
EAI Endorsed Transactions
on Industrial Networks and Intelligent Systems Research Article

1

Mobile Application Search:

A QoS-Aware and Tag-Based Approach

Shang-Pin Ma
 1,

*, Shin-Jie Lee
 2

, Wen-Tin Lee
 3

, Jing-Hong Lin
 1

, and Jui-Hsaing Lin
 1

1
 Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan

2
 Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan

3
Department of Software Engineering, National Kaohsiung Normal University, Kaohsiung, Taiwan

Abstract

The availability of enormous numbers of mobile applications (apps) is driving demand for the means to search for,

recommend, and manage apps. Existing search engines provide basic search functionalities that enable users to find apps

by issuing query keywords; however, the ranking of search results does not always satisfy the expectations of users. This

study proposes a novel approach to address this issue, called Tag-based and QoS-aware Mobile Application Search and

Management (TQMASM). The proposed system provides two functionalities: (1) QoS-aware app search and tag-based

app recommendation; and (2) tag-based app management. QoS-aware app search is an objective means of sorting search

results by considering QoS (Quality of Service) factors, popularity, and reputation. Tag-based recommendation is used to

find apps according to tags annotated by all users. Tag-based management utilizes an hierarchical tree and tag annotation

to facilitate the management and usage of apps. A prototype realization of TQMASM was developed to evaluate the

feasibility of the proposed approach. Experiment results demonstrate the efficacy of the proposed system in providing a

satisfactory ranking of retrieved apps.

Keywords: App Search, App Recommendation, App Management, Quality of Service (QoS), Social Tag.

Received on 23 February 2015, accepted on 7 April 2015, published on 04 June 2015

Copyright © 2015 Shang-Pin Ma et al., licensed to ICST. This is an open access article distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and reproduction

in any medium so long as the original work is properly cited.

doi: 10.4108/inis.2.4.e6

*
Corresponding author. Email:shangpin.ma@gmail.com

1. Introduction

The widespread adoption of mobile applications (apps)

has led to exponential growth in the types of mobile

applications available [1]. In 2013, the Google Play store

officially announced that the over 1 million Android apps

had been created [2]. This has driven demand for efficient

means with which to search for, recommend, and manage

apps.

While existing search engines on Google Play, the iTune

Store, and Windows Phone Marketplace provide basic

search functions that allow users to find relevant mobile

apps by issuing query keywords, the ranking of search

results does not always satisfy the expectations of users.

Specifically, apps with a higher ranking are not necessarily

any better than those with a lower ranking. This can largely

be attributed to the fact that current app search engines fail

to consider quality of service (QoS) in the search for apps.

In Service-Oriented Computing, common QoS factors

include availability, reliability, and response time [3];

however, these factors are not applicable to mobile apps

because mobile apps are not purely backend functionalities.

Unlike server-side web services, mobile apps are user

interactive devices, which need to be installed and updated

periodically. This paper adopts popularity and reputation as

QoS factors to be included as parameters in the search for

mobile apps. Popularity is defined as the degree to which an

app is used by the public, which is expressed as long-term

performance. Reputation refers to the degree to which an

app can be trusted, according to recent reports regarding its

quality.

EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems

05 -06 2015 | Volume 2 | Issue 4 | e6

http://creativecommons.org/licenses/by/3.0/

Shang-Pin Ma et al.

2

Another issue is the need to locate the apps that have

already been installed on a mobile device. This can be

particularly daunting when having to deal with a large

number of apps, both installed and uninstalled. This study

sought to develop a convenient system for the management

and utilization of mobile apps. In the proposed system, the

apps arranged by users within a hierarchical tree structure

with a tag annotation mechanism, making it far easier for

users to fetch and use the apps they require than it would be

using the default app list.

The proposed Tag-based and QoS-aware Mobile

Application Search and Management (TQMASM) provides

two mechanisms: (1) QoS-aware app search and tag-based

app recommendation and (2) tag-based app management.

QoS-aware app search is an objective means of sorting and

ranking search results according to scores of popularity,

reputation, and Google ranking. Tag-based app search is a

method for the retrieval of apps in accordance with the

annotation of tags by all users. Currently, TQMASM

focuses primarily on the Android platform.

