
A Highly Scalable

Perfect Hashing Algorithm

Nivio Ziviani

Fabiano C. Botelho

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 1

3rd Intl. Conference on Scalable Information Systems

Naples, Italy, June 4-6, 2008

Department of Computer Science

Federal University of Minas Gerais, Brazil

lacerda
Typewritten Text

ziglio
Typewritten Text
INFOSCALE 2008, June 4-6, Vico Equense, ItalyCopyright © 2008 978-963-9799-28-8DOI 10.4108/infoscale.2008.28

Where is Belo Horizonte?

Pampulha’s Church
Oscar Niemeyer

Objective of the Presentation

Present a perfect hashing algorithm:

� Sequential construction of the function

� Distributed construction of the function

� Description and evaluation of the function:

Centralized in one machine

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 4

� Centralized in one machine

� Distributed among the participating machines

Algorithm is highly scalable, time

efficient and near space-optimal

Perfect Hash Function

Static key set S of size n

Hash Table

0 1 n -1...

Perfect Hash Function

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 5

0 1 m -1...

Perfect Hash Function

u|=U|U,S where⊆

Minimal Perfect Hash Function

0 1 n -1...

Minimal Perfect Hash Function

Static key set S of size n

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 6

0 1 n -1...

Minimal Perfect Hash Function

Hash Table

u|=U|U,S where⊆

The Algorithm

A perfect hashing algorithm that uses the
idea of partitioning the input key set into
small buckets:

� Key set fits in the internal memory

� Internal Random Access memory algorithm� Internal Random Access memory algorithm

� Key set larger than the internal memory

� External Cache-Aware memory algorithm

Where to use a PHF or a MPHF?

� Access items based on the value of a key is
ubiquitous in Computer Science

� Work with huge static item sets:

� In data warehousing applications:

On-Line Analytical Processing (OLAP) applications

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 8

� On-Line Analytical Processing (OLAP) applications

� In Web search engines:

� Large vocabularies

� Map long URLs in smaller integer numbers that
are used as IDs

Indexing: Representing the Vocabulary

Doc 1

Doc 2

Doc 3

Collection of

documents

Term 1

Term 2

Term 3

Term 4

Doc 1 Doc 5 ...

Doc 1 Doc 2 ...

Doc 3 Doc 4 ...

Doc 7 Doc 9 ...

Vocabulary Inverted List

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 9

Doc 3

Doc 4

Doc 5

...

Doc n

Term 4

Term 5

Term 6

Term 7

Term 8

...

Term t

Doc 7 Doc 9 ...

Doc 6 Doc 10 ...

Doc 1 Doc 5 ...

Doc 9 Doc 11 ...

Indexing

Mapping URLs to Web Graph Vertices

URL 1

URL 2

URL 3

URL 4

URL 5

0

2

1

3

Web Graph

Vertices

URLS

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 10

URL 5

URL 6

URL 7

...
URL n

n-1

...

4

5

6

Mapping URLs to Web Graph Vertices

URL 1

URL 2

URL 3

URL 4

URL 5

0

2

1

3M

P

Web Graph

Vertices

URLS

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 11

URL 5

URL 6

URL 7

...
URL n

n-1

...

4

5

6

H

F

Information Theoretical Lower Bounds for

Storage Space

en log Space Storage ≥

� PHFs (m ≈ n):

� MPHFs (m = n):

e
m

n
log Space Storage

2

≥

en log Space Storage ≥� MPHFs (m = n):

4427.1log ≈e

m < 3n

Uniform Hashing Versus Universal Hashing

Key universe

U of size u
Range M of size mHash function

Uniform Hashing Versus Universal Hashing

Key universe

U of size u
Range M of size mHash function

u
m

Uniform hashing

� # of functions from U to M?
u

m

mu log

� # of bits to encode each
fucntion

� Independent functions with
values uniformly distributed

Uniform Hashing Versus Universal Hashing

Key universe

U of size u
Range M of size mHash function

u
m

Uniform hashing

� # of functions from U to M?

