
Towards a
 Distributed Search Engine

Ricardo Baeza-Yates

 Yahoo! Research Barcelona, Spain

 5

Web Search

• This is one of the most complex data
engineering challenges today:

– Distributed in nature

– Large volume of data

– Highly concurrent service

– Users expect very good & fast answers

• Current solution: Centralized system

lacerda
Typewritten Text
INFOSCALE 2008, June 4-6, Vico Equense, ItalyCopyright © 2008 978-963-9799-28-8DOI 10.4108/infoscale.2008.31

lacerda
Typewritten Text

 6

WR System Architecture

Crawlers

Web

 7

Scaling Up From [Moffat and Zobel, 2004]

 8

Inverted Index

<6,1>

cold

hot

in

not

pease

porridge

pot

the

<1,1> <2,1> <3,1> <4,2> <5,2>

Dictionary

<2,1> <4,1>

<1,1> <4,1> <5,1> <6,1>

<3,1> <6,1>

<4,1> <5,1>

<6,1><1,1> <2,1> <3,1> <4,2> <5,2>

<3,1> <6,1>

<3,1> <6,1>

Inverted Lists

<5,1>

 9

System Size

• 20 billion Web pages implies at least 100Tb of text

• The index in RAM implies at least a cluster of 3,000 PCs

• Assume we can answer 1,000 queries/sec

• 73 million queries a day imply 2,000 queries/sec

• Decide that the peak load plus a fault tolerance margin is 5

• This implies a replication factor of 10 giving 30,000 PCs

• Total deployment cost of over 100 million US$ plus

maintenance cost

• In 2010, being conservative, we would need over 1 million

computers!

 10

Questions

• Should we use a centralized system?

• Can we have a (cheaper) distributed search
system in spite of network latency?

• Preliminary answer: Yes

• Solutions: caching, pruned indexes, new ways
of partitioning the index, exploit locality when
processing queries, etc.

 11

Advantages

• Distribution decreases replication, crawling, and

indexing and hence the cost per query

• We can exploit high concurrency and locality of

queries

• We can also exploit the network topology

• Main design problems:

– Depends upon many external factors that are

seldom independent

– One poor design choice can affect performance

or/and costs

 12

Challenges

• Must return high quality results

(handle quality diversity and fight spam)

• Must be fast (fraction of a second)

• Must have high capacity

• Must be dependable

(reliability, availability, safety and security)

• Must be scalable

 18

Caching

• Caching can save significant amounts of
computational resources
– Search engine with capacity of 1000 queries/second

– Cache with 30% hit ratio increases capacity to 1400
queries/second

• Caching helps to make queries “local”

• Caching is similar to replication on demand

 19

Caching basics

• A cache is characterized by its size and its
eviction policy

• Hit : requested item is already in the cache

• Miss : requested item is not in the cache

• Caches speed up access to frequently or
recently used data
– Memory pages, disk, resources in LAN / WAN

 20

Caching in Web Search Engines

• Caching query results versus caching
posting lists

• Static versus dynamic caching policies

• Memory allocation between different
caches

• Baeza-Yates et al, SIGIR 2007

 22

Data characterization

• 1 year of queries from Yahoo! UK

• UK2006 summary collection

• Pearson correlation between query term frequency and
document frequency = 0.424

Query distribution

Query term

distribution

UK2006 summary term

distribution

 23

Caching query results or term postings

• Queries
– 50% of queries are unique

– 44% of queries are singleton (appear only once)

– Infinite cache achieves 50% hit-ratio
• Infinite hit ratio = (#queries – #unique) / #queries

• Query terms
– 5% of terms are unique (the vocabulary)

– 4% of terms are singleton

– Infinite cache achieves 95% hit ratio

 27

Static Caching of Postings

• QTF for static caching of postings (Baeza-Yates
& Saint-Jean, 2003):
– Cache postings of terms with the highest fq(t)

• Tradeoff between fq(t) and fd(t)
– Terms with high fq(t) are good to cache

– Terms with high fd(t) occupy too much space

• QTFDF: Static caching of postings
– Knapsack problem:
– Cache postings of terms with the highest fq(t)/fd(t)

 28

Evaluating Caching of Postings

• Static caching:
– QTF : Cache terms with the highest query log

frequency fq(t)

– QTFDF : Cache terms with the highest ratio fq(t) / fd(t)

• Dynamic caching, we employ:
– LRU, LFU

– Dynamic QTFDF : Evict the postings of the term with
the lowest ratio fq(t) / fd(t)