The remainder of this paper is organized as follows.

Related work is presented Section II. Section III outlines the

details of the proposed approach. The design and

implementation are presented in Section IV. Section V

presents the experiments used for the evaluation of the

proposed system. Section VI summarizes the benefits and

features of the proposed approach and outlines directions for

future work.

2. Related Works

In this section, we review several studies related to this

topic and compare our approach with these efforts.

2.1. Search Methods Based on App
Information

Datta [4, 5] utilized publicly available information to

search for apps. This information was categorized as static

and dynamic. The former includes the name of the app as

well as a description, date of update, price, type, developer

name, language and size. The latter includes comments,

ratings, version number, ranking and number of installations.

The score used for the sorting of apps is calculated

according to the ranking of the app in its main category and

the average scores of apps created by the same developer.

AppBrain [6] is a specialized search engine for Android

apps. AppBrain can let a user login the system with his ID in

one of social networking websites, such as Facebook,

Google+, or Twitter, and recommend apps to the user based

on his social networking data.

Appolicious [7] is an app search engine for both apps in

Android and iOS platforms. Appolicious is integrated with

Facebook services to provide personal recommendation

based on the information of app installations of the user, the

user’s friends, and the communities the user has joined.

Unlike most existing methods, TQMASM emphasizes

the popularity and reputation of an app to re-rank search

results according to an objective QoS score.

2.2. App Search Methods Based on App
Usage

Shi and Kamal [8] and Yan et al. [9] presented app

search methods based on app usage, with the underlying

assumption of the inefficiency of using publicly available

information on the App Marketplace. Reasons behind this

inefficiency include the following: (1) Few users actually

rate apps; (2) ratings can be faked; and (3) ratings become

obsolete in a short period of time.

Yin et al. [10] devised an AT (actual value and tempting

value) model to predict whether a user would install a new

app by comparing apps the user has installed and ones the

user may be interested in but did not download.

Karatzoglou at al. [11] proposed a Djinn model based on

context parameters (e.g. time and location) to perform the

collaborative filtering of implicit data based on tensor

factorization. The aim of the Djinn model is recommending

apps to the user based on the current context.

Despite the fact that methods based on app-usage can be

used to retrieve apps according to personal data, we sought

to enable the same functionality without compromising the

privacy of users. Thus, TQMASM is based on publicly

available data related to apps, such as meta data, data

gleaned from social networks, and the public tags submitted

by users. In addition, to avoid bias in app data, we focused

on long-term quality (popularity) as well as recent

performance (reputation) in order to enhance the validity of

all data used for evaluation.

2.3. Tag and Category

Social bookmarking enables users to add, annotate, edit,

and share bookmarks associated with web documents. The

folksonomy [12] indicates the mechanism used for the

classification of tags built up through user tagging. This

results in the formation of a user-generated taxonomy, as

opposed to an authoritative hierarchical taxonomy. Noll et al.

[13] employed the techniques in social bookmarking and

tagging to re-rank web search results. Karlson et al. [14]

provided a method to solve the problem of navigating

through search results when using a mobile device. This was

achieved by devising a hybrid model capable of performing

iterative data filtering based on the navigation and selection

of hierarchically-ordered categories (facet navigation) in

conjunction with incremental text entry to further narrow

search results.

The development of TQMASM enables users to manage

their apps by classifying and then accessing them according

to hierarchically-ordered categories as well as tags.

EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems

05 -06 2015 | Volume 2 | Issue 4 | e6

Mobile Application Search: A QoS-Aware and Tag-Based Approach

3

3. Proposed Approach

In this section, we provide an in-depth description of the

proposed TQMASM approach to app management.

3.1. Tag-Based App Tree Management

This study adopted tags and hierarchically organized

categories, which are commonly used in text retrieval

systems, to facilitate the management of mobile apps. The

proposed “app tree” enables users to list an app in a given

category, regardless of whether it has been installed.

Additional categories can also be introduced by the user in

order to expand and customize the hierarchical structure. For

example, a user could list “Facebook” and “Line” within a

category named “Social Network”, which is itself filed

within the category “Life”. Apps could also be listed in

multiple categories should the user deem this convenient

when browsing for apps.