Universal hashing

� A family of hash functions HHHH

is universal if:u
m

mu log

� # of bits to encode each
fucntion

� Independent functions with
values uniformly distributed

is universal if:

� for any pair of distinct
keys (x1, x2) from U and

� a hash function h chosen
uniformly from HHHH then:

m
xhxh

1
))()(Pr(21 ≤=

Intuition Behind Universal Hashing

� We often lose relatively little compared to using
a completely random map (uniform hashing)

� If S of size n is hashed to n2 buckets, with
probability more than ½, no collisions occur

Even with complete randomness, we do not expect � Even with complete randomness, we do not expect

little o(n2) buckets to suffice (the birthday paradox)

� So nothing is lost by using a universal family instead!

Related Work

� Theoretical Results

(use uniform hashing)

� Practical Results

(use universal hashing - assume uniform
hashing for free)hashing for free)

� Heuristics

Theoretical Results
Use Complete Randomness (Uniform Hash Functions)

Work Gen. Time Eval. Time Size (bits)

Mehlhorn (1984) Expon. Expon. O(n)

Hagerup and
Tholey (2001)

O(n+log log u) O(1) O(n)

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 18

Tholey (2001)

Theoretical Results
Use Complete Randomness (Uniform Hash Functions)

Work Gen. Time Eval. Time Size (bits)

Mehlhorn (1984) Expon. Expon. O(n)

Hagerup &
Tholey (2001)

O(n+log log u) O(1) O(n)

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 19

Tholey (2001)

Botelho & Ziviani
(CIKM 2007)

O(n) O(1) O(n)

Practical Results
Assume Uniform Hashing for Free (Use Universal Hashing)

Work Gen. Time Eval. Time Size (bits)

Czech, Havas &
Majewski (1992) O(n) O(1) O(n log n)

Majewski, Wormald,
Havas & Czech (1996)

O(n) O(1) O(n log n)

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 20

Havas & Czech (1996)

Practical Results
Assume Uniform Hashing for Free (Use Universal Hashing)

Work Gen. Time Eval. Time Size (bits)

Czech, Havas &
Majewski (1992) O(n) O(1) O(n log n)

Majewski, Wormald,
Havas & Czech (1996)

O(n) O(1) O(n log n)

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 21

Havas & Czech (1996)

Botelho, Pagh, Ziviani
(WADs 2007)

O(n) O(1) O(n)

Practical Results
Assume Uniform Hashing for Free (Use Universal Hashing)

Work Gen. Time Eval. Time Size (bits)

Czech, Havas &
Majewski (1992) O(n) O(1) O(n log n)

Majewski, Wormald,
Havas & Czech (1996)

O(n) O(1) O(n log n)

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 22

Havas & Czech (1996)

Botelho, Pagh, Ziviani
(WADs 2007)

O(n) O(1) O(n)

Botelho & Ziviani

(CIKM 2007)
O(n) O(1) O(n)

Empirical Results

Work Application
Gen.
Time

Eval.
Time

Size
(bits)

Fox, Chen & Heath
(1992)

Index data in
CD-ROM

Exp. O(1) O(n)

Lefebvre & Hoppe Sparse
O(n) O(1) O(n)

Lefebvre & Hoppe
(2006)

Sparse
spatial data

O(n) O(1) O(n)

The Sequential

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 24

External Cache-Aware Algorithm...

External Cache-Aware Memory Algorithm

� First MPHF algorithm for very large key sets (in
the order of billions of keys)

� This is possible because
� Deals with external memory efficiently

� Works in linear time

Generates compact functions (near space-optimal)

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 25

� Generates compact functions (near space-optimal)

� MPHF (m = n): 3.3n bits

� PHF (m =1.23n): 2.7n bits

� Theoretical lower bound:

� MPHF:1.44n bits

� PHF: 0.89n bits

Sequential External Perfect Hashing Algorithm

…
0 1 n-1

Partitioning

…
0 1 2b - 1Searching

Key Set S

Buckets

2

h0

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 26

MPHF(x) = MPHFi(x) + offset[i];

…

0 1 2b - 1

MPHF0 MPHF2MPHF1 MPHF2
b
-1

Searching

Hash Table

0 1 n-1

2

Key Set Does Not Fit In Internal Memory

... … ...

0 n-1

Partitioning

Key Set S of β
bytes

h0

µ bytes of
Internal
memory

µ bytes of
Internal
memory

h0

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 27

…
0 1 2b - 12

…
0 1 2b - 12

…

File 1 File N

N = β/µ b = Number of bits of each bucket address Each bucket ≤ 256

Important Design Decisions

� How do we obtain a linear time complexity?

