
A New Group Rekeying Scheme based on t-Packing
Designs for Ad Hoc Networks*

Jianwei Chen
Key Lab of Network Security and

Cryptology
Fujian Normal University
Fuzhou 350007, China

cjwxin_1@fjnu.edu.cn

 Li Xu
Key Lab of Network Security and

Cryptology
Fujian Normal University
Fuzhou 350007, China

xuli@fjnu.edu.cn

Yi Mu
School of Computer Science and

Software Engineering
University of Wollongong

Wollongong, NSW 2522, Australia

ymu@uow.edu.au

ABSTRACT
Secure group key distribution and efficient rekeying is one of the
most challenging security issues in ad hoc networks at present. In
this paper, Latin squares are used to construct orthogonal arrays in
order to quickly obtain t-packing designs. Based on cover-free
family properties, t-packing designs are adopted in key pre-
distribution phase. Then the pre-deployed keys are used for
implementing secure channels between members for group key
distribution. The new scheme improves the collusion-resilience of
the networks using the cover-free family properties, and enhances
the key-sharing connectivity of nodes which makes key
management more efficient. This paper also presents in depth
theory and data analysis of the new scheme in terms of network
security and connectivity.1

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General – Securi-
ty and protection; C.2.1 [Computer-Communication Networks]:
Network Architecture and Design—Wireless communication

General Terms
Security, Design

Keywords
Ad Hoc network, group rekeying, Packing Design, Cover-Free
Family

1. INTRODUCTION
An ad hoc network is a collection of autonomous nodes that

communicate with each other, most frequently using a multi-hop
wireless network. Many applications of ad hoc networks involve

* Partially supported by National Natural Science Foundation of

China (No. 60502047), Scientific Program of the Educational
Department of Fujian Province of China (No. JB06093).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
INFOSCALE’07, June 6–8, 2007 Suzhou, China.
Copyright 2007 ACM 1-59593-757-5/07/0006…$5.00.

collaborative computing among a large number of nodes and are
thus group-oriented in nature. For deploying such applications
like emergency rescue and battlefield communication, it is
necessary to provide support for secure group communication.

The most efficient approach for achieving confidential group
communication is to use a symmetric group key that is shared by
all the nodes for data encryption. This approach however
introduces the problem of group rekeying, i.e., the group key must
be updated and redistributed to all the remaining nodes in a secure,
reliable and timely fashion when group membership changes.
Therefore this problem requires key management systems that
provide support for dynamic properties. In general, Key
management systems are of three types: namely key distribution,
key agreement and key pre-distribution.

The traditional internet style key distribution protocols, for
example Kerberos or adapted LKH [1] schemes, are infeasible for
ad hoc networks because of their exclusive properties. These
include communication range limitations, node movements,
network dynamics and unknown network topology prior to
deployment. On the other hand, contributory key agreement
protocols [2,3,4], in which each node contributes an input to
establish a common secret through successive pairwise message
exchanges among the nodes in a secure manner using the 2-party
Diffie-Hellman exchange, are not practical to ad hoc networks
either. They are not robust to changing topology or intermittent
links commonly occurring in an ad hoc network. In order to
successfully establish a key, these protocols strictly require the
underlying networks to either support broadcasting or have a
relatively time-invariant topology of certain forms. Usually, all
the nodes need to be online before the key establishment process
is completed; if any node leaves in the midst due to link or battery
outage, no common key would be established and the remaining
nodes need to re-run the process from scratch. So the key
agreement approach is not scalable due to the need of frequent
interactive rekeying despite key freshness.

A number of recent works demonstrate that the key pre-
distribution scheme (KPS) offers practical and efficient solutions
to the key management problem. In KPS, each node receives a
subset of keys from a key pool before deployment. Any two nodes
able to find or compute non-interactively common keys within
their respective subsets can use that keys as their shared secret to
initiate communication. When we design a key management
scheme based on KPS for ad hoc networks, the following key
characteristics of the design must be considered.

