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Where is Belo Horizonte?



Pampulha’s Church
Oscar Niemeyer



Objective of the Presentation

Present a perfect hashing algorithm:

� Sequential construction of the function

� Distributed construction of the function 

� Description and evaluation of the function:

Centralized in one machine
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� Centralized in one machine

� Distributed among the participating machines

Algorithm is highly scalable, time 

efficient and near space-optimal



Perfect Hash Function

Static key set S of size n

Hash Table

0 1 n -1...

Perfect Hash Function
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0 1 m -1...

Perfect Hash Function

u|=U|U,S  where⊆



Minimal Perfect Hash Function

0 1 n -1...

Minimal Perfect Hash Function

Static key set S of size n
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0 1 n -1...

Minimal Perfect Hash Function

Hash Table

u|=U|U,S  where⊆



The Algorithm

A perfect hashing algorithm that uses the 
idea of partitioning the input key set into 
small buckets:

� Key set fits in the internal memory

� Internal Random Access memory algorithm� Internal Random Access memory algorithm

� Key set larger than the internal memory

� External Cache-Aware memory algorithm



Where to use a PHF or a MPHF?

� Access items based on the value of a key is 
ubiquitous in Computer Science

� Work with huge static item sets:

� In data warehousing applications:

On-Line Analytical Processing (OLAP) applications
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� On-Line Analytical Processing (OLAP) applications

� In Web search engines: 

� Large vocabularies

� Map long URLs in smaller integer numbers that 
are used as IDs



Indexing: Representing the Vocabulary

Doc 1

Doc 2

Doc 3

Collection of

documents

Term 1

Term 2

Term 3

Term 4

Doc 1 Doc 5 ...

Doc 1 Doc 2 ...

Doc 3 Doc 4 ...

Doc 7 Doc 9 ...

Vocabulary Inverted List
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Doc 3

Doc 4

Doc 5

...

Doc n

Term 4

Term 5

Term 6

Term 7

Term 8

...

Term t

Doc 7 Doc 9 ...

Doc 6 Doc 10 ...

Doc 1 Doc 5 ...

Doc 9 Doc 11 ...

Indexing



Mapping URLs to Web Graph Vertices

URL 1

URL 2

URL 3

URL 4

URL 5

0

2

1

3

Web Graph 

Vertices

URLS
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URL 5

URL 6

URL 7

...
URL n

n-1

...

4

5

6



Mapping URLs to Web Graph Vertices

URL 1

URL 2

URL 3

URL 4

URL 5

0

2

1

3M

P

Web Graph 

Vertices

URLS
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URL 5

URL 6

URL 7

...
URL n

n-1

...

4

5

6

H

F



Information Theoretical Lower Bounds for 

Storage Space

en log Space Storage ≥

� PHFs (m ≈ n):

� MPHFs (m = n):

e
m

n
log Space Storage

2

≥

en log Space Storage ≥� MPHFs (m = n):

4427.1log ≈e

m < 3n



Uniform Hashing Versus Universal Hashing

Key universe 

U of size u
Range M of size mHash function



Uniform Hashing Versus Universal Hashing

Key universe 

U of size u
Range M of size mHash function

u
m

Uniform hashing

� # of functions from U to M?
u

m

mu log

� # of bits to encode each 
fucntion

� Independent functions with 
values uniformly distributed



Uniform Hashing Versus Universal Hashing

Key universe 

U of size u
Range M of size mHash function

u
m

Uniform hashing

� # of functions from U to M?

Universal hashing

� A family of hash functions HHHH

is universal if:u
m

mu log

� # of bits to encode each 
fucntion

� Independent functions with 
values uniformly distributed

is universal if:

� for any pair of distinct 
keys (x1, x2) from U and

� a hash function h chosen 
uniformly from HHHH then:

m
xhxh

1
))()(Pr( 21 ≤=



Intuition Behind Universal Hashing

� We often lose relatively little compared to using 
a completely random map (uniform hashing)

� If S of size n is hashed to n2 buckets, with 
probability more than ½, no collisions occur

Even with complete randomness, we do not expect � Even with complete randomness, we do not expect 

little o(n2) buckets to suffice (the birthday paradox)

� So nothing is lost  by using a universal family instead!