� We map long URLs to a fingerprint of fixed size
using a hash function

� Use our linear time and near space-optimal
algorithm to generate the MPHF of each bucket

� How do we obtain a linear time complexity?

� Using internal radix sorting to form the buckets

� Using a heap of N entries to drive a N-way merge that
reads the buckets from disk in one pass

Algorithm Used for the Buckets:

Internal Random Access Memory

Algorithm...

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 29

Algorithm...

Internal Random Access Memory Algorithm

� Near space optimal

� Evaluation in constant time

� Function generation in linear time

� Simple to describe and implement

� Known algorithms with near-optimal space either:

� Require exponential time for construction and evaluation, or

� Use near-optimal space only asymptotically, for large n

� Acyclic random hypergraphs

� Used before by Majewski et all (1996): O(n log n) bits

� We proceed differently: O(n) bits

(we changed space complexity, close to theoretical lower bound)

Random Hypergraphs (r-graphs)

0

2

1

3

� 3-graph:

4 5

� 3-graph is induced by three uniform hash functions

Random Hypergraphs (r-graphs)

0

2

1

3

h0(jan) = 1 h1(jan) = 3 h2(jan) = 5

� 3-graph:

4 5

� 3-graph is induced by three uniform hash functions

Random Hypergraphs (r-graphs)

0

2

1

3

h0(jan) = 1 h1(jan) = 3 h2(jan) = 5

h0(feb) = 1 h1(feb) = 2 h2(feb) = 5

� 3-graph:

4 5

� 3-graph is induced by three uniform hash functions

Random Hypergraphs (r-graphs)

0

2

1

3

h0(jan) = 1 h1(jan) = 3 h2(jan) = 5

h0(feb) = 1 h1(feb) = 2 h2(feb) = 5

h (mar) = 0 h (mar) = 3 h (mar) = 4

� 3-graph:

4 5

� 3-graph is induced by three uniform hash functions

h0(mar) = 0 h1(mar) = 3 h2(mar) = 4

� Our best result uses 3-graphs

Acyclic 2-graph

0

Gr:

h01 2 3
L:Ø

fe
b

h14 5 6 7

Acyclic 2-graph

0

Gr:

h01 2 3
L: {0,5}

fe
b

h14 5 6 7

Acyclic 2-graph

0

Gr:

h01 2 3
L: {0,5}

0

{2,6}

1

h14 5 6 7

Acyclic 2-graph

0

Gr:

h01 2 3
L: {0,5}

0

{2,6}

1

{2,7}

2

h14 5 6 7

Acyclic 2-graph

0

Gr:

h01 2 3
L: {0,5}

0

{2,6}

1

{2,7}

2

{2,5}

3

Gr is acyclic

h14 5 6 7

Gr is acyclic

Internal Random Access Memory Algorithm (r=2)

jan

feb

mar

S

apr

Mapping

0

Gr:

fe
b

h01 2 3

jan

feb

mar

S

Internal Random Access Memory Algorithm (r=2)

h14 5 6 7
apr

r0

r

r

r

r

r

1

2
3

4
5

g

L

Mapping

0

Gr:

fe
b

h01 2 3

jan

feb

mar

S

Assigning

Internal Random Access Memory Algorithm (r=2)

r

r

5

6

r7

h14 5 6 7
apr

L: {0,5}

0

{2,6}

1

{2,7}

2

{2,5}

3

r0

r

0

r

r

r

1

2
3

4
5

g

L

Mapping

0

Gr:

fe
b

h01 2 3

jan

feb

mar

S

Assigning

Internal Random Access Memory Algorithm (r=2)

r

r

5

6

r7

h14 5 6 7
apr

L: {0,5}

0

{2,6}

1

{2,7}

2

{2,5}

3

r0

r

0

r

r

r

1

2
3

4
5

g

L

Mapping

0

Gr:

fe
b

h01 2 3

jan

feb

mar

S

Assigning

Internal Random Access Memory Algorithm (r=2)

r

r

5

6

17

h14 5 6 7
apr

L: {0,5}

0

{2,6}

1

{2,7}

2

{2,5}

3

assigned assigned 00

r

0

r

r

r

1

2
3

4
5

g

L

Mapping

0

Gr:

fe
b

h01 2 3

jan

feb

mar

S

Assigning

Internal Random Access Memory Algorithm (r=2)

