
Scalable Keyword Search Based on Semantic in DHT
Based Peer-to-Peer System

Wenhui Ma
College of Information Science and
Technology, University of Nankai

Tianjin 300071, China
wenhuima_nk@hotmail.com

Wenfang Wang
College of Information Science and
Technology, University of Nankai

Tianjin 300071, China
wwwfonline@eyou.com

Jing Liu
College of Information Science and
Technology, University of Nankai

Tianjin 300071, China
jingliu@nankai.edu.cn

ABSTRACT
The common way for keyword search in Distributed Hash Tables
(DHTs) based Peer-to-Peer (P2P) system is to construct
distributed inverted index by keywords. But it suffers from the
problem of unscalable resources (e.g. bandwidth, storage)
consumption. In this paper, we present SKS, a scalable keyword
search approach in DHTs based P2P system. SKS introduces the
ontology to organize the specific domain, which captures the
semantic relations between words. SKS constructs distributed
inverted index by concepts, which decreases the number of index
entries publishing for documents and avoids the intersection of
inverted lists between nodes when executing multi-keyword
search. With the concept index SKS transforms the keyword
search to the match process of concepts, implementing semantic
search. Simulation experiment shows that SKS is more efficient
than the approach of distributed inverted index by keywords in
indices publishing overhead and query overhead.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – Search Process;

C.2.4 [Computer Communication Networks]: Distributed
Systemsnn – Distributed applications;

General Terms
Algorithms, Design
Keywords
Peer-to-Peer, Distributed Hash Tables, ontology, search

1. INTRODUCTION
In Recent years, the P2P systems have emerged as a popular way
to share huge volumes of data. The one of most challenging
design aspects is efficient techniques for data retrieval.
Unstrctured P2P systems such as Napster [1] and Gnutella [2]
support keyword search through flooding query to some or all of
nodes. Structured P2P systems, such as Chord [3] and CAN [4],
has addressed some of the scalability and reliability problems that
exist unstructured P2P systems through using DHTs, but they can
not support full text search directly. While, as they actually
implement DHTs over them, keyword search can easily be

implemented by distributing inverted indices among nodes by
keywords. Then query with multi-keyword can be executed
through the intersection of inverted lists among nodes. However,
[5] has demonstrated that the two techniques above suffer from
the unscaleable resources consumption, such as storage and
bandwidth.

In this paper, we propose a scalable keyword search approach in
DHTs based P2P systems, called SKS. SKS introduces the
ontology to organize the specific domain, and constructs inverted
index by concepts. And each node of P2P system is responsible
for inverted list of some concepts. SKS captures the semantic
relations between words through ontology, which reduces the total
overhead of system when index entries of documents publishing.
For each document in the inverted lists of concepts, a set of
ontological concepts that describe the content of the document is
also stored in the node, which avoids the intersection of inverted
lists among nodes when executing multi-keyword search.
Moreover, SKS transforms the multi-keywords query to the match
process of concepts, implementing keyword search based on
semantic.

The remainder of this paper is organized as follows. Related work
is discussed in Section 2. Section 3 describes the ontology, and
document index constructing and query processing are discussed
in section 4. Section 5 gives the simulation experimental results.
Section 6 concludes the paper.

2. RELATED WORK
Some solutions have been proposed to overcome the unscalable
resource consumption for keyword search in DHTs based P2P
system. In [6] and [7], they partitioned the index by a set of
keywords. This index scheme reduced the bandwidth consumption
because no intersection of inverted lists is done among nodes, but
it need considerably larger storage space than standard inverted
index. Liu et al. in [8] proposed a set of mechanisms to provide a
scalable keyword search. The focus of their work is to address
common keywords problem. They used Fusion Dictionary and
Keyword Fusion to balance unfair storage consumptions at peers
and transform the user’s query to contain more specific search
keywords. So the query will associate with short list of files and
generate lower network traffic. Tang in [9] proposes a eSearch,
which combines the local index partitioned by document with the
global index partitioned by term to construct a hybrid index
structure in DHTs based P2P system. eSearch avoids the union
operation from one node to another and reduces the query
overhead. However, eSearch’s search efficiency comes at the
expense of publishing more terms. Although it uses several

* Conference name: Infoscale 2007, June 6-8, 2007, Suzhou, China
* Copyright number (LaTeX \crdata{}): 978-1-59593-757-5

 1

http://www.acm.org/class/1998/C.2.4.html
http://www.acm.org/class/1998/C.2.4.html
fezzardi
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. INFOSCALE 2007, June 6-8, Suzhou, ChinaCopyright © 2007 ICST 978-1-59593-757-5 DOI 10.4108/infoscale.2007.940

optimizations, such as top term selection, to reduce the
communication traffic and the storage space, the quality of query
results may be degraded more or less. [10] has reduced bandwidth
consumption by pursuing a hybrid between partitioning by
keyword and partitioning by document, and implements keyword
search using multi-level partitioning (MLP) in P2P system.
However, MLP is designed and implemented on top of SkipNet
[11], relying on a node group hierarchy, and it can not apply to
other DHTs based P2P system.