 Connectivity: A network node should be able to securely
communicate to its local neighbors. Here a local neighbor

fezzardi
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. INFOSCALE 2007, June 6-8, Suzhou, ChinaCopyright © 2007 ICST 978-1-59593-757-5 DOI 10.4108/infoscale.2007.929

means a network node physically located within
transmission range.

 Resilience of a network: Even if many nodes are
compromised by an adversary, the communications
between other nodes should still be secure. In other
words, a coalition of certain number of nodes cannot
compute all secret keys used by other nodes.

 Small key size: Since a node has limited resource, key
storage should be small. Therefore the number of keys
distributed to a node should be small.

 Number of nodes: The maximum number of nodes that
the scheme can support should be considered.

The rest of this paper is organized as follows. In the next
section, a review of related work is introduced. In Section 3, we
give the preliminaries. Then, we present the details of the new
scheme in Section 4. Finally, we discuss some security and key-
sharing connectivity issues in Section 5 and summarize the results
in Section 6.

2. RELATED WORK
To date, the only practical option for the distribution of keys to

nodes of ad hoc networks whose physical topology is unknown
prior to deployment has been to rely on key pre-distribution.
There exist a number of key pre-distribution schemes. Eschenauer
and Gligor [5] proposed a random key pre-distribution scheme.
Each sensor node receives a subset of random keys from the pool
before deployment. Any two nodes able to find one common key
within their respective subsets can use it as their shared secret to
initiate communication. Based on this scheme, Chan, Perrig, and
Song [6] proposed a q-composite random key pre-distribution
scheme, which increases the security of key setup such that an
attacker has to compromise many more nodes to achieve a high
probability of compromising communication.

Recently, Du et al. [7] proposed another key pre-distribution
scheme which substantially improves the resilience of the
network compared to other schemes. This scheme exhibits a
threshold property; when the number of compromised nodes is
smaller than the threshold, the probability that any node other
than the compromised nodes is affected is close to zero. Chan [8]
proposed a fully distributed key pre-distribution scheme (DKPS)
with no trusted authority for ad hoc networks. The DKPS is based
on the precondition under which the key sets distributed to the
network nodes can form a cover-free family. This desirable
property leads to the fact that any subset of nodes can find from
their key chains at least one common key not covered by a
collusion of, at most, a certain number of nodes outside the subset.
However, Wu and Wei [9] found that the precondition was falsely
deduced. They claim that the probabilistic method (Chan used this
method) cannot yield CFF practical for key distribution.

GKMPAN is an efficient group rekeying scheme for secure
multicast in ad-hoc networks proposed by Zhu[10].GKMPAN also
uses the probabilistic key pre-distribution technique as the
underlying means to establish secure channels between nodes.
However, compared to the previous schemes, GKMPAN uses the
predeployed keys only as key encryption keys (KEKs) for
securely distributing a group key to the nodes in the network
while using the group key for securing group data
communications. Thus, GKMPAN incurs much smaller
communication and computational overhead in group
communication. GKMPAN also includes an efficient mechanism

to update the predeployed keys of nodes.
In this paper, we propose a new t-packing design based group

rekeying scheme (PDGRS) for ad hoc networks. PDGRS builds
on t-packing designs to pre-distribute node key-chains, and these
keys are used for group rekeying. For this purpose, Latin squares
are used to construct orthogonal arrays for quickly obtaining t-
packing designs. The method makes the scheme mathematical
model achieve cover-free family (CFF) properties [12], which
improves the collusion-resilience of the networks. Moreover,
updating the pre-deployed keys further prevent more
compromised and revoked nodes from launching a collusive
attack. Meanwhile, PDGRS enhances the key-sharing
connectivity of nodes which makes keys distribution more
efficient. Analysis shows that not only the key-sharing
connectivity but also the collusion-resilience of the networks
improves as the number of keys in a node increases compared to
other existing schemes.