assignedassigned

r

1

5

6

17

h14 5 6 7

mar

apr

assigned assigned 00

r

0

r

r

r

1

2
3

4
5

g

L

Mapping

0

Gr:

fe
b

h01 2 3

jan

feb

mar

S

Assigning

Internal Random Access Memory Algorithm (r=2)

assignedassigned

r

1

5

6

17

h14 5 6 7

mar

apr

i = (g[h0(feb)] + g[h1(feb)]) mod r = (g[2] + g[6]) mod 2 = 1

assigned assigned 00

r

0

r

r

r

1

2
3

4
5

g

L

Mapping

0

Gr:

fe
b

h01 2 3

jan

feb

mar

S

Assigning

Hash Table

mar

-

jan

-

-

-

Internal Random Access Memory Algorithm: PHF

assignedassigned

r

1

5

6

17

h14 5 6 7

mar

apr

i = (g[h0(feb)] + g[h1(feb)]) mod r = (g[2] + g[6]) mod 2 = 1

phf(feb) = hi=1 (feb) = 6

-

feb

apr

assigned assigned 00

r

0

r

r

r

1

2
3

4
5

g

L

Mapping

0

Gr:

fe
b

h01 2 3

jan

feb

mar

S

Assigning

Hash Table

mar

jan

feb

apr

0

1

2
Ranking

Internal Random Access Memory Algorithm: MPHF

assignedassigned

r

1

5

6

17

h14 5 6 7

mar

apr

apr 3

i = (g[h0(feb)] + g[h1(feb)]) mod r = (g[2] + g[6]) mod 2 = 1

phf(feb) = hi=1 (feb) = 6

mphf(feb) = rank(phf(feb)) = rank(6) = 2

Space to Represent the Function

00

r

0

r

r

r

1

2
3

4
5

g

L

Mapping

0

Gr:

fe
b

h01 2 3

jan

feb

mar

S

Assigning

2 bits
for each

entry
r

1

5

6

17

h14 5 6 7

mar

apr

entry

� MPHF g: [0,m-1] → {0,1,2,3} (ranking info required)

� PHF g: [0,m-1] → {0,1,2}

� m = cn bits, c = 1.23 → 2.46 n bits

� (log 3) cn bits, c = 1.23 → 1.95 n bits (arith. coding)

� Optimal: 0.89n bits

Space to Represent the Functions (r = 3)

� MPHF g: [0,m-1] → {0,1,2,3} (ranking info required)

� 2m + εm = (2+ ε)cn bits

� For c = 1.23 and ε = 0.125 → 2.62 n bits

� Optimal: 1.44n bits.

� Sufficient condition to work

� Repeatedly selects h0, h1..., hr-1

� For r = 3, m = 1.23n: Pra tends to 1

Number of iterations is 1/Pr = 1

Use of Acyclic Random Hypergraphs

� Number of iterations is 1/Pra = 1

Experimental Results

� Metrics:

� Generation time

� Storage space for the description

� Evaluation time

� Collection:� Collection:

� 1.024 billions of URLs collected from the web

� 64 bytes long on average

� Experiments

� Commodity PC with a cache of 4 Mbytes

� 1.86 GHz, 1 GB, Linux, 64 bits architecture

Generation Time of MPHFs (in Minutes)

n (millions) 32 128 512 1024

Sequential ECA 0.95 ± 0.02 5.1 ± 0.01 22.0 ± 0.13 46.2 ± 0.06

Related Algorithms

� Fox, Chen and Heath (1992) – FCH

� Majewski, Wormald, Havas and Czech (1996) – MWHC

All algorithms coded in the same framework

Generation Time

Algorithms
Generation

Time (sec)

Internal (r = 3) 6.7 ± 0.01

External 6.3 ± 0.11

MWHC 7.18 ± 0.01MWHC 7.18 ± 0.01

FCH 2,400.1 ± 711.6

3,541,615 URLs

Generation Time and Storage Space

Algorithms
Generation

Time (sec)

Space
(bits/key)

Internal (r = 3) 6.7 ± 0.01 2.6

External 6.3 ± 0.11 3.1

MWHC 7.18 ± 0.01 26.76

FCH 2,400.1 ± 711.6 4.2

3,541,615 URLs

Generation Time, Storage Space and Evaluation Time

Algorithms
Generation

Time (sec)

Space
(bits/key)

Evaluation
time (sec)

Internal (r = 3) 6.7 ± 0.01 2.6 2.1

External 6.3 ± 0.11 3.1 2.7

MWHC 7.18 ± 0.01 26.76 2.46

3,541,615 URLs

Key length = 64 bytes

FCH 2,400.1 ± 711.6 4.2 1.6

The Distributed External Memory

Based Algorithm ...