3. ONTOLOGY
In computer science, the famous definition for ontology is
Gruber’s definition [12] “an ontology is an explicit specification
of a conceptualisation”. Therefore, an ontology defines a set of
representational terms called concepts. Interrelationships among
these concepts organize concepts in a hierarchically structure to
describe a target domain. Ontology aims at defining meaning of
the terms and relations among these terms for a specific domain,
and providing a commonly understanding between users or
applications for that domain.

Figure 1 shows a portion of ontology about computer science.
This ontology is described by a Directed Acyclic Graph (DAG).
Here each node in the DAG represents a concept. Each concept
contains a label name(denoted by word) that is unique in this
ontology and a set of synonyms. Each concept also has instances
that are specific representation for domain knowledge. The nodes
are linked by directed edges, which denote relations between
concepts and specify in which way concepts are related to each
other, such as “is-a”, “part-of”, or “instance-of” and so on.

Figure 1. A small ontology about operating system
SKS adopts OWL [13] to represent domain ontology. It is
extension of RDF Schema and adds language primitives to support
richer expressiveness required. For the Figure 1, a snippet of its
corresponding OWL code is shown in Figure 2.

4. INDEX CONSTRUCTING AND QUERY
PROCESSING
Traditionally information retrieval system considers that each
document’s content can be described by a set of representative
keywords. Thus the set of keywords is used to index and retrieve

the document. This approach is also used in DHTs based P2P
systems. Commonly keyword search in DHTs based P2P systems
is implemented through constructing keyword index and
distributes it among all nodes of system. But document indexing
and retrieving through inverted index by keywords is usually
assumed that the index terms are mutually independent, not
consider the semantic relations between index terms. As a result
the documents that do not contain any of the query keywords but
semantic related the query request will not be retrieved, or
unrelated documents that contain some of the query keywords will
be retrieved.

Figure 2. A snippet of OWL code for ontology

In this paper, SKS introduces domain ontology to capture
semantic relations between keywords, and generates a set of
concepts respectively to represent the content of each document
and query. Thereby SKS constructs distributed inverted index by
concepts instead of keywords. So, the number of index entries
publishing for documents is decreased, and semantic search is
implemented through the concepts match between the document
and query.

4.1 Concept index Constructing
In SKS, construction of the distributed inverted index by concepts
involves several steps.

1) Generating a set of keywords for each document, while “stop”
words are eliminated, and the remaining words are stemmed so
that there is only one grammatical form (or the stem common to
all the forms) for a given word.

is-a instance-of

2) Mapping the set of keywords into the domain ontology and
detecting the concepts that contain these keywords in the set.

Definition: the ontological concept c contains the word w, if
w∈{c Υ one of direct instance (c) Υ one of synonym (c)}. Then
an ontological concept c occurs in the document as long as a word
contained by c occurs in this document.

So, the set of keywords is transformed to a set of concepts Dc from
ontology that occurs in the document. When for a keyword no
concept is detected in the ontology, the keyword converted as a

 2

new concept is added into the Dc. Because the new concept does
not belong to the ontology, it has no relations with any other
concepts of ontology.

3) Based on Dc of each document, inverted index by concepts is
constructed. Using the concepts as the keys of DHTs, the inverted
index is distributed among all nodes of system, and each node p is
responsible for inverted lists for some concepts. In addition, for
each document d in inverted list for concept c, the set of concepts
Dc of d is also stored in the node p.

4.2 Query Processing
User issues a query request that is composed of keywords. Then
the query is parsed with eliminating stop words and stemming
using the same operation done to document. A set of concepts Qc
containing the query keywords is generated for a query. Using the
concepts of Qc as the keys of DHTs, the query is sent to the nodes
that are responsible for the inverted list of concepts of Qc. As
described in above section, node p also stores the set of concepts
Dc of document. So, the query is transformed to the match process
of concepts between Dc and Qc. The matched documents for the
query can be retrieved locally in these responsible nodes without
consulting other nodes. The intersection of inverted lists for
different concepts between nodes is avoided, so the
communication overhead is reduced immensely.

