.



Therefore, (29) can be rewritten as

Q3(N) =
∑

m1∈DN

bm1(N) +
∑

m1∈TN

am1(N) + O
( 1

N4

)

=

⌊ N−1
2

⌋
∑

m1=1

bm1(N) −
∑

m1∈TN

bm1(N) +
∑

m1∈TN

am1(N)

+ O
( 1

N4

)

·
(32)

We evaluate now the tail range contributions. It suf-
fices to find good bounds on sums

∑

m1∈TN
am1(N) and

∑

m1∈TN
bm1(N). Indeed, as already shown, when m1 is

held in TN , αm1(1) goes to zero and hence, αN
m1

(1) de-
creases faster than any power of 1

N
as N → ∞. It can be

then deduced after a certain amount of elementary calculus

that
∑

m1∈TN
am1(N) = O( 1

N4 ). Similarly, since e−
√

3πm1

vanishes faster than any power of 1
N

, we can show that
∑

m1∈TN
bm1(N) = O

(

1
N4

)

· One finds that

Q3(N) =

⌊ N−1
2

⌋
∑

m1=1

bm1(N) + O
( 1

N4

)

· (33)

However, we can show that series
∑

N−1
2

m1=1 bm1(N) converges
to a constant ℓ as N → ∞. Since the exponential function
grows faster than any power of N , we can then write

⌊ N−1
2

⌋
∑

m1=1

bm1(N) = ℓ + O(
1

N4
), and finally

Q3(N) = ℓ + O(
1

N4
)· (34)
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