3. MATHEMATICAL MODEL AND
RELATED DEFINITIONS

Cover-free families were first introduced by Kautz and
Singleton [11] to investigate superimposed codes. Since then,
cover-free families have been discussed in several equivalent
formulations in subjects such as information theory,
combinatorics and group testing by numberous researchers.
Mitchel defined the concept of key distribution patterns, which in
fact are a generalized type of CFF.

A set system is a pair (X, F), where X is a set of points and F is
a set of blocks of X. The classical definitions of cover-free
families [12] can be written as follows.

Definition 1. A set system (X, F) is called a r cover-free family
(or r-CFF) provided that, for any r blocks 1 2, , , rA A A F∈ and
any other block 0B F∈ , we have

0
1

r

j
j

B A
=

⊆ ∪ (1)

Definition 2. A set system (X, F) is called a (r; d) cover-free
family (or (r; d)-CFF) provided that, for any block 0B F∈ and
any other r blocks 1 2, , , rA A A F∈ , we have

0
1

\
r

j
j

B A d
=

>∪ (2)

The definition 2 states that the union of any r blocks contains at
least d points that are not in it. Combinatorial designs can be used
to constructed r-CFF. First we give the definition of a t-packing
design as follows, and then other related definitions.

Definition 3. A t-(v, k, λ) packing design is a set system (X, F),
where |X| = v, |B| = k for every B F∈ , and every t-subset of X
occurs in at most λ blocks in F.

Definition 4. A tk v× array A with entries from V is an
orthogonal array with v levels and strength t (for some t in the
range o t k≤ ≤) if every tt v× subarray of A contains each t-
tuple based on V exactly once (we assume the index λ=1) as a
column. We denote such an array by (, ,)OA t k v .

Definition 5. A Latin square of order n is an n by n array
containing symbols from some alphabet of size n, arranged so that
each symbol appears exactly once in each row and exactly once in

each column.
If n is a prime or a prime power, then there exists a complete

set of (n-1) mutually orthogonal Latin squares.

4. PROPOSED SCHEME

4.1 Network Assumptions and Main
Notations

We assume an ad hoc network where there are N nodes.
Network nodes communicate with each other and require pairwise
keys to secure their communication for group rekeying. Each
node has a key-chain of k keys which are selected from a key pre-
distribution phase based on packing designs before the
deployment. After that any two neighbor nodes find the common
keys between their key-chains using cryptography
homomorphism with secure shared key discovery (SSD) [8], and
these keys are used to secure their communication. When a node
joins or a member node leaves a group, the group key must be
updated to enforce forward or backward secrecy. In addition, the
pre-deployed keys need to be renewed.

The notations in Table 1 will appear in the rest of this paper.
TABLE 1. NOTATIONS

N Number of nodes

n Number of neighbor nodes

P The key pool

p A key in the key pool

q A prime or a prime power

()kE msg The encryption of message msg with key k

(,)H x y The function to compute keys of nodes

{ }if A family of pseudo-random functions [16]

Ru The key-chain of node u

m Number of keys in a key-chain

4.2 Scheme Description
The scheme consists of the following phases.

 Initial Setup Phase The group controller (GC) selects
parameters used in the scheme.

 Key Pre-distribution Phase Prior to the deployment of
the ad hoc network, all nodes obtain a distinct subset of
keys from the GC, based on packing designs.

 Shared-key Discovery Phase Nodes perform a protocol
to discover their shared keys with their neighbors. Two
nodes with shared keys are assumed securely connected.
Next these keys are used as KEKs for delivering group
keys.

 Key Update After a node receives and verifies the group
key K, it updates its own pre-deployed keys based on K.

4.2.1 Setup Phase
The key pool P and parameters q and m are chosen by the GC.

The choice of these parameters will determine the security level,
the number of keys that a node has to store and communication

efficiency of group key setup.
The number of keys in the key pool P is q. It is one-to-one

mapping between the key pool P and the finite field GF(q) , that
is , { }| ()iP p i GF q= ∈ .