Related Work

� Theoretical Results

(use uniform hashing)

� Practical Results 

(use universal hashing - assume uniform 
hashing for free)hashing for free)

� Heuristics



Theoretical Results
Use Complete Randomness (Uniform Hash Functions)

Work Gen. Time Eval. Time Size (bits)

Mehlhorn (1984) Expon. Expon. O(n)

Hagerup and 
Tholey (2001)

O(n+log log u) O(1) O(n)

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 18

Tholey (2001)



Theoretical Results
Use Complete Randomness (Uniform Hash Functions)

Work Gen. Time Eval. Time Size (bits)

Mehlhorn (1984) Expon. Expon. O(n)

Hagerup & 
Tholey (2001)

O(n+log log u) O(1) O(n)
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Tholey (2001)

Botelho & Ziviani 
(CIKM 2007)

O(n) O(1) O(n)



Practical Results
Assume Uniform Hashing for Free (Use Universal Hashing)

Work Gen. Time Eval. Time Size (bits)

Czech, Havas & 
Majewski (1992) O(n) O(1) O(n log n)

Majewski, Wormald, 
Havas & Czech (1996)

O(n) O(1) O(n log n)
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Havas & Czech (1996)



Practical Results
Assume Uniform Hashing for Free (Use Universal Hashing)

Work Gen. Time Eval. Time Size (bits)

Czech, Havas & 
Majewski (1992) O(n) O(1) O(n log n)

Majewski, Wormald, 
Havas & Czech (1996)

O(n) O(1) O(n log n)
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Havas & Czech (1996)

Botelho, Pagh, Ziviani 
(WADs 2007)

O(n) O(1) O(n)



Practical Results
Assume Uniform Hashing for Free (Use Universal Hashing)

Work Gen. Time Eval. Time Size (bits)

Czech, Havas & 
Majewski (1992) O(n) O(1) O(n log n)

Majewski, Wormald, 
Havas & Czech (1996)

O(n) O(1) O(n log n)
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Havas & Czech (1996)

Botelho, Pagh, Ziviani 
(WADs 2007)

O(n) O(1) O(n)

Botelho & Ziviani 

(CIKM 2007)
O(n) O(1) O(n)



Empirical Results

Work Application
Gen. 
Time

Eval. 
Time

Size 
(bits)

Fox, Chen & Heath 
(1992)

Index data in 
CD-ROM

Exp. O(1) O(n)

Lefebvre & Hoppe Sparse 
O(n) O(1) O(n)

Lefebvre & Hoppe 
(2006)

Sparse 
spatial data

O(n) O(1) O(n)



The Sequential
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External Cache-Aware Algorithm...



External Cache-Aware Memory Algorithm

� First MPHF algorithm for very large key sets (in 
the order of billions of keys) 

� This is possible because
� Deals with external memory efficiently  

� Works in linear time

Generates compact functions (near space-optimal)
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� Generates compact functions (near space-optimal)

� MPHF (m = n):    3.3n bits

� PHF (m =1.23n): 2.7n bits

� Theoretical lower bound:

� MPHF:1.44n bits

� PHF:   0.89n bits



Sequential External Perfect Hashing Algorithm 

…
0 1 n-1

Partitioning

…
0 1 2b - 1Searching

Key Set S

Buckets

2

h0
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MPHF(x) = MPHFi(x) + offset[i];

…

0 1 2b - 1

MPHF0 MPHF2MPHF1 MPHF2
b
-1

Searching

Hash Table

0 1 n-1

2



Key Set Does Not Fit In Internal Memory

... … ...

0 n-1

Partitioning

Key Set S of β
bytes

h0

µ bytes of
Internal 
memory

µ bytes of
Internal 
memory

h0 
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…
0 1 2b - 12

…
0 1 2b - 12

…

File 1 File N

N = β/µ b = Number of bits of each bucket address Each bucket ≤ 256



Important Design Decisions

� How do we obtain a linear time complexity?

