

Peer-to-peer meets wireless: Opportunities and challenges

Antony Rowstron

Microsoft Research, Cambridge

Talk outline

- Introduction (Overlays, underlays and wireless)
- Wireless routing inspired by structured overlays
 - Mesh networks
 - Design of Virtual Ring Routing (VRR)
 - Evaluation of VRR
 - Vehicular Networking
 - Design concepts of PVRP
 - Preliminary results

Structured overlays/DHTs

- Experiences learnt with structured overlays
 - Self-organizing
 - Fault-tolerant
 - Scalable
 - Decentralized
 - Performance

Structured overlays/DHTs

- Experiences learnt with structured overlays
 - Self-organizing
 - Fault-tolerant
 - Scalable
 - Decentralized
 - Performance

route to key 615

Overlay versus underlay

- Can we apply lessons to build routing protocols
 - Overlay routing at the network level

Wireless routing

Mesh networks beginning to be deployed:

Proactive routing

For example: OLSR and DSDV

Reactive routing

For example: DSR and AODV

Coordinate-based routing

For example: GPSR and BVR

Prior work on wireless routing

- Flooding based algorithms scale poorly
 - Proactive algorithms flood on topology changes
 - On demand algorithms flood to discover routes
- Geographical and landmark routing
 - Scale well but nodes have identifier and address
 - Some apps (sensor networks) may require just address
 - DHT-like structure to translate between the two
 - Route setup delays
 - Additional maintenance overhead
 - Another target for attacks

Virtual Ring Routing

Joint work with Miguel Castro, Greg O'Shea plus interns

- Virtual Ring Routing protocol inspired by DHT design
 - Single fixed identifier
 - No flooding
 - Provides DHT for free
 - Strict layering on wireless routing is inefficient
 - Poor interaction between DHT and routing layer

VRR: The virtual ring

Nodes organized into virtual ring by increasing identifier value

VRR: Routing paths

physical network topology

Nodes only maintain routing paths to virtual neighbors:

- Paths maintained proactively
- Paths are bidirectional and typically multi-hop

VRR: Forwarding table

endpointA	endpointB	nextA	nextB	pathId
8F6	90E	me	F42	31
910	8F6	10E	me	10
14A	140	F42	10E	2
8F6	F42	me	F42	FF

forwarding table for node 8F6

- Paths recorded in forwarding tables along path
- Forwarding table contains
 - Paths between node and vset members
 - Paths between other nodes that go through node
 - Paths to physical neighbors

VRR: Routing

- Forward message destined to x by
 - Picking endpoint e numerically closest to x
 - Forwarding message to next hop towards e
- Deliver message to node with id closest to x

VRR: Routing summary

- Paths to virtual neighbors ensure correctness
- Stretch empirically small
- Many alternate paths to route around failures

VRR: Ring maintenance

- No flooding
 - All messages routed as described
- Single topology independent identifier
- Five message types
 - hellos maintain physical neighbor set
 - setups update forwarding table state along path
 - setup requests ask another node to send setup
 - setup replies refusal to send setup
 - teardowns remove forwarding table state

VRR: Node joining

broadcast hellos Send setup request to 16E to find physical neighbors

VRR: Node joining

VRR: Handling failures

Routing state is hard

- No end-to-end heartbeats
- Failures detected on missing acks or hellos
- Local repair attempted first;
- Otherwise, teardowns sent along all affected paths
- Two techniques to ensure consistency
 - Symmetric failure detection and acks on teardowns
 - If x marks y faulty, y is guaranteed to mark x faulty
 - Lightweight optimistic transactions
 - If in doubt abort (teardown)

Routing during node or link failure

A link failure example

- Repair is truly local
 - Only involves nodes near failed link or node
 - No end-to-end path metrics
- Repair aborted if local consistency checks fail

Research

Simulation experiments in ns-2

- Experiments with 802.11b MAC
- Varied network size, mobility, session lifetime
- Compared with DSDV, DSR, and AODV

- VRR performed well in all experiments
 - high delivery ratios even with fast movement
 - significantly lower delays with route instability