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 58

Based Algorithm ...

Distributed Construction of the MPHFs

Manager

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 59

Worker
0

Worker
1

Worker
p-1

. . .

Distributed Construction of MPHFs

� Manager :

� Assign tasks to workers

� Determine global values during execution

� Dump resulting MPHFs to disk

� Worker :

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 60

� Worker :

� Has a partition of the keys on disk

� Creates its buckets from the keys (Bpw = Nb/p)

� Migrate data whenever necessary

� Constructs a MPHF for each bucket

Sequential External Perfect Hashing Algorithm

…
0 1 n-1

Partitioning

…

Key Set S

Buckets

h0

2 3 4 5

Worker 0 Worker 1 Worker p-1

Worker 0 Worker p-1

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 61

MPHF(x) = MPHFi(x) + offset[i];

…

…

0 1 2b - 1

MPHF0 MPHF2MPHF1 MPHF2
b
-1

Searching

Buckets

Hash Table

0 1 n-1

2

Partitioning Step in Each Worker

Disk

Disk
reader

Keys queue

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 62

Partitioning Step in Each Worker

Disk

Disk
reader

Keys queue

Hashing

Fingerprint queue

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 63

Fingerprint queue

Partitioning Step in Each Worker

Disk

Disk
reader

Keys queue

Hashing

Fingerprint queue

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 64

Sender

network
Local

network

Fingerprint queue

Partitioning Step in Each Worker

Disk

Disk
reader

Keys queue Net
reader

Hashing

Fingerprint queue

network
Local

network

Fingerprint queue

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 65

Sender

network
Local

network

Fingerprint queue

Partitioning Step in Each Worker

Disk

Disk
reader

Keys queue Net
reader

Hashing

Fingerprint queue

Block
sorter

network
Local

network

Fingerprint queue

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 66

Sender

network
Local

network

Fingerprint queue
Block queue

Partitioning Step in Each Worker

Disk

Disk
reader

Keys queue Net
reader

Hashing

Fingerprint queue

Block
sorter

network
Local

network

Fingerprint queue

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 67

Disk

Sender

network
Local

network

Fingerprint queue
Block queue

Block
dumper

Sequential External Perfect Hashing Algorithm

Worker 0 Worker 1 Worker p-1

…
0 1 n-1

…

Key Set S

Buckets

h0

2 3 4 5

Worker 0 Worker p-1Partitioning

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 68

MPHF(x) = MPHFi(x) + offset[i];

Hash Table
0 1 n-1

…

…

0 1 2b - 1

MPHF0 MPHF2MPHF1 MPHF2
b
-1

Buckets

2Searching

Worker 0 Worker 1 Worker p-1

Searching Step in Each Worker

Bucket
reader

Buckets queue

Disk

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 69

Searching Step in Each Worker

Bucket
reader

Buckets queue

Disk

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 70

MPHF
gen 0

MPHF
gen t-1

...

Description and Evaluation of a MPHF

� Centralized in one machine

� Distributed among the participating
machines

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 71

Centralized Description and Evaluation of MPHFs

� End of the partitioning step:

� Worker sends size of each bucket to manager

� Manager calculates the offset array

� End of searching step (construction of MPHFs):

� Worker sends MPHFs of its buckets to manager

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 72

� Worker sends MPHFs of its buckets to manager

� Manager writes sequentially final MPHF to disk

� MPHF(x) = MPHFi(x) + offset[i]

Distributed Description and Evaluation of MPHFs

� Description of MPHFs of a bucket

� Stays in the bucket

� Evaluation of a MPHF

� Locate the key inside the bucket:

MPHFpartial(k) = MPHFi(k) + localoffset[i]

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 73

MPHFpartial(k) = MPHFi(k) + localoffset[i]

� Add this to the number of keys before worker w:

MPHF(k) = MPHFpartial(k) + globaloffset[w]

� A key stream is evaluated in parallel

Advantages of Distributed Evaluation of MPHFs

� No need to send the MPHFs of a bucket to manager

� They are written to disk in parallel by the workers

� Final function is stored in a distributed way

� Size of the description of the MPHF grows linearly
with the size of the input key