 29

Results

 30

Combining caches of query results
and term postings

 31

Experimental Setting

• Process 100K queries on the UK2006
summary collection with Terrier

• Centralized IR system

– Uncompressed/compressed posting lists

– Full/partial query evaluation

• Model of a distributed retrieval system

– broker communicates with query servers
over LAN or WAN

 32

Parameter Estimation

• The average ratio between the time to return
an answer computed from posting lists and
from the query result cache is:

– TR1 : when postings are in memory

– TR2 : when postings are on disk

– M is the cache size in answer units

• A cache of query results stores Nc=M queries

– L is the average posting list size

• A cache of postings stores Np=M/L= Nc/L posting lists

 33

Parameter Values

Compressed
Postings (L’=0.26)

Uncompressed
Postings (L=0.75)

5575527063944867Partial evaluation

5908547565285001Full evaluation

TR2’TR1’TR2TR1WAN system

798493162699Partial evaluation

11407071760233Full evaluation

TR2’TR1’TR2TR1Centralized system

 34

Centralized System Simulation

• Assume M memory units
– x memory units for static

cache of query results

– M-x memory units for
static cache of postings

• Full query evaluation with
uncompressed postings
– 15% of M for caching

query results

• Partial query evaluation
with compressed postings
– 30% of M for caching

query results

 35

WAN System Simulation

• Distributed search
engine
– Broker holds query

results cache

– Query processors hold
posting list cache

• Optimal Response
time is achieved when
most of the memory is
used for caching
answers

 36

Query dynamics

• Static caching of query results
– Distribution of queries change slowly
– A static cache of query results achieves high hit rate even

after a week

• Static caching of posting lists
– Hit rate decreases by less than 2% when training on 15, 6,

or 3 weeks
– Query term distribution exhibits very high correlation

(>99.5%) across periods of 3 weeks

Why caching results can’t reach
high hit rates

• AltaVista: 1 week from
September 2001

• Yahoo! UK: 1 year
– Similar query length in

words and characters

• Power-law frequency
distribution
– Many infrequent queries

and even singleton
queries

• No hits from singleton
queries

Caching

Results

Caching

Posting

Lists

Do not

Cache

Benefits of filtering out infrequent
queries

26.6565.1441.3470.21250k

21.0862.2436.3669.23100k

17.5859.9732.4667.4950k

UKAVUKAV

LRUOptimalCache
size

• Optimal policy does not cache singleton queries

• Important improvements in cache hit ratios

Temporal locality across different

query logs

• Temporal locality
– Stack distance between

consecutive occurrences

• More locality
– Higher hit rate

• AltaVista presents
significantly more locality

Admission Controlled Cache (AC)

• General framework for modelling a range of cache policies

• Split cache in two parts

– Controlled cache (CC)

– Uncontrolled cache (UC)

• Decide if a query q is frequent enough

– If yes, cache on CC

– Otherwise, cache on UC Baeza-Yates et al, SPIRE 2007

Why an uncontrolled cache?

• Deal with errors in the predictive part

• Burst of new frequent queries

• Open challenge:

– How the memory is split in both types of
cache?

Features for admission policy

• Stateless features
– Do not require additional memory

– Based on a function that we evaluate over the query

– Example: query length in characters/terms

• Cache on CC if query length < threshold

• Stateful features
– Uses more memory to enable admission control

– Example: past frequency

• Cache on CC if its past frequency > threshold

• Requires only a fraction of the memory used by the cache

Evaluation

• AltaVista and Yahoo! UK query logs

• Query logs split into 2 parts

– First 4.8 million queries for training

– Testing on the rest of the queries

• Compare AC with

– LRU

– SDC

LRU and SDC policies

• Eviction policies
– Once the cache is full, decide which query to evict

• LRU : Evicts the least recent query results

• SDC : Splits cache into two parts
– Static: filled up with most frequent past queries

– Dynamic: uses LRU

Results for Stateful Features

Results for Stateless features

• AC with stateless
features
outperforms LRU

• Stateless features
offer high recall
but low precision

30.0220.8161.4359.01AC kw=5

30.5121.1661.6059.18AC kw=4

31.4721.9461.9659.55AC kw=3

32.5023.1062.3359.92AC kw=2

30.5321.1961.6856.39AC kc=40

31.0621.6061.9156.73AC kc=30

32.3522.8562.3658.05AC kc=20

27.3317.0759.5360.01AC kc=10

51.7872.32Infinite

UKAV

500k100k100k50kSizes

35.9129.6164.4962.25SDC

30.9621.0361.8859.49LRU

Results
cache

Back
end

miss

hit

query result

Front
end

Back
end

Term cache

Main Index

result

BrokerPruned
index

Term cache

Pruned
index

Back
end

Term cache

Index Pruning (Skobelt syn e t a l, SIGIR08)