� We map long URLs to a fingerprint of fixed size 
using a hash function

� Use our linear time and near space-optimal 
algorithm to generate the MPHF of each bucket

� How do we obtain a linear time complexity?

� Using internal radix sorting to form the buckets

� Using a heap of N entries to drive a N-way merge that 
reads the buckets from disk in one pass



Algorithm Used for the Buckets:

Internal Random Access Memory 

Algorithm...
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Algorithm...



Internal Random Access Memory Algorithm

� Near space optimal

� Evaluation in constant time

� Function generation in linear time

� Simple to describe and implement

� Known algorithms with near-optimal space either:

� Require exponential time for construction and evaluation, or

� Use near-optimal space only asymptotically, for large n

� Acyclic random hypergraphs

� Used before by Majewski et all (1996): O(n log n) bits

� We proceed differently: O(n) bits

(we changed space complexity, close to theoretical lower bound)



Random Hypergraphs (r-graphs)

0

2

1

3

� 3-graph:

4 5

� 3-graph is induced by three uniform hash functions



Random Hypergraphs (r-graphs)

0
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1

3

h0(jan) = 1   h1(jan) = 3   h2(jan) = 5

� 3-graph:

4 5

� 3-graph is induced by three uniform hash functions



Random Hypergraphs (r-graphs)

0

2

1

3

h0(jan) = 1   h1(jan) = 3   h2(jan) = 5

h0(feb) = 1   h1(feb) = 2   h2(feb) = 5

� 3-graph:

4 5

� 3-graph is induced by three uniform hash functions



Random Hypergraphs (r-graphs)

0

2

1

3

h0(jan) = 1   h1(jan) = 3   h2(jan) = 5

h0(feb) = 1   h1(feb) = 2   h2(feb) = 5

h (mar) = 0   h (mar) = 3   h (mar) = 4

� 3-graph:

4 5

� 3-graph is induced by three uniform hash functions

h0(mar) = 0   h1(mar) = 3   h2(mar) = 4

� Our best result uses 3-graphs



Acyclic 2-graph
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Acyclic 2-graph
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Acyclic 2-graph

0

Gr:

h01 2 3
L: {0,5}
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{2,6}

1

{2,7}
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{2,5}
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Gr is acyclic

h14 5 6 7

Gr is acyclic



Internal Random Access Memory Algorithm (r=2)
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Mapping
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Space to Represent the Function
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� MPHF g: [0,m-1] → {0,1,2,3} (ranking info required)

� PHF g: [0,m-1] → {0,1,2}

� m = cn bits, c = 1.23 → 2.46 n bits

� (log 3) cn bits, c = 1.23 → 1.95 n bits (arith. coding)

� Optimal: 0.89n bits

Space to Represent the Functions (r = 3)

� MPHF g: [0,m-1] → {0,1,2,3} (ranking info required)

� 2m + εm  = (2+ ε)cn bits

� For c = 1.23 and ε = 0.125  → 2.62 n bits

� Optimal: 1.44n bits.



� Sufficient condition to work

� Repeatedly selects h0, h1..., hr-1

� For r = 3, m = 1.23n: Pra tends to 1

Number of iterations is 1/Pr = 1

Use of Acyclic Random Hypergraphs

� Number of iterations is 1/Pra = 1



Experimental Results

� Metrics:

� Generation time

� Storage space for the description

� Evaluation time

� Collection:� Collection:

� 1.024 billions of URLs collected from the web 

� 64 bytes long on average

� Experiments

� Commodity PC with a cache of 4 Mbytes 

� 1.86 GHz, 1 GB, Linux, 64 bits architecture



Generation Time of MPHFs (in Minutes)

n (millions ) 32 128 512 1024

Sequential ECA 0.95 ± 0.02 5.1 ± 0.01 22.0 ± 0.13 46.2 ± 0.06



Related Algorithms

� Fox, Chen and Heath (1992) – FCH

� Majewski, Wormald, Havas and Czech (1996) – MWHC

All algorithms coded in the same framework



Generation Time

Algorithms
Generation 

Time (sec)