User seeking to describe an app using more specific

terms can also attach tags to a given app. For instance, the

app Evernote could be tagged using the terms “personal”,

“note” or “inspiration”.

Furthermore, the app tree can be applied across multiple

mobile devices and desktops, which makes it possible to edit

the app tree using a large desktop screen and then browse

for apps via this app tree on a mobile phone.

Figure 1 presents the desktop UI wherein an app named

“Amazon Shopping” is assigned to the category “Life”. Any

app can be moved by dragging and dropping into any

category.

Figure 2 presents the desktop UI wherein the tag

“shopping” is added to the app “Amazon Shopping”. The

new tag is added by right-clicking the app and inputting the

tag content.

Figure 3 presents the UI designed for browsing apps on

mobile devices using the app tree. The user can check recent

information related to an app or access the app directly.

Figure 1. UI Design: Assigning apps to designated

categories

Figure 2. UI design: Adding tags to apps

Figure 3. Browsing apps using the app tree

3.2. QoS-Aware Tag-Based App Search

As mentioned above, we devise a novel method with

which to evaluate the quality of service (QoS) of apps

according to popularity and reputation. We then rank the

apps retrieved from Google Play according to the calculated

QoS score in order to provide a more reasonable ranking of

search results. In the following, we explain the popularity

score, the reputation score and the Google ranking score in

detail.

3.2.1 Popularity Score (PS)
Most users would prefer to choose apps that have been

installed by many other users as well as those that are

regularly updated [5]. We therefore sought to obtain a

popularity score capable of representing long-term

performance as well as the freshness of an app. We

integrated the number of times of installation (TI) as well as

the period elapsed since the most recent update (PUD) to

determine a popularity score, using a method based on fuzzy

theory [15].

The first step in this calculation involves converting

crisp sets into fuzzy ones; therefore, we defined the fuzzy

sets of PUD and TI separately. We designated five fuzzy

sets (PUD1, PUD2, PUD3, PUD4, and PUD5) to represent

five time ranges over a 24-month period, and five fuzzy sets

(TI1, TI2, TI3, TI4, and TI5) to express different ranges for

the number of installation.

The operations in fuzzy reasoning include Intersection

(see Eq. (1)) and Union (see Eq. (2)). To produce the

popularity score, we first used the Intersection operation to

EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems

05 -06 2015 | Volume 2 | Issue 4 | e6

4

compose the TI sets and PUD sets according to the

aggregation rules presented in Figure 4. The fuzzy sets VL

(very low), L (low), M (medium), H (high), and VH (very

high) indicate different popularity rankings. In cases where

there are more than one membership function for a given

fuzzy set related to popularity, we use the Union operation

to produce a single fuzzy degree, which represents the

popularity of an app. We then use the center of gravity

(COG) method to perform defuzzification [15] in order to

obtain a crisp number capable of representing popularity (as

shown in Eq. (3)).

µ𝐴 ∩ 𝐵(𝑥) = 𝑚𝑖𝑛⁡[µ𝐴(𝑥), µ𝐵(𝑥)] (1)

µ𝐴 ∪ 𝐵(𝑥) = 𝑚𝑎𝑥⁡[µ𝐴(𝑥), µ𝐵(𝑥)] (2)

Figure 4. Aggregation rules for TI and PUD

PS(N) = ⁡COG =
∑ 𝜇𝐴(𝑥)𝑥𝑏
𝑥=𝑎

∑ 𝜇𝐴(𝑥)𝑏
𝑥=𝑎

⁡ (3)

In the following, two apps are used as examples to

illustrate the proposed popularity scoring method. PUD and

TI of the first app are 6 months and 100,000~500,000,

whereas PUD and TI of the second app are 16 months and

1,000,000~5,000,000.

Figure 5 illustrates the PUD membership functions of the

two apps. In this example, the red dashed line is the first app

with 0.8 membership degree for PUD1, 1.0 for PUD2, and

0.2 for PUD3. The blue dotted line is the second app with

0.4 membership degree for PUD3, 1.0 for PUD4, and 0.6 for

PUD5.