Delivery ratio: fast movement

Sensor network

- Sensor network testbed
 - 67 mica2dot motes in UCB building
- Comparison with BVR (coordinate-based protocol)
- Delivery ratio with mote failures

Sensor network: mote failures

Wireless office testbed

- 30 machines running windows
- Communicate using 802.11a
- Throughput comparison with LQSR using ttcp

Wireless office testbed: throughput

Virtual Ring Routing Summary

- Routing protocol inspired by structured overlays
- Unique (new point in the design space):
 - Single identifier per node
 - No flooding
- Provides DHT for free

- For more information see:
 - M. Caesar, M. Castro, E. Nightingale, G. O'Shea and A.
 Rowstron, "Virtual Ring Routing: Network routing inspired by DHTs", Sigcomm 2006, Pisa, Italy, September 2006.

Vehicular networking

- New challenges for scalability
 - Very different characteristics

Vehicle-to-Infrastructure (V2I)

Vehicle-to-Vehicle (V2V)

- Car manufacturers interested and "driving":
 - 802.11p (Dedicated short range communications)
 - Intelligent Transport Systems
 - "What is the car in front doing?"
- But then.....

The disruptive device.....

- SatNav (TomTom)
 - Dual connectivity model:
 - Bluetooth to mobile phone
 - USB-to-computer (new map > 1Gb)
 - Download data for premium services (Home service)
 - TomTom Map Share (Web 2.0 app)
 - TomTom QuickFix (Assisted GPS)
 - TomTom Updates
 - "Connectivity key"

Research

Personal Navigation Devices

"Hand held" or In-dash!

PVRP: Practical Vehicular Routing Protocol Joint work with G. Pau and P. Lutterotti (UCLA)

- Multi-hop vehicle-to-infrastructure
 - Route to fixed access points
- Multi-hop vehicle-to-vehicle
 - Route to specific vehicle or a service

Why do we need another routing protocol?

Greedy Routing

Discovery: Sparse

Sparse more common than dense -> "delay" tolerant protocol

The PVRP approach

- Assume nodes have:
 - Digital maps (e.g. NavTech digital maps)
 - 802.11a/b/g WiFi (or equivalent)
 - GPS system

- Perform routing and discovery in map space not physical topology
 - Opposite to VRR

Assume nodes maintain one-hop topology information

Discovery: Exploit map

- Avoid pure flood in physical topology
- Exploit map to ensure good exploration

Map-based source routing

Packet: <Src> <Dest> <etc>

<Path:

Victoria Road -> Garden Walk Go W Victoria Road -> Harvey Avenue Go W Victoria Road -> Frenchs Road Go SW

>

Packet: <Src> <Dest> <etc>

<Path:

Victoria Road -> Garden Walk Go W Victoria Road -> Harvey Avenue Go W Victoria Road -> Frenchs Road Go N

;

Note: Between any two Junctions the packet may traverse several network hops

Microsoft

Research

Preliminary results

- Currently understanding the design choices and their impact:
 - Path selection metrics:
 - Average density,
 - Max lowest density, etc
 - Junction selection metrics:
 - Select the important junctions
 - Comparing against delay tolerant greedy algorithm

Preliminary results

- Currently evaluating PVRP using:
 - "Simple" simulator (versus Flood)
 - QualNet simulator (versus AODV/DSR/GPSR)
 - Stand alone implementation (keeping us honest!)
- Using mobility traces for Portland
- Results today generated using simple simulator
 - Comparing PVRP with "Flood"
 - Flood represents best that AODV/DSR/GPSR could do
 - Results using "realistitc" mobility trace
 - 59 runs randomly selected static end-points with distance between 250m and 750m
 - Across all runs only 27 experiments delivered packets

Delivery ratio: Preliminary results

9 of 27 runs zero delivered

1 of 27 runs zero delivered

Delay: Preliminary results

PVRP Summary

- Practical multi-hop routing protocol for vehicular networks
- Exploits digital maps rather than just the physical network topology
 - To work over partitioned networks

Thank you

http://research.microsoft.com/~antr