Internal (r = 3) 6.7 ± 0.01

External 6.3 ± 0.11

MWHC 7.18 ± 0.01MWHC 7.18 ± 0.01

FCH 2,400.1 ± 711.6

3,541,615 URLs



Generation Time and Storage Space

Algorithms
Generation

Time (sec)

Space 
(bits/key)

Internal (r = 3) 6.7 ± 0.01 2.6

External 6.3 ± 0.11 3.1

MWHC 7.18 ± 0.01 26.76

FCH 2,400.1 ± 711.6 4.2

3,541,615 URLs



Generation Time, Storage Space and Evaluation Time

Algorithms
Generation 

Time (sec)

Space 
(bits/key)

Evaluation 
time (sec)

Internal (r = 3) 6.7 ± 0.01 2.6 2.1

External 6.3 ± 0.11 3.1 2.7

MWHC 7.18 ± 0.01 26.76 2.46

3,541,615 URLs

Key length = 64 bytes

FCH 2,400.1 ± 711.6 4.2 1.6



The Distributed External Memory 

Based Algorithm ...
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Based Algorithm ...



Distributed Construction of the MPHFs

Manager
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Worker
0

Worker
1

Worker
p-1

. . . 



Distributed Construction of MPHFs

� Manager :

� Assign tasks to workers 

� Determine global values during execution 

� Dump resulting MPHFs to disk

� Worker :
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� Worker :

� Has a partition of the keys on disk

� Creates its buckets from the keys (Bpw = Nb/p)

� Migrate data whenever necessary

� Constructs a MPHF for each bucket



Sequential External Perfect Hashing Algorithm 

…
0 1 n-1

Partitioning

…

Key Set S

Buckets

h0

2 3 4 5

Worker 0 Worker 1 Worker p-1

Worker 0 Worker p-1
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MPHF(x) = MPHFi(x) + offset[i];

…

…

0 1 2b - 1

MPHF0 MPHF2MPHF1 MPHF2
b
-1

Searching

Buckets

Hash Table

0 1 n-1

2



Partitioning Step in Each Worker

Disk

Disk
reader

Keys queue
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Partitioning Step in Each Worker

Disk

Disk
reader

Keys queue

Hashing

Fingerprint queue
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Fingerprint queue



Partitioning Step in Each Worker

Disk

Disk
reader

Keys queue

Hashing

Fingerprint queue
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Sender

network
Local 

network

Fingerprint queue



Partitioning Step in Each Worker

Disk

Disk
reader

Keys queue Net
reader

Hashing

Fingerprint queue

network
Local 

network

Fingerprint queue
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Sender

network
Local 

network

Fingerprint queue



Partitioning Step in Each Worker

Disk

Disk
reader

Keys queue Net
reader

Hashing

Fingerprint queue

Block
sorter

network
Local 

network

Fingerprint queue
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Sender

network
Local 

network

Fingerprint queue
Block queue



Partitioning Step in Each Worker

Disk

Disk
reader

Keys queue Net
reader

Hashing

Fingerprint queue

Block
sorter

network
Local 

network

Fingerprint queue
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Disk

Sender

network
Local 

network

Fingerprint queue
Block queue

Block
dumper



Sequential External Perfect Hashing Algorithm 

Worker 0 Worker 1 Worker p-1

…
0 1 n-1

…

Key Set S

Buckets

h0

2 3 4 5

Worker 0 Worker p-1Partitioning
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MPHF(x) = MPHFi(x) + offset[i];

Hash Table
0 1 n-1

…

…

0 1 2b - 1

MPHF0 MPHF2MPHF1 MPHF2
b
-1

Buckets

2Searching

Worker 0 Worker 1 Worker p-1



Searching Step in Each Worker

Bucket
reader

Buckets queue

Disk
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Searching Step in Each Worker

Bucket
reader

Buckets queue

Disk
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MPHF
gen 0

MPHF
gen t-1

...