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 74

with the size of the input key

Communication Overhead

� On average, the number of keys τ sent through the
net during the execution is:

()

p

pn
=

1−
τ

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 75

p
Keys sent by a worker to the net

Max (%) Min (%) τ (%)

4 75.008 74.994 75.000

10 90.009 89.991 90.000

14 92.864 92.849 92.857

Experimental Setup

� Three collections

Collection Avg. Key Size n (billions)

URLs 64 1.024

Random

Integers

16 1.024

8 1.024

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 76

� Cluster with 14 equal 64 bits single core machines

� 2 gigabytes of main memory

� 2.13 gigahertz

� Linux operating system version 2.6

Integers 8 1.024

Speedup

� 64 bytes URLs

 10

 12

 14

 16

S
p

ee
d

u
p

Linear
Centralized
Distributed

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 77

 0

 2

 4

 6

 8

 2 4 6 8 10 12 14

S
p

ee
d

u
p

Number of machines

Speedup

� 16 bytes random integers

 10

 12

 14

 16

S
p

ee
d

u
p

Linear
Centralized
Distributed

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 78

 0

 2

 4

 6

 8

 2 4 6 8 10 12 14

S
p

ee
d

u
p

Number of machines

Speedup

� 8 bytes random integers

 10

 12

 14

 16

S
p

ee
d

u
p

Linear
Centralized
Distributed

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 79

 0

 2

 4

 6

 8

 2 4 6 8 10 12 14

S
p

ee
d

u
p

Number of machines

Scale-up

� 64 bytes URLs

 1.5

 2

S
ca

le
−

u
p

Ideal scale−up
Centralized
Distributed

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 80

 0

 0.5

 1

 2 4 6 8 10 12 14

S
ca

le
−

u
p

Number of machines

Scale-up

� 16 bytes random integers

 1.5

 2

S
ca

le
−

u
p

Ideal scale−up
Centralized
Distributed

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 81

 0

 0.5

 1

 2 4 6 8 10 12 14

S
ca

le
−

u
p

Number of machines

Scale-up

� 8 bytes random integers

 1.5

 2

 2.5

S
ca

le
−

u
p

Ideal scale−up
Centralized
Distributed

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 82

 0

 0.5

 1

 2 4 6 8 10 12 14

S
ca

le
−

u
p

Number of machines

Scale-up

� 14.336 billion random integers

� 14 machines (each with 1.024 billion keys)

n

(billions)

Random Integer

Collections

Construction time

Seq. Distrib. U

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 83

(billions) Collections Seq. Distrib. Up

14.336
16-byte 41.17 49.5 1.20

8-byte 34.58 58.00 1.68

Load Balancing

p tfw tsw tsw - tfw
4 12.78 12.86 0.09

10 4.32 4.40 0.07

� Execution time: fastest minus slowest (in minutes)

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 84

10 4.32 4.40 0.07

14 3.76 3.84 0.08

Distributed Evaluation

Collection
Evaluation time (min)

Centr. Eval. Distrib. Eval.

64-byte URLs 33.1 21.7

� 1.024 billion key stream taken at random (minutes)

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 85

64-byte URLs 33.1 21.7

16-byte Integers 24.5 11.5

8-byte Integers 18.2 10.1

C Minimal Perfect Hashing Library

� Why to build a library?

� Lack of similar libraries in the free software
community

� Test the applicability of our algorithm out there

� Feedbacks:� Feedbacks:

� 2,243 downloads (until May 27th, 2008)

� Incorporated by Debian

� Library address: http: //cmph.sourceforge.net

Conclusions

� Sequential and parallel perfect hashing algorithm

� Near space-optimal functions in linear time

� Function evaluation in time O(1)

� The algorithms are simpler and has much lower
constant factors than existing theoretical results

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 87

constant factors than existing theoretical results

� Outperforms the main practical general purpose
algorithms found in the literature

Conclusions

� Construction time: 14 machines, 1 billion URLs

� Sequential algorithm: 50 minutes

� Parallel algorithm: 4 minutes

� Speedup > 90% for keys with more than 16 bytes

� Description and evaluation of MPHF:

LATIN - LAboratory for Treating INformation (www.dcc.ufmg.br/latin) 88

� Description and evaluation of MPHF:

� Centralized

� Distributed: fast evaluation for key streams

????