4.2.2 Key Pre-distribution Phase
From the above parameters, the GC constructs a t-packing

design that involves the following steps.
Step 1. construct mutually orthogonal Latin squares of order n

according to the following theorem.
Theorem 1[13]. Select a primitive element a from a finite field

GF(n), then

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+++

+++
+++

=

−+−−+−+−+

+−+++

−

−

+

22222

12111

2

2

1

1

1
1

10

ninninini

iniii

iniii

n

i

aaaaaa

aaaaaa
aaaaaa

aa

B

, for 0,1, , 2i n= − , is a complete set of orthogonal Latin
squares of order n.

Step 2. Over the complete set of orthogonal Latin squares of
order n, an orthogonal array (, ,)OA t k v can be constructed by the
way that the elements of each square are written in order in a line.

Step 3. In this step, suppose { }1 2, , , ks s s is a column in the

(, ,)OA t k v . Define a block as { }1 2(0,), (1,), , (1,)ks s k s−

accordingly. In this way, we can obtain a (, ,1)t ks k− packing
design from the (, ,)OA t k v .

After a t-packing design has been constructed, each node is
loaded with the following information:

1. Each node u is loaded with Ru, which contains keys
computed from the equation (3), and these keys are used as KEKs.
Specifically, for each node, the GC chooses a block

{ }(,) | 0,1,2, ; ()B j i j q i GF q= = ∈ from the t-packing design

upon the input of a node id. Next the block is used to calculate the
corresponding keys according to the equation (3) .

(,),(,)j ik H j p j i B= ∈ (3)

2. Each node is loaded with the initial group key gk .

Example1. We illustrate the proposed phase using an example
below, involving the construction of a t-packing design.

Step1. Assume that q＝5，GF(5)={0,1,2,3,4}. And the GC
generates a key pool 0 1 2 3 4{ , , , , }P p p p p p= .

Step2. Construct a complete set of 4 mutually orthogonal Latin
squares of order 5 as follows.

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

12043
23104
01432
40321
34210

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

40321
12043
23104
01432
34210

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

01432
40321
12043
23104
34210

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

23104
01432
40321
12043
34210

Step3. We construct 6×25 OA(2,6,5) using above mutually
orthogonal Latin squares. Note that how many Latin squares we
apply will determine the number of elements that a block has, that
is, the number of keys m that a node has. Assume here that we use
all Latin squares and write in order the elements of each square in

a line from the 3rd row of the array below. As a result, OA(2,6,5)
is obtained as follows.

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
0 1 2 4 3 1 2 3 0 4 2 3 4 1 0 4 0 1 3 2 3 4 0 2 1
0 1 2 4 3 2 3 4 1 0 4 0 1 3 2 3 4 0 2 1 1 2 3 0 4
0 1 2 4 3 4 0 1 3 2 3 4 0 2 1 1 2 3 0 4 2 3 4 1 0
0 1 2 4 3 3 4 0 2 1 1 2 3 0 4 2 3 4 1 0 4 0 1 3 2

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Step4. Finally the following 2－ (30,6,1) packing design is
derived .

(0,0) (0,0) (0,0) (0,0) (0,0) (0,1) (0,1) (0,1) (0,1) (0,1)
(1,0) (1,1) (1, 2) (1,3) (1, 4) (1,0) (1,1) (1,2) (1,3) (1,4)
(2,0) (2,1) (2,2) (2,4) (2,3) (2,1) (2, 2) (2,3) (2,0) (2, 4)
(3,0) (3,1) (3, 2) (3,4) (3,3) (3,2) (3,3) (3, 4) (3,1) (3,0)
(4,0) (4,1) (4,2) (4,4) (4,3) (4, 4) (4,0) (4,1) (4,3) (4, 2)
(5,0) (5,1) (5,2) (5,4) (5,3) (5,3) (5, 4) (5,0) (5, 2) (5,1)

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

After the packing design is completed, the GC selects each
node’s, say u, block upon the input of its id. Suppose
Bu={(0,0),(1,4),(2,3),(3,3),(4,3),(5,3)}. And the GC calculates its
corresponding key-chain distributed to node u as equation (4)
according to the equation (3).