Figure 6 presents the TI membership functions of the

two apps. In this example, the red dashed line is the first app

with 0.4 membership degree for TI2, 1.0 for TI3, and 0.8 for

TI4. The blue dotted line is the second app with 0.6 for TI3,

1.0 for TI4, and 0.4 for TI5.

Figure 5. Fuzzy sets of PUD (period since update date)

Figure 6. Fuzzy sets of TI (number of times of installation)

In Figure 4, red indicates the cells to which the first app

is applied, and blue text indicates the cells to which the

second app is applied. The purple text indicates the cells to

which both apps are applied. For example, in the first app, to

calculate the membership degree of popularity set H, the

intersections of membership degree pairs are calculated first:

“TI3 and PUD3”, min[1.0, 1.0] = 1.0; “TI4 and PUD3”,

min[0.8, 1.0] = 0.8; and “TI3 and PUD2”, min[1.0, 0.8] =

0.8. We then apply the union operation: max[1.0, 0.8, 0.8],

from which we determine that the membership degree of H

is 1.0. For the second app, we can use the same method to

calculate the union operation: max[0.4, 0.4, 0.4, 0.4], from

which we determine that the membership degree of H for the

second app is 0.4.

Figure 7 represents the fuzzy popularity scores for the

two apps. The area with light bars and the area with zigzags

represent the score of the first app with 0.4 L, 0.4 M, 1.0 H,

and 0.8 VH. The area with small grids and the area with

zigzags represent the score of the second app with 0.6 L, 1.0

M, and 0.4 H.

Figure 7. Popularity score

The application of COG defuzzification makes it

possible to calculate the popularity score of the first app as

64.12 (vertical bar and zigzag areas), and the second app as

48.04 (small grid and zigzag areas). Although the TI score

of the second app is approximately 10 times higher than that

of the first app, it has not been updated for more than one

year. Thus, the second app obtained a lower popularity score

than did the first one. It should be noted that if an app is not

updated regularly, it is very possible that it will be unable to

meet the current requirements of users or may include

defects that have not been adequately addressed.

EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems

05 -06 2015 | Volume 2 | Issue 4 | e6

Shang-Pin Ma et al.

Mobile Application Search: A QoS-Aware and Tag-Based Approach

5

3.2.2 Reputation Score (RS)
The reputation of an app is another important concern in

the search for apps. In evaluating the reputation of an app,

this study valued the most recent ratings more highly than

past performance. In this way, the reputation score avoids

ranking highly apps with good average scores but poor

recent performance.

We applied the REAL (Risk-Enabled Reputation Model)

method [16] to evaluate the reputation of mobile apps. The

application of the REAL method progresses through three

steps. Step 1 involves recording the ratings of an app for use

as the basic component of the reputation model. Step 2

involves the discovery of active ratings that could be used

for further calculations. Step 3 involves calculating the

reputation of the app.

The application of REAL makes it possible to detect

recent bad ratings related to an app in the form of active

ratings. For example, the rating of the Facebook app on

Google play was 3.8 on June 10, 2014, and its reputation

score was 3.31. This app earned a reputation score lower

than its average rating due to a number of poor reviews

related to an inconvenient user interface in newer versions,

which have been posted since its initial rating in June 2014.

In this manner, the reputation score is able to avoid the

situation in which previous high ratings would otherwise

overshadow recent bad performance, which results in a more

reasonable score with which to represent the reputation of an

app.

3.2.3 Google Ranking Score (GRS)
Popularity and reputation scores can be used to

determine the quality of an app; however, the relevance

between a query term and the retrieved apps is also

important. Google Play provides a high degree of precision

in the retrieval of apps based on query terms; however, it

provides inappropriate rankings with regard to popularity

and reputation. Thus, we integrated the proposed popularity

and reputation scores with Google ranking in order to

enhance search results.

The Google Ranking Score (GRS) is defined as follows.

We first set two constants (MAX_SCORE: 90 and

RANK_GROUP: 3). We then set a variable called reduction,

which is calculated using Eq. (4). Note that the value of (N /

RANK_GROUP) is rounded down to the integer. GRS is

calculated using Eq. (5).

reduction(N) = 0.3 (1 +
N

RANK_GROUP
⁡) (4)

GRS(N) ⁡= ⁡GRS(N − 1)⁡– ⁡reduction(N)⁡ (5)

The rationale behind the concept of reduction is based on

the observation that apps with a high ranking (such as ranks

1~6) are usually highly related to the query keywords,

whereas apps with low ranking (such as ranks 25~30) may

be entirely unrelated to the keyword. Thus, we define the

reduction score as the score to be subtracted. Basically, the

lower the ranking is, the higher the reduction score is.