Definition: The document d matches the query q, if
， of document satisfies cii Qcc ∈∀ , Cjj Dcc ∈∃ ,

Tccsim ji ≥),(

Where Dc and Qc is the set of concepts for document d and query
q respectively; sim represents the semantic similarity function; T
is a constant that represents the similarity threshold.

For the semantic similarity function sim, [14] has compared
different similarity measures and have proposed that for
measuring the similarity between concepts in hierarchical
structured semantic network, where semantic similarity considers
to be determined by the shortest path length as well as the depth of
the subsumer, so the following similarity measure (formula (1))
yields the best results.

1 2

1 2

otherwise(,)
1 if

h h
l

h h

e eesim c c e e
c c

β β
α

β β

−
−

−

⎧ −
⋅ ⎪= +⎨

⎪ ≡⎩

 (1)

Here c1 and c2 are concepts of ontology; l is the length of the
shortest path between c1 and c2 in the graph spanned by the
concept’s relations. h is the level in the tree of the direct common
subsumer from c1 and c2. α>0 and β>0 are parameters scaling the
contribution of shortest path length l and depth h, respectively. In
this paper, we use the formula (1) as the similarity calculation
function, and set α=0.2 and β=0.6 as used in [14].

For the case of concepts c1 and c2 that are in the Dc and Qc but not
belonging to ontology, the semantic similarity function sim is:

 (2)
1 2

1 2

1 if
(,)

0 otherwise
c c

sim c c
 ≡⎧

= ⎨ ⎩

5. EXPERIMENTS
In this section, we evaluate SKS by simulation experiment. We
constructed an ontology about computer science refer to the ACM
topic hierarchy [15], which contains a set of 1287 topics in the
computer science domain, and WordNet [16], where the terms are
grouped into semantic equivalence sets. In order to analyze the
SKS retrieval cost , we ran a web crawler that visited the web
pages on the Yahoo news and download the HTML files
recursively. Our crawler downloaded about 11,135 HTML pages.
We develop a HTML parser using Java to clean HTML tags and
extract plain text. We also develop a text parser using Java to
eliminate the stop words and replace words by stems, adopting the
algorithms introduced in [17].

We constructed inverted index files for the texts. Each index file
contained some inverted lists, one for a concept occurred in texts.
We measured number of entries for a text to analyze the overhead
of index entry publishing for a document. We analyzed the
communication overhead of query by doing a search in the
inverted index files, extracting appropriated entries, and
measuring the size of all entries. In order to compare SKS with
existing keyword search approaches based on standard inverted
index scheme--inverted index by keywords, we also construct
inverted index files based on keywords for these same texts. We
evaluate them by overhead of index entry publishing and query
overhead.

Index entry publishing means storing the index entries for a
document to appropriate nodes in P2P system. The overhead of
network is the number of bytes transmitted when index entries
storing in the nodes. The number of bytes transmitted can be
obtained through multiplying number of entries generated for a
document by the size of each entry.

0

10

20
30

40

50

100 200 300 400 500 600 700 800 900 1000
Number of words in a document

M
ea

n
K

B
 tr

an
sm

itt
ed

standard inverted index scheme
SKS

Figure 3. Overhead of index entries publishing

Figure 3 gives the mean KB transmitted when a document is
shared using standard inverted index scheme, and SKS with the
similarity threshold of 1. Figure 3 shows overhead of SKS is much
lower than that of standard inverted index scheme.
Query overhead is the number of bytes transmitted when a user
issues a keyword search. We multiplied the size of each entry that
matched the query by the number of entries to obtain the number
of bytes that would be transmitted across the network during the
search.

 3

0
100
200
300
400
500
600

0 1 2 3 4 5 6
number of keywords in a query

M
ea

n
K

B
tra

ns
m

itt
d standard inverted index scheme

SKS

Figure 4. Query overhead

Figure 4 gives the mean KB transmitted when a user issued a
keyword search with standard inverted index scheme, and SKS
with the similarity threshold of 1. Figure 4 shows the query
overhead of SKS is much lower than that of standard inverted
index scheme.
In this paper, we use the similarity function of concepts to
determine the match of document and query. So, the similarity
threshold T will impact the query overhead. We evaluate the query
overhead when the similarity threshold T changes.

0
100
200
300
400
500
600

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
similarity threshold T

M
ea

n
K

B
 tr

an
sm

itt
ed

Figure 5. Query overhead when T changes

Figure 5 shows mean KB transmitted when similarity threshold T
changes. With the value of T increasing, the scope of concepts
match in the ontology becomes small. So, the query overhead is
decreased.