{ }0 4 3 3 3 3(0,), (1,), (2,), (3,), (4,), (5,)uR H p H p H p H p H p H p=

 (4)

Our scheme does not require a key pre-distribution phase for
every instance of network formation. Indeed, there is no limit on
how many times these pre-distributed keys can be used securely
because our rekeying scheme updates these keys securely after
every group rekeying.

4.2.3 Shared-key Discovery Phase
After the key pre-distribution phase is completed, each node is

deployed in different places. Any two neighbor nodes, say u and
w, will perform SSD scheme, which uses privacy homomorphism
to find common keys between Ru and Rw. The SSD scheme allows
two nodes to find out common keys in their key-chains, but not to
leak out to the other side any information of the keys outside the
common intersection of the two key-chains.

In the Example1, after the deployment, u and w become
neighbor nodes which are respectively assigned key-chains as
follows.

{ }10,34,37,35,87,79uR =

{ }30,51,29,93,19,79wR = .

Then based on SSD scheme they derive their shared-key
{79}。

4.2.4 Node Join
In this section, without losing generality, suppose a new node u

wants to join an existing group. For example, the GC may
introduce new nodes into the system to compensate for revoked
nodes. To enforce forward secrecy, the following steps will be
adopted.

Step 1. The GC generates an new group key '
gk , and broadcasts

the message '()
gk gE k to the network.

Step 2. Every node, say v, updates every key ki in Rv as
' (0)

ii kk f= . We denote the updated set of keys as '
vR .

Step 3. After the key update operations, every node erases the
old group key gk .

Step 4. Finally, the GC determines u’s key set Ru based on its
node id. Then it loads node u with current version of Ru
and the current group key over a secure channel. Such a
confidential and authentic channel can be established if
user physically goes to the GC or the keys can be
protected by a simple blinding technique [14].

4.2.5 Node Revocation
In this part, we are going to describe the key update operations

when a node leaves a group. The leaving action may happen
voluntarily or when a compromised node is detected and expelled
from a group. Either way, the keys must be updated to enforce
backward secrecy. Let u be the node to be revoked. The following
steps will be adopted.

Step 1. The GC determines l keys { }1 2, , , lk k k , which are the
non-compromised keys that are possessed by the
remaining nodes in the network, and these keys are used
as KEKs. The GC then generates an new group key '

gk .
Then it broadcasts a node revocation message as
equation (5) to the network.

GC :→∗ uID ，
1 2

' ' '{ (), (), , ()}
lk g k g k gE k E k E k ， ' (0)

gk
f (5)

Step 2. The nodes that possess one of the l keys { }1 2, , , lk k k

can compute the new group key '
gk independently.

Otherwise, they can obtain it over the shared-keys with
their neighbors. Node u will not receive '

gk even though
it can impersonate a non-revoked node v by claiming
node v’s id, because none of the keys in Ru are used. And
node u also can not derive '

gk from its neighbors, since
the node revocation message involves its node id.

Step 3. After every node receives the new group key '
gk , it

verifies the correctness of '
gk by checking if ' (0)

gk
f

equals to that in the node revocation message. If equals,
every node, say v, updates every key ki in Rv as

' (0)
ii kk f= . We denote the updated set of keys as '

vR .
Step 4. After the key update operations, every node erases the

old group key gk .
In step 1, the l keys chosen by the GC can be the non-

compromised keys that are possessed by the maximum number of
nearby remaining nodes of the GC in the network. When a node
possesses none of the l keys, it can obtain the group key over the
shared-keys with its neighbors. As long as the key-sharing
connectivity of nodes is high, the group key will be efficiently
distributed to the remaining nodes in the network.

5. ANALYSIS
In this section, we first analyze the security and the key-

sharing connectivity of our scheme, then discuss the tradeoff

between security, connectivity and storage cost, finally compare
the properties of our scheme with that of some other schemes.