According to this definition, the app with the highest

ranking in Google Play is subject to no reduction and

therefore obtains a score of 90 (MAX_SCORE). The

reduction of the N
th

 app is 0.3 * (1 + (N / 3)), and its score is

equal to the previous score with the reduction score

subtracted. For example, the reduction of the second app is

0.3, such that the final score is 89.7. In another example, the

score of the 29th app is 43.8 and the reduction of 30th app is

3such that the score of the 30th app is 40.8.

3.2.4 Aggregating Popularity Score and Reputation
Score into the QoS Score

Examining the long term as well as recent performance

makes it possible for TQMASM to provide a reasonable

ranking of search results for a given query. The QoS score

of mobile app a is calculated by aggregating the popularity,

reputation, and Google ranking scores based on weights w1,

w2 and w3 (as shown in Eq. (6)).

QoS(a) = w1 ∗ PS(a) + w2 ∗ RS(a) + w3 ∗ GPS(a) (6)

3.3. Tag-Based App Recommendation

We also provide an app recommendation mechanism

based on annotated tags from all users. The basic idea is that

if the user is willing to put an app into his app tree, then the

app is probably worth recommending.

To realize the recommendation feature, we used the

commonly used information retrieval technique, TD-IDF

(term frequency - inverse document frequency), for the

ranking of apps according to extracted indices. In order to

build tag indices, TQMASM gathers all tags and category

names from the app trees of all users and store them as tag

indices. TF (term frequency) refers to the importance of a

tag index for an app. TF is obtained by calculating the

proportion of the tag index for an app to the total amount of

all tag indices for an app. IDF (inverse document frequency)

indicates the degree to which a tag can be distinguished for

all apps. IDF is obtained by calculating the proportion of the

total number of apps to the number of apps annotated with

this tag, and taking the logarithm of the proportion. The TF-

IDF value is calculated by multiplying TF and IDF.

1 Raohe
Night

Market
Somgshan Wu Fen Pu

TF 3/22 11/22 6/22 6/22

IDF log(205/2) log(205/9) log(205/6) log(205/1)

2
Night

Market
Taiwan

TF 4/5 1/5

IDF log(205/9) log(205/5)

Figure 8. TF-IDF score of candidate apps

Figure 8 displays the TF-IDF information of two

illustrative apps. There are 205 apps in the app repository.

The app #1 is “Real Raohe Night Market” (“正港饒河夜市”

in Chinese), and app #2 is “Night Market Plan” (“夜市通”

EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems

05 -06 2015 | Volume 2 | Issue 4 | e6

6

in Chinese). The first candidate app was tagged “Raohe”

(“饒河” in Chinese, the name of the Night Market) 3 times,

“Night Market” 11 times, “Songshan” (“松山” in Chinese, a

region name) 6 times, and “Wu Fen Pu” (“五分埔” in

Chinses, a place name) 6 times, and the second one “Night

Market Plan” was tagged “Night Market” 4 times and

“Taiwan” 1 times. There are 2 apps annotated with “Raohe”,

9 apps with “Night Market”, 6 apps with “Songshan”, 1

apps with “Wu Fen Pu”, and 6 apps with “Taiwan” .

Issued query terms are “Raohe”, “Night Market”, “Wu

Fen Pu”, “Songshan”, and “Taiwan”. The detailed data of

TF and IDF are shown in Figure 8. The final TF-IDF scores

of these two candidate apps are 1.47 and 1.41 respectively.

Figure 9 presents the retrieved results for the keyword

“movie” using tag-based app recommendation of TQMASM.

The apps are ranked by the TF-IDF scores. Recommended

apps are closely related to the keyword “movie” .

Figure 9. Results of tag-based recommendation

4. Design and Implementation

Figure 10 presents the architecture of the prototype

system used to realize TQMASM. The prototype was

developed using Android (mobile client-side), HTML and

jQuery (web client-side), and Java Servlet technology

(server-side). App data are extracted from Google Play.