• Results Caching and Index Pruning together

• … to reduce latency and load on back-end servers

4 9

Query processing:
3 . from the pruned

index

query miss

hit

query

All queries vs. Misses:

Number of terms in a query

• Average number of terms for all queries = 2.4

• Most single term queries are hits in the results cache

• Queries with many

terms are unlikely

to be hits

5 0

, for m isses = 3 .2

All queries vs. Misses:

Query result size distribution
• Randomly selected 2000 queries from all queries and misses:

• Avg. result size for misses is ~100 times smaller than for all

queries

• Approx. half of the

misses returns less

than 5000 results –

SMALL!

• Similar results with a

“small” UK document

collection (78M)

5 1

All queries vs. Misses:

Term popularity distribution
• Each point -> avg.

popularity of 1000

consecutive terms

• Popularity is nor-

malized by the size

of the log

• The order of terms for

misses is the same as

for all queries

• Term popularity does

not change much!

5 2

Log sizes: 185M – all queries, 41M - misses

Static index pruning

• Smaller version of the main index, returns:
– the top-k response that is the same to the main index’s, or

– a miss otherwise.

• Assumes Boolean query processing

• Types of pruning:
– Term pruning – full posting lists for selected terms

– Document pruning – prefixes of posting lists

– Term+Document pruning – combination of both

5 3

t1

t2

t3

t4

t1

t2

t3

t4

t1

t2

t3

t4

t1

t2

t3

t4

Term pruningFull index Document pruning T+D pruning

Posting list

Term Pruning: Performance

• Answers a query if all query terms are in the pruned index

• UK document collection -

78M documents

• Term pruning based on

profit(t)=popularity(t)/df(t)

• Performs well for all queries

• For misses as well:

e.g., can process almost

50% of the queries with

25% of the index

5 4

Term pruning:

Frequent terms in misses
• Misses are sorted by the result set size (dashed line)

� MaxDF (df of the most frequent query term) is high for most of the misses

MinDF (df of the least frequent query term) correlates to the result size

• Many misses contain

at least one frequent

 term

• Thus, the term pruned

index has to include

large posting lists

5 5

Gleb

Flavio

Vassilis

Ricardo

MinDF

MaxDF

••••••••••••

•••••••••••••••

•••••••••••••••••••••••

••••••••••

•••••••

•••

Document pruning

• Based on Fagin’s top-k intersection algorithm

• Keeps postings with high scores only:

– Sufficient to compute top-k results for some queries

• Determining correctness of the result requires computing

of a scoring threshold – LATENCY!

5 6

D 1 D 5 D 3 D 2 D 4 …

D 2 D 1 D 5 …

D 4 D 1 D 2 D 3 …

t1

t2

t3

Posting list, sorted by score

Top-2 results:

D1 D2

Score threshold:
s(D2,t 1)+ s(D1,t 2)+ s(D2,t3)

Document pruning:

Experimental setup

• Scoring function:

– pr(d) – query independent score of the document d
(pagerank)

–�, k – normalization constants:
• �=[0,10,20]

• k=1

• We only look at the upper bound for the hit rate:

– Whether the original top-10 results found in the top

portions of all PLs?

5 7

• Doc.

pruning

needs high

weights of

pagerank to

outperform

term

pruning,

especially

for misses

Document pruning: performance

5 8

• T+D pruning is

the best but

expensive

(high latency)

• profit2 is better

than profit1

• However, the

improvement is

marginal for

misses (with high

pagerank weights

only)

Term+Document pruning:

performance

5 9

Analysis of results

• Static index pruning: addition to results caching, not replacement

– Term pruning performs well for misses also

=> can be combined with results cache

– Document pruning performs well for all queries, but requires high

pagerank weights with misses

– Term+Document pruning improves over document pruning, but has

the same disadvantages

• Pruned index grows with collection size

• Document pruning targets the same queries as result caching

• Lesson learned: Important to consider the interaction between the
components

6 1

 63

Locality

• Many queries are local

– The answer returns only local documents

– The user clicks only on local documents

• Locality also helps in:

– Latency of HTTP requests (queries, crawlers)

– Personalizing answers and ads

• Can we decrease the cost of the search engine?