Description and Evaluation of a MPHF

� Centralized in one machine

� Distributed among the participating 
machines
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Centralized Description and Evaluation of MPHFs

� End of the partitioning step: 

� Worker sends size of each bucket to manager

� Manager calculates the offset array

� End of searching step (construction of MPHFs):

� Worker sends MPHFs of its buckets to manager
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� Worker sends MPHFs of its buckets to manager

� Manager writes sequentially final MPHF to disk

� MPHF(x) = MPHFi(x) + offset[i]



Distributed Description and Evaluation of MPHFs

� Description of MPHFs of a bucket 

� Stays in the bucket

� Evaluation of a MPHF

� Locate the key inside the bucket:

MPHFpartial(k) = MPHFi(k) + localoffset[i]
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MPHFpartial(k) = MPHFi(k) + localoffset[i]

� Add this to the number of keys before worker w:

MPHF(k) = MPHFpartial(k) + globaloffset[w]

� A  key stream is evaluated in parallel



Advantages of Distributed Evaluation of MPHFs

� No need to send the MPHFs of a bucket to manager

� They are written to disk in parallel by the workers

� Final function is stored in a distributed way

� Size of the description of the MPHF grows linearly 
with the size of the input key
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with the size of the input key



Communication Overhead

� On average, the number of keys τ sent through the 
net during the execution is:

( )

p

pn
=

1−
τ
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p
Keys sent by a worker to the net

Max (%) Min (%) τ (%)

4 75.008 74.994 75.000

10 90.009 89.991 90.000

14 92.864 92.849 92.857



Experimental Setup

� Three collections

Collection Avg. Key Size n (billions)

URLs 64 1.024

Random

Integers

16 1.024

8 1.024
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� Cluster with 14 equal 64 bits single core machines

� 2 gigabytes of main memory

� 2.13 gigahertz

� Linux operating system version 2.6

Integers 8 1.024



Speedup

� 64 bytes URLs
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Speedup

� 16 bytes random integers
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Speedup

� 8 bytes random integers
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Scale-up

� 64 bytes URLs
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Scale-up

� 16 bytes random integers
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Scale-up

� 8 bytes random integers

 1.5

 2

 2.5

S
ca

le
−

u
p

Ideal scale−up
Centralized
Distributed

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin)              82

 0

 0.5

 1

 2  4  6  8  10  12  14

S
ca

le
−

u
p

Number of machines



Scale-up

� 14.336 billion random integers

� 14 machines (each with 1.024 billion keys)

n

(billions)

Random Integer

Collections

Construction time

Seq. Distrib. U
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(billions) Collections Seq. Distrib. Up

14.336
16-byte 41.17 49.5 1.20

8-byte 34.58 58.00 1.68



Load Balancing

p tfw tsw tsw - tfw
4 12.78 12.86 0.09

10 4.32 4.40 0.07

� Execution time: fastest minus slowest (in minutes)
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10 4.32 4.40 0.07

14 3.76 3.84 0.08



Distributed Evaluation

Collection
Evaluation time (min)

Centr. Eval. Distrib. Eval.

64-byte URLs 33.1 21.7

� 1.024 billion key stream taken at random (minutes)
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64-byte URLs 33.1 21.7

16-byte Integers 24.5 11.5

8-byte Integers 18.2 10.1



C Minimal Perfect Hashing Library

� Why to build a library?

� Lack of similar libraries in the free software 
community

� Test the applicability of our algorithm out there

� Feedbacks:� Feedbacks:

� 2,243 downloads (until May 27th, 2008)

� Incorporated by Debian

� Library address: http: //cmph.sourceforge.net 



Conclusions

� Sequential and parallel perfect hashing algorithm

� Near space-optimal functions in linear time

� Function evaluation in time O(1)

� The algorithms are simpler and has much lower 
constant factors than existing theoretical results
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constant factors than existing theoretical results

� Outperforms the main practical general purpose 
algorithms found in the literature



Conclusions

� Construction time: 14 machines, 1 billion URLs

� Sequential algorithm: 50 minutes

� Parallel algorithm: 4 minutes

� Speedup > 90% for keys with more than 16 bytes

� Description and evaluation of MPHF:
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� Description and evaluation of MPHF:

� Centralized 

� Distributed: fast evaluation for key streams



????