Mobile App UI (MAU) is the client-side module used to

provide all required user interfaces for the mobile device.

Users can create their own app tree and utilize apps on the

MAU. App Manage Service (AMS) is the controller used to

invoke the App Tree Handler, which creates and modifies

the app tree and tags. The App Tree Database contains

category and tag data of all users. Desktop Web UI (DAU)

is the user interface used to search for and manage apps.

App Search Services (ASS) are the controllers used to

coordinate the Popularity Scoring Model (PSM), Reputation

Scoring Model (RSM), and Tag-based Search Model (TSM).

RSM generates a score according to an app's recent ratings.

PSM produces a score according to an app's TI (number of

installation) and PUD (period elapsed since last update).

TSM builds tag indices and calculates TF-IDF scores to

facilitate the recommendation of apps. Member Service (MS)

enables users to log into the system.

Figure 10. Architecture of the prototype system

This implementation was realized as an Android app and

a Web application hosted on a desktop computer with the

following configuration: Intel Core 3.07GHz with 8G RAM,

500G hard disk, and Windows 7 (64bit).

Figure 11. Prototype system: QoS-aware search

In the following, we present a simple case to illustrate

the search functionality of the app search. In this case (see

Figure 11), the user enters the search term “note” to find

apps with note services. The ranked search results returned

two apps with very different rankings: (1)“Evernote” has a

higher ranking (from rank 6 to rank 1), and (2) “Class Note

Lite” has a lower ranking (from rank 2 to rank 12). The first

app is much fresher, has been installed far more frequently,

and has a better rating than the second app. Evernote is

widely recognized as the best app for keeping, managing,

and sharing notes, but it is not in the first rank using Google

Play. In contrast, Class Note Lite provides many

functionalities; however, many users feel that the user

interface is not satisfactory and the app has not been updated

for a long time (more than 7 months). The revised ranking

47.1)30/6(*)1/205log()30/6(*)6/205log(

)30/11(*)9/205log()30/3(*)2/205log(1



Score

41.1)5/1(*)5/205log()5/4(*)9/205log(2 Score

EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems

05 -06 2015 | Volume 2 | Issue 4 | e6

 Shang-Pin Ma et al.

Mobile Application Search: A QoS-Aware and Tag-Based Approach

7

of these apps appears more reasonable than the original

ranking.

5. Evaluation of proposed system

Experiments were conducted to evaluate the

effectiveness of the QoS-aware app search mechanism. We

chose not to conduct app-tree-based management and tag-

based app recommendations for the following reasons: (1)

App-tree-based management is merely a design concept,

which makes it difficult to identify a quantitative evaluation

method; (2) Tag-based app recommendation is not widely

used at present, which makes it impossible to deduce

meaningful results due to limited test data. Thus, we focused

on evaluating the performance of the QoS-aware app search

by comparing five methods used to search for apps:

(1) Google Play: Official mobile app marketplace

provided by Google.

(2) PS+RS: QoS score comprising popularity score

and reputation score, but not including the Google

Play score.

(3) PS+GRS: QoS score comprising popularity score

and Google ranking score, but not including the

reputation score.

(4) RS+GRS: QoS score comprising reputation score

and Google ranking score, but not including the

popularity score.

(5) TQMASM: Proposed TQMASM approach,

integrating the popularity, reputation, and Google

ranking scores.

Ten users were invited to issue three queries via

TQMASM (total 30 queries), and actually install and use the

top 15 apps obtained for each query. This meant that each

user was required to install and browse approximately 45

apps. According to their experience, the users were asked to

provide ratings ranging from 0 to 100 for each of the

installed apps. The rating guidelines were as follows: (1)

Worst: 0~20 points; (2) Bad: 21~40 points; (3) Medium:

41~60 points; (4) Good: 61~80 points; and (5) Excellent:

81~100 points.