5.1 Security Analysis
Except for forward and backward secrecy, the security of our

group rekeying scheme is mainly two-fold.
Defending against Collusive Attacks From the above

statement, the proposed scheme based on t-packing designs yields
CFF properties.

Theorem 2. If there is an (, ,)OA t k v , then there is a t－(kv, k,

1) packing design that contains tv blocks.
Proof. Suppose that there is a (, ,)OA t k v with entries from the

set {0,1, , 1}v − .Define {(,) | 0 1,0 1}X x y x k y v= ≤ ≤ − ≤ ≤ − .
For every column 0 1 1(, , ,)ky y y − in the orthogonal array, define
a block B= 0 1 1{(0,),(1,), ,(1,)}ky y k y −− . Let F consist of the

tv blocks thus constructed. It is easy to check that (X, F) is a
(, ,1)t kv k− packing design.

A t-packing design is an r-CFF for certain value of r. We
obtain the following construction.

Theorem 3[12]. If there exists a t-(v, k, 1) packing design
having b blocks, then there exists a (r; d)-CFF(v, b), where

(1) (1)r k d t= − − −⎢ ⎥⎣ ⎦ .

In PDGRS, q is a prime or a prime power, and there exists a
complete set of (q-1) mutually orthogonal Latin squares. Using
definition 1 and the above lemmas, we can easily obtain the
following result.

Corollary 1. For any prime power q and any integer t < q,
then there exists an OA(t, q+1, q), such that a

(, ,1)t kq k− packing design with qt blocks exists, and hence there

exists a 1(,) (,)
1

tk d d CFF qk q
t
− −⎢ ⎥ −⎢ ⎥−⎣ ⎦

,where 1k q≤ + .

Given 1k q= + , we have the following.

2(,) (,)
1

tq d d CFF q q q
t
−⎢ ⎥ − +⎢ ⎥−⎣ ⎦

 (6)

Corollary 2. In the scheme PDGRS, when the number of
colluding nodes is less than r, other secret keys used by any other
nodes can not be completely covered.

For example, we choose q＝113, d＝2 and the number of keys
stored in a node m is 114, then the result r=111 is obtained. That
is, at least two keys of any other legitimate nodes are secure,
when the number of simultaneously colluding nodes is less than
111.

In Fig.1 we compare the number of colluding nodes (denoted
as w) that PDGRS and GKMPAN[10] can tolerate by varying the
number of keys in a node. We can observe that the number of
colluding nodes PDGRS resists increases with m, but GKMPAN
inverses. In PDGRS, w and m are in direct proportion basically.
While in GKMPAN, for a fixed probability 0.01% that a node is
covered, the number of colluding nodes the scheme resists
decreases with m. For example, for a group size of 10,000, when
m=120, the coalition of only 20 nodes can lead to have keys to
cover a legitimate node. Note other schemes [5,6] have a similar
result like GKMPAN.

Updating pre-deployed keys To further improve the resilience,

our scheme also updates the pre-deployed keys as GKMPAN. It is
critical in order to prevent more compromised and revoked nodes
from launching a collusive attack in which they pool together
their keys with the goal of jeopardizing other legitimate nodes.
Without key updating, both the performance and security of the
system will degrade greatly with the number of compromised
nodes. That is, we only need to guarantee that the number of
compromised or revoked nodes between two key refreshment is
less than the threshold r, because the status of the system is
reinstated to its original setting after every rekeying.
Consequently, the security of our scheme can be strengthened
largely.

Figure 1. The number of colluding nodes that PDGRS and
GKMPAN can tolerate by varying the number of keys in a

node

5.2 Key-sharing Connectivity Analysis
As we have just shown, to make it possible for any node to be

able find shared keys with its neighbors to secure group
communication, the key sharing graph needs to be connected. In
order to efficiently deliver the group key, the probability(Pc) that
the key-sharing graph is connected must be as high as possible.