 64

Tier Prediction (Baeza-Yates et al, 2008)

• Can we predict if the query is local?

– Without looking at results

– or increasing the extra load in the next level

• This is also useful in centralized search engines

– Multiple tiers divided by quality

• Experimental results for

– WT10G and UK/Chile collections

Merge

Corpus B

Corpus A

Corpus

Predictor

Result

Assessor

Failed Prediction for B

A

B

Query

Answer

Main path

B Predicted

1

FN

F

1 1-F-FN

FN

F-FP

F

F-FP

 66

Experimental Results

• Centralized case:

• Distributed case:

 67

Tier Prediction Example

• Example:

– System A is twice faster than System B

– System B costs twice the costs of System A

• Centralized case:

– 29% answer time improvement at 31% extra

cost

• Distributed case:

– 12% answer time improvement at 18% extra

cost

 68

Document Partitioning

<6,1>

cold

hot

in

not

pease

porridge

pot

the

<1,1> <2,1> <3,1> <4,2> <5,2>

Dictionary

<2,1> <4,1>

<1,1> <4,1> <5,1> <6,1>

<3,1> <6,1>

<4,1> <5,1>

<6,1><1,1> <2,1> <3,1> <4,2> <5,2>

<3,1> <6,1>

<3,1> <6,1>

Inverted Lists

<5,1>
P1

P1

P3

P3

P3

P3

 69

Term Partitioning

<6,1>

cold

hot

in

not

pease

porridge

pot

the

<1,1> <2,1> <3,1> <4,2> <5,2>

Dictionary

<2,1> <4,1>

<1,1> <4,1> <5,1> <6,1>

<3,1> <6,1>

<4,1> <5,1>

<6,1><1,1> <2,1> <3,1> <4,2> <5,2>

<3,1> <6,1>

<3,1> <6,1>

Inverted Lists

<5,1>
P1

P3

 70

Partitioning the Indexing

• By documents

• Easy to partition

• Easier to build

• No concurrency

• Perfect balance

• Less variance

• Easier to maintain

• By terms

• Random partition

• Hard to build

• Concurrent

• Less balanced

• Higher variance

• Harder to maintain

 72

Query Processing: Round Robin

Marin et al, 2008

Case of term partitioning

 73

Analysis

• BSP model

• Super-steps + synchronization

 74

Experimental Results

 75

Model Comparison

 76

Throughput Comparison

 77

Speedup

 78

Scalability

 79

Star Topology (Baeza-Yates et al, 2008)

Local queries (x)

Global queries
n sites

Cost Model

• Cost depends on Initial cost, Cost of Ownership over
time, and Bandwidth over time.

• Cost of one QPS
– n sites, x percentage of queries resolved locally, and relative cost

of power and bandwidth 0.1 (left) and 1 (right)

• Site Si knows the highest possible score bj that site Sj

can return for a query
– Assume independent query terms

• Site Si processes query q:

• Optimizations:
– Caching

– Replication of set G of most frequently retrieved documents

– Slackness factor � replacing bj with (1-�)bj

Query Processing

Retrieve top-n
local results

Find score s(d,q) of
n-th local result

s(d,q)� bj

Forward query
to site Sj

Return results
to users

True

Merge results

False

Query Processing Results

• Locality at rank n for a search engine with 5 sites
– For what percentage of query volume, we can return top-n

results locally

Cost Model Instantiation

• Assume a 5-site distributed Web search engine in a star topology

• Optimal choice of central site Sx : site with highest traffic in our

experiments

• Cost of distributed search engine relative to cost of centralized one

0.6450.0110.634BCG�0.9

0.7120.0140.698BCG�0.7

0.8270.0200.807BCG�0.5

0.9730.0280.945BCG�0.3

1.1140.0361.078BCG�0.1

1.1710.0401.131BCG

1.3000.0461.254BC

1.4770.0561.421B

Cost of distributed

Cost of centralized
Bandwidth CostPower CostQuery Processing

 85

Conclusions

• By using caching (mainly static) we can increase
locality

• With enough locality we may have a cheaper
search engine without penalizing the quality of the
results or the response time

• We can predict when the next distributed level will
be used to improve the response time without
increasing too much the cost of the search engine

• We are currently exploring all these trade-offs

 86

Thank you!

Questions?
rbaeza@acm.org

Second edition

coming soon