The measurement indicator used in this research is the

Kendall tau metric [17, 18], a method used for the

calculation of the non-parametric correlation coefficient

(See Eq. (7)). The calculated coefficient ranges from -1 to 1

with -1 referring to the most negative correlation, 0 referring

to zero correlation, and 1 referring to the most positive

correlation. We analysed the correlation between the user

rankings and the rankings provided by the above five app

search alternatives. For further analysis, we respectively

calculated the average τ values of 30 queries for the top 5,

top 10, and top 15 apps retrieved in order to evaluate the

performance of the proposed system.

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡τ𝑛 =
c−d

1

2
n(n−1)

 (7)

where c is the number of concordant pairs, d is the number

of discordant pairs, and n refers to the number of included

apps.

Based on the above experiment configuration, two kinds

of experiments were conducted: parameter setting and

performance evaluation. For parameter setting, we compared

the sum of the average top-5 correlation, average top-10

correlation, and average top-15 correlation for all possible

parameter combinations in Eq. (6). In other words, all

combinations of w1 (for popularity score), w2 (for

reputation score), and w3 (for Google ranking score) were

considered in this experiment. According to our results in

Figure 12, the best parameter setting is 4:2:4 (total

correlation of 0.866); i.e., w1 (for popularity score) is 0.4,

w2 (for reputation score) is 0.2, and w3 (for Google ranking

score) is 0.4.

For the evaluation of performance, we compared the

proposed TQMASM approach with the four other above-

mentioned alternatives (Google Play, PS+RS, PS+GRS, and

RS+GRS) resents the final experiment results. The proposed

TQMASM approach exhibits performance far exceeding all

other methods for the top-5, top-10, and top-15 retrieved

apps. These findings indicates that (1) the proposed

TQMASM yields search rankings better suited to the

expectations of users; (2) The popularity score (PS)

improves the degree of satisfaction users have for search

rankings, whereas the reputation score cannot be applied

independently; and (3) the integration of the popularity

score (PS), reputation score (RS), and Google ranking score

(GRS) is necessary to obtain appropriate search rankings.

Figure 12. Parameter settings

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1
:1

:8

1
:2

:7

1
:3

:6

1
:4

:5

1
:5

:4

1
:6

:3

1
:7

:2

1
:8

:1

2
.6

:2

2
:1

:7

2
:2

:6

2
:3

:5

2
:4

:4

2
:5

:3

2
:7

:1

3
.5

:2

3
:1

:6

3
:2

:5

3
:3

:4

3
:4

:3

3
:6

:1

4
.4

:2

4
:1

:5

4
:2

:4

4
:3

:3

4
:5

:1

5
.3

:2

5
:1

:4

5
:2

:3

5
:4

:1

6
:1

:3

6
:2

:2

6
:3

:1

7
:1

:2

7
:2

:1

8
:1

:1

Su
m

 o
f

To
p

-5
, T

o
p

-1
0

 a
n

d
 T

o
p

-1
5

C

o
rr

el
at

io
n

s

Weight Setting

EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems

05 -06 2015 | Volume 2 | Issue 4 | e6

8

Figure 13. Experiment results

6. Conclusion

This paper presents a novel approach to the

management of mobile apps, referred to as Tag-based and

QoS-aware Mobile Application Search and Management

(TQMASM). This system includes three main

functionalities:

 Objective search ranking, which takes into account

the popularity as well as the reputation of an app

 Retrieval mechanism to find mobile apps according

to tags annotated by all users

 Category-based app management mechanism to

facilitate the management of and access to mobile

apps

Our future research plans include (1) devising an

automatic or semi-automatic tag annotation method to

reduce the effort required for categorization; (2) periodic

analysis of app trees to enable the active recommendation

of relevant newly-published mobile apps; and (3)

integrating the QoS-aware app search approach with tag-

based recommendation to improve the precision of app

searches.

Acknowledgements
This research was sponsored by Ministry of Science

and Technology in Taiwan under the grant MOST 103-

2221-E-019-039.

References

[1] S.-P. Ma, J.-S. Jiang, and W.-T. Lee. Service Brick

Composition Framework for Smartphones. in 20th

Asia-Pacific Software Engineering Conference

(APSEC 2013). 2013.

[2] Android's Google Play beats App Store with over 1

million apps, now officially largest. 2013; Available

from: http://www.phonearena.com/news/Androids-

Google-Play-beats-App-Store-with-over-1-million-

apps-now-officially-largest_id45680.