Using connectivity theory in a random-graph by Erdos and
Renyi [15], we can obtain the necessary expected node degree d
(i.e., the average number of edges connected to each node) for a
network of size N when N is large in order to achieve a given
global connectivity, Pc:

() () ()()1
ln ln ln c

N
d N P

N
−

⎡ ⎤= − −⎣ ⎦ (7)

Fig.2 illustrates the plot of the expected degree of a node, d, as
a function of the network size, N, for various values of Pc. For
example, we choose N=4000, to obtain Pc=0.999, the necessary
expected node degree d is at least 16.
For a given density of network deployment, let n be the expected
number of neighbors within the communication range of a node.
Using the expected node degree calculated above, the required
local connectivity, Prequired, can be estimated as follows,

required
dP
n

= . After we have selected values for q and m , the

actual local connectivity is determined by these values. We use

Figure 2. Expected degree of a node for varying number of

nodes
Pactual to represent the actual local connectivity, which is the
probability of any two neighboring nodes sharing at least one key.
In our scheme,

1 ()
1 (1) 1actual

bk
k bk v kvP k

b v b q

− −
= ⋅ = =

− − +
 (8)

In order to achieve the desired global connectivity Pc, we
should have Pactual ≥ Prequired , and make Pactual become as high as
possible. According to equation (8), we observe that Pactual

increases with k for fixed q. When k=q+1, Pactual＝1, namely, any
pair of nodes can find at least a common key between them.

In Fig. 3 we compare the Pactual of PDGRS and GKMPAN by
varying m, the number of keys in a node. In PDGRS, q=113. And
the key pool size of the two schemes is equal. We can observe
that the Pactual of them increases with m, but PDGRS outperforms
GKMPAN. That is, the Pc for PDGRS is much higher than that of
GKMPAN with m.

From the above analysis, however, we see that the actual local
connectivity depends on the amount of space available on a node
for storing keys, therefore, when the node resource is limited, we
will improve the Pc by directly increasing the node degree d.
PDGRS uses the following two ways to increase d. The first is
that a node u can use its neighbors which have shared keys with u,
to establish a secure channel with other nodes in u’s one-hop
communication range. We take node a (in Fig. 4(a)) as an
example. In node a’s one-hop communication range, node b has
common keys with node a and node c respectively, but no
common key exists between node a and node c. In this case, when
node a wants to establish shared keys with node c, it can ask node
b to act as a proxy. Suppose node a shares a key kab with node b,
node c shares a key kbc with node b. To forward a key k to node c,
the following steps are taken.

: ()
abka b E k→ ， : ()

bckb c E k→ (9)

The second way is to use two-hop neighbors. A two-hop neighbor
of node u is a node that can be reached via one of u’s one-hop (or
direct) neighbors. To send a message to a two-hop neighbor, u
needs to ask its direct neighbor to forward the message. We also
take node a (in Fig. 4(b)) as an example. Node b has common

keys with node a and node c respectively. Node c is similar to the
case above, except that node c is out of node a’s one-hop but in
two-hop communication range. Therefore node a asks node b to
act as a proxy, not only to establish a secure channel with node c
but also to forward messages to node c. For node d, it is also out
of node a’s one-hop communication range, but has common keys
with node a. So, in this case node b only needs to forward
messages. Suppose node a shares a key kad with node d. To
forward a message msg to node d, the following steps are taken.

: ()
adka b E msg→ ， : ()

adkb d E msg→ (10)

6. CONCLUSIONS
Secure group rekeying has become an important component of

many applications in ad hoc networks. In this paper, we have
presented PDGRS, a new t-packing design based group rekeying
scheme for ad hoc networks, which focuses on key distribution
and update for secure group communication. Different from the
previous approaches, we use Latin squares to construct orthogonal
arrays in order to quickly obtain t-packing designs, which are
adopted in key pre-distribution phase, and then the pre-deployed
keys are used for group rekeying. The proposed scheme achieves
cover-free family properties. The collusion-resilience as well as
the key-sharing connectivity of networks improves with

 Figure 3. Comparison of the connectivity of the proposed
scheme with the existing scheme

a

b
c

(a) (b)
c

a

b
d

Figure 4. Establishing shared keys with more nodes (a) in
one-hop communication range (b) in two-hop

communication range

increasing the number of the keys in a node. Moreover, updating
pre-deployed keys further enhances the security of the new
scheme.