6. CONCLUSIONS
In this paper, we have presented a scalable keyword search
mechanism based on semantic, SKS, in DHTs based Peer-to-Peer
system. SKS exploits ontology to capture the semantic relations
among words and generate a set of concepts respectively for
document and query. SKS constructs the distributed inverted
index by concepts instead of keywords. So, the number of index
entries publishing for documents is decreased. The concept set
representing of document is added in the concept index, which
avoids the inverted list transmitting among nodes. As a result, the
total overhead of network is lowered. With the concept index SKS
also implements semantic search based on keywords.

Our future work includes studying the index update generating
from the change of global statistics for concept, and improving the
retrieval performance through using ontology to do nature
language disambiguation. Some optimizations, such as caching,
compression and so on, can be combined with SKS to improve
search efficiency.

7. ACKHOWLEDGEMENTS
This paper is sponsored by NSF of China (No.90612001), Science
and Technology Development Plan of Tianjin , (No. 043800311,
043185111-14) and Nankai University Innovation Fund and ISC.

8. REFERENCES
[1] The Napster Homepage.: http://www.napster.com.
[2] The Gnutella Homepage.: http://gnutella.wego.com.
[3] I.Stoica, R. Morris, D. Karger, M. Kaashoek, and H.

Balakrishnan. Chord: A scalable peer-to-peer lookup service
for Internet applications. In Proc. of the ACM
SIGCOMM ’01, 2001.

[4] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker. A scalable content-addressable network. In ACM
SIGCOMM, 2001.

[5] Jinyang Li, Boon Thau Loo, Joseph M.Hellerstein, M.Frans
Kaashoek, David R.Karger, and Robert Morris. On the
Feasibility of Peer-to-Peer Web Indexing and Search. In
IPTPS, 2003.

[6] Omprakash, D. Gnawali. A Keyword-set Search System for
Peer-to-Peer Networks. MIT’s thesis Lib, 2002.

[7] Toan Luu, Fabius Klemm, Ivana Podnar, Martin Rajman,
Karl Aberer. ALVIS Peers: A Scalable Full text Peer-to-Peer
Retrieval Engine. In P2PIR’06, Arlington, Virginia, USA
2006.

[8] L. Liu and K. D. Ryu. Supporting Efficient Keyword Based
File Search in Peer-to-Peer File Sharing Systems. IBM
Research IBM Research Report. RC23145 (W0403-068),
2004.

[9] C. Tang and S. Dwarkadas. Hybrid global-local indexing for
efficient peer-to-peer information retrieval. In NSDI, 2004.

[10] Shuming Shi, Guangwen Yang, Dingxing Wang, JinYu,
Shaogang Qu, and Ming Chen. Making Peer-to-Peer
Keyword Searching Feasible Using Multi-Level Partitioning.
In IPTPS, 2004.

[11] Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu,
Marvin Theimer and Alec Wolman. SkipNet: A Scalable
Overlay Network with Practical Locality Properties.
USITS'03, 2003.

[12] Gruber T R. A Translation Approach to Portable Ontology
Specifications. Knowledge Acquisition, 1993,5: 199～220.

[13] Sean Bechhofer, Frank van Harmelen, Jim Hendler, et al,
OWL Web Ontology Language Reference,
http://www.w3.org/TR/2004/REC-owl-ref-20040210/,
February 2004.

[14] Yuhua L, Bandar ZA, McLean D. An approach for
measuring semantic similarity between words using multiple
information sources. IEEE Trans. on Knowledge and Data
Engineering, 2003,15(4): 871-882.

[15] The ACM Topic Hierarchy. http://www.acm.org/class/1998/.
[16] G. Miller, “WordNet: A Lexical Database for English”, in

Proc. of Communications of CACM, Nov 1995.
[17] W.B. Frankes and R. Baeza-Yates. Information Retrieval:

Data Structure and Algorithm. Prentice Hall, Englewood
Cliffs, NJ, USA, 1992.

 4

http://www.napster.com/
http://gnutella.wego.com/
http://www.acm.org/class/1998/

	
	
	1. INTRODUCTION
	2. RELATED WORK
	3. ONTOLOGY
	4. INDEX CONSTRUCTING AND QUERY PROCESSING
	4.1 Concept index Constructing
	4.2 Query Processing
	5. EXPERIMENTS
	6. CONCLUSIONS
	7. ACKHOWLEDGEMENTS
	8. REFERENCES