[3] S.-P. Ma, C.-L. Yeh, and P.-C. Chen, Service

Composition Management: A Risk-Driven Approach.

Journal of Universal Computer Science, 2014. 20(3): p.

302-328.

[4] A. Datta, K. Dutta, S. Kajanan, and N. Pervin,

Mobilewalla: A Mobile Application Search Engine, in

Mobile Computing, Applications, and Services, J.

Zhang, J. Wilkiewicz, and A. Nahapetian, Editors.

2012, Springer Berlin Heidelberg. p. 172-187.

[5] A. Datta, S. Kajanan, and N. Pervin, A Mobile App

Search Engine. Mobile Networks and Applications,

2013. 18(1): p. 42-59.

[6] AppBrain. Available from: http://www.appbrain.com/.

[7] Appolicious. Available from:

http://www.appolicious.com/.

[8] K. Shi and K. Ali, GetJar mobile application

recommendations with very sparse datasets, in

Proceedings of the 18th ACM SIGKDD international

conference on Knowledge discovery and data mining.

2012, ACM: Beijing, China. p. 204-212.

[9] B. Yan and G. Chen, AppJoy: personalized mobile

application discovery, in Proceedings of the 9th

international conference on Mobile systems,

applications, and services. 2011, ACM: Bethesda,

Maryland, USA. p. 113-126.

[10] P. Yin, P. Luo, W.-C. Lee, and M. Wang, App

recommendation: a contest between satisfaction and

temptation, in Proceedings of the sixth ACM

international conference on Web search and data

mining. 2013, ACM: Rome, Italy. p. 395-404.

[11] A. Karatzoglou, et al., Climbing the app wall:

enabling mobile app discovery through context-aware

recommendations, in Proceedings of the 21st ACM

international conference on Information and

knowledge management. 2012, ACM: Maui, Hawaii,

USA. p. 2527-2530.

[12] S. Hayman. Folksonomies and tagging: New

developments in social bookmarking. in Ark Group

Conference: Developing and Improving Classification

Schemes. 2007.

[13] M.G. Noll and C. Meinel, Web search personalization

via social bookmarking and tagging, in Proceedings of

the 6th international The semantic web and 2nd Asian

conference on Asian semantic web conference. 2007,

Springer-Verlag: Busan, Korea. p. 367-380.

[14] A.K. Karlson, G.G. Robertson, D.C. Robbins, M.P.

Czerwinski, and G.R. Smith. FaThumb: a facet-based

interface for mobile search. in Proceedings of the

SIGCHI conference on Human Factors in computing

systems. 2006: ACM.

[15] X. Liu, Parameterized defuzzification with maximum

entropy weighting function-Another view of the

weighting function expectation method. Math. Comput.

Model., 2007. 45(1-2): p. 177-188.

[16] J. Lee, S.-J. Lee, H.-M. Chen, and C.-L. Wu,

Composing web services enacted by autonomous

agents through agent-centric contract net protocol.

Information and Software Technology, 2012. 54(9): p.

951-967.

[17] R. Nelson, Kendall tau metric. Encyclopaedia of

Mathematics, 2001. 3: p. 226-227.

[18] R. Fagin, R. Kumar, and D. Sivakumar, Comparing

top k lists, in Proceedings of the fourteenth annual

ACM-SIAM symposium on Discrete algorithms. 2003,

Society for Industrial and Applied Mathematics:

Baltimore, Maryland. p. 28-36.

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

Top-5 τ Top-10 τ Top-15 τ

Average Google Play

Average PS + RS

Average PS + GRS

Average RS + GRS

Average TQMASM

EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems

05 -06 2015 | Volume 2 | Issue 4 | e6

 Shang-Pin Ma et al.

http://www.phonearena.com/news/Androids-Google-Play-beats-App-Store-with-over-1-million-apps-now-officially-largest_id45680
http://www.phonearena.com/news/Androids-Google-Play-beats-App-Store-with-over-1-million-apps-now-officially-largest_id45680
http://www.phonearena.com/news/Androids-Google-Play-beats-App-Store-with-over-1-million-apps-now-officially-largest_id45680
http://www.appbrain.com/
http://www.appolicious.com/