In order to increase the key-sharing connectivity and enhance
the security, it is necessary to increase the number of keys each
node stores. However, from the viewpoint of storage, resource of
node in ad hoc is smaller. Due to these conflicting requirements,
the common parameter number of keys should be selected based
on the application under consideration. In addition, recall that
PDGRS uses a key pool, but the GC does not directly select keys
distributed to nodes from the key pool. In order to satisfy the
needs of a large network, a function is used to generate more keys
for a number of nodes, by which PDGRS can reduce the overhead
of the GC to store keys and update the pre-deployed keys.

7. REFERENCES
[1] L. Lazos and R. Poovendran. Energy-Aware Secure

Multicast Communication in Ad-hoc Networks Using
Geographic Location Information. In Proc. of IEEE
ICASSP’03, Hong Kong, China, April, 2003.

[2] G. Ateniese, M. Steiner, and G. Tsudik. a “New multiparty
authentication services and key agreement protocols”, IEEE
Journal on Selected Areas in Communications, 18(4):628-
640, April 2000.

[3] Y. Kim, A. Perrig, and G. Tsudik. “Communication-efficient
group key agreement”, in proc. IFIP SEC’01, 2001.

[4] D. A. McGrew, and A. T. Sherman. “Key establishment in
large dynamic groups using one-way function trees”, May
1998.

[5] L. Eschenauer and V. D. Gligor.: A key-management scheme
for distributed sensor networks: Proceeding of the 9th ACM
Conference on Computer and Communication security, 41-
47, 2002.

[6] H. Chan, A. Perrig, and D. Song. Random key pre-
distribution schemes for sensor networks:IEEE Symposium
on Security and Privacy, 197-213, 2003.

[7] W. Du, J. Deng, Y. S. Han and P. K. Varshney, A pairwise
key pre-distribution scheme for wireless sensor networks,
Proc. of the 10th ACM conf. on Computer and
communications Security, 42-51, 2003.

[8] A. C.-F. Chan and E. S. R. Sr. Distributed symmetric key
management for mobile ad hoc networks. In Infocom 2004,
2004.

[9] J. Wu and R. Wei. Comments on" distributed symmetric key
management for mobile ad hoc networks" from infocom
2004. Cryptology ePrint Archive, Report 2005/008, 2005.
http://eprint.iacr.org/.

[10] Zhu S, Setia S, Xu S, and Jajodia S. GKMPAN: An Efficient
Group Rekeying Scheme for Secure Multicast in Ad-Hoc
Networks[C]. In Proc. of International Conference on
Mobile and Ubiquitous Systems: Networking and Services,
42- 51, 2004.

[11] D. Wagner, “Cryptanalysis of an Algebraic Privacy
Homomorphism”, ISC, 234-239, 2003.

[12] R. Wei. On cover-free families, Discrete Math., to appear.
[13] Yang Z X. Construction of Orthogonal Arrays. Jinan:

Shandong People Press, 1978.
[14] Lee B, Boyd C, Dawson E, Kim K, Yang J, and Yoo S.

Secure Key Issuing in ID-Based Cryptography[C], CRPIT
'04: Proceedings of the second workshop on Australasian
information security, Data Mining and Web Intelligence, and
Software Internationalisation, Australian Computer Society,
Inc., 69-74, 2004.

[15] Erdos, Renyi. On random graphs I. Publ. Math. Debrecen,
6:290–297, 1959.

[16] O. Goldreich, S. Goldwasser, and S. Micali. How to
Construct Random Functions. Journal of the ACM, 33(4):
210-217, 1986.

