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ABSTRACT 
Secure group key distribution and efficient rekeying is one of the 
most challenging security issues in ad hoc networks at present. In 
this paper, Latin squares are used to construct orthogonal arrays in 
order to quickly obtain t-packing designs. Based on cover-free 
family properties, t-packing designs are adopted in key pre-
distribution phase. Then the pre-deployed keys are used for 
implementing secure channels between members for group key 
distribution. The new scheme improves the collusion-resilience of 
the networks using the cover-free family properties, and enhances 
the key-sharing connectivity of nodes which makes key 
management more efficient. This paper also presents in depth 
theory and data analysis of the new scheme in terms of network 
security and connectivity.1 

Categories and Subject Descriptors 
C.2.0 [Computer-Communication Networks]: General – Securi- 
ty and protection; C.2.1 [Computer-Communication Networks]: 
Network Architecture and Design—Wireless communication  

General Terms 
Security, Design 

Keywords 
Ad Hoc network, group rekeying, Packing Design, Cover-Free 
Family 

1. INTRODUCTION 
An ad hoc network is a collection of autonomous nodes that 

communicate with each other, most frequently using a multi-hop 
wireless network. Many applications of ad hoc networks involve 
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collaborative computing among a large number of nodes and are 
thus group-oriented in nature. For deploying such applications 
like emergency rescue and battlefield communication, it is 
necessary to provide support for secure group communication.  

The most efficient approach for achieving confidential group 
communication is to use a symmetric group key that is shared by 
all the nodes for data encryption. This approach however 
introduces the problem of group rekeying, i.e., the group key must 
be updated and redistributed to all the remaining nodes in a secure, 
reliable and timely fashion when group membership changes. 
Therefore this problem requires key management systems that 
provide support for dynamic properties. In general, Key 
management systems are of three types: namely key distribution, 
key agreement and key pre-distribution. 

The traditional internet style key distribution protocols, for 
example Kerberos or adapted LKH [1] schemes, are infeasible for 
ad hoc networks because of their exclusive properties. These 
include communication range limitations, node movements, 
network dynamics and unknown network topology prior to 
deployment. On the other hand, contributory key agreement 
protocols [2,3,4], in which each node contributes an input to 
establish a common secret through successive pairwise message 
exchanges among the nodes in a secure manner using the 2-party 
Diffie-Hellman exchange, are not practical to ad hoc networks 
either. They are not robust to changing topology or intermittent 
links commonly occurring in an ad hoc network. In order to 
successfully establish a key, these protocols strictly require the 
underlying networks to either support broadcasting or have a 
relatively time-invariant topology of certain forms. Usually, all 
the nodes need to be online before the key establishment process 
is completed; if any node leaves in the midst due to link or battery 
outage, no common key would be established and the remaining 
nodes need to re-run the process from scratch. So the key 
agreement approach is not scalable due to the need of frequent 
interactive rekeying despite key freshness. 

A number of recent works demonstrate that the key pre-
distribution scheme (KPS) offers practical and efficient solutions 
to the key management problem. In KPS, each node receives a 
subset of keys from a key pool before deployment. Any two nodes 
able to find or compute non-interactively common keys within 
their respective subsets can use that keys as their shared secret to 
initiate communication. When we design a key management 
scheme based on KPS for ad hoc networks, the following key 
characteristics of the design must be considered. 

 Connectivity: A network node should be able to securely 
communicate to its local neighbors. Here a local neighbor 
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means a network node physically located within 
transmission range. 

 Resilience of a network: Even if many nodes are 
compromised by an adversary, the communications 
between other nodes should still be secure. In other 
words, a coalition of certain number of nodes cannot 
compute all secret keys used by other nodes. 

 Small key size: Since a node has limited resource, key 
storage should be small. Therefore the number of keys 
distributed to a node should be small. 

 Number of nodes: The maximum number of nodes that 
the scheme can support should be considered. 

The rest of this paper is organized as follows. In the next 
section, a review of related work is introduced. In Section 3, we 
give the preliminaries. Then, we present the details of the new 
scheme in Section 4. Finally, we discuss some security and key-
sharing connectivity issues in Section 5 and summarize the results 
in Section 6. 

2. RELATED WORK 
To date, the only practical option for the distribution of keys to 

nodes of ad hoc networks whose physical topology is unknown 
prior to deployment has been to rely on key pre-distribution. 
There exist a number of key pre-distribution schemes. Eschenauer 
and Gligor [5] proposed a random key pre-distribution scheme. 
Each sensor node receives a subset of random keys from the pool 
before deployment. Any two nodes able to find one common key 
within their respective subsets can use it as their shared secret to 
initiate communication. Based on this scheme, Chan, Perrig, and 
Song [6] proposed a q-composite random key pre-distribution 
scheme, which increases the security of key setup such that an 
attacker has to compromise many more nodes to achieve a high 
probability of compromising communication.  

Recently, Du et al. [7] proposed another key pre-distribution 
scheme which substantially improves the resilience of the 
network compared to other schemes. This scheme exhibits a 
threshold property; when the number of compromised nodes is 
smaller than the threshold, the probability that any node other 
than the compromised nodes is affected is close to zero. Chan [8] 
proposed a fully distributed key pre-distribution scheme (DKPS) 
with no trusted authority for ad hoc networks. The DKPS is based 
on the precondition under which the key sets distributed to the 
network nodes can form a cover-free family. This desirable 
property leads to the fact that any subset of nodes can find from 
their key chains at least one common key not covered by a 
collusion of, at most, a certain number of nodes outside the subset. 
However, Wu and Wei [9] found that the precondition was falsely 
deduced. They claim that the probabilistic method (Chan used this 
method) cannot yield CFF practical for key distribution. 

GKMPAN is an efficient group rekeying scheme for secure 
multicast in ad-hoc networks proposed by Zhu[10].GKMPAN also 
uses the probabilistic key pre-distribution technique as the 
underlying means to establish secure channels between nodes. 
However, compared to the previous schemes, GKMPAN uses the 
predeployed keys only as key encryption keys (KEKs) for 
securely distributing a group key to the nodes in the network 
while using the group key for securing group data 
communications. Thus, GKMPAN incurs much smaller 
communication and computational overhead in group 
communication. GKMPAN also includes an efficient mechanism 

to update the predeployed keys of nodes. 
In this paper, we propose a new t-packing design based group 

rekeying scheme (PDGRS) for ad hoc networks. PDGRS builds 
on t-packing designs to pre-distribute node key-chains, and these 
keys are used for group rekeying. For this purpose, Latin squares 
are used to construct orthogonal arrays for quickly obtaining t-
packing designs. The method makes the scheme mathematical 
model achieve cover-free family (CFF) properties [12], which 
improves the collusion-resilience of the networks. Moreover, 
updating the pre-deployed keys further prevent more 
compromised and revoked nodes from launching a collusive 
attack. Meanwhile, PDGRS enhances the key-sharing 
connectivity of nodes which makes keys distribution more 
efficient. Analysis shows that not only the key-sharing 
connectivity but also the collusion-resilience of the networks 
improves as the number of keys in a node increases compared to 
other existing schemes. 

3. MATHEMATICAL MODEL AND 
RELATED DEFINITIONS 

Cover-free families were first introduced by Kautz and 
Singleton [11] to investigate superimposed codes. Since then, 
cover-free families have been discussed in several equivalent 
formulations in subjects such as information theory, 
combinatorics and group testing by numberous researchers. 
Mitchel defined the concept of key distribution patterns, which in 
fact are a generalized type of CFF. 

A set system is a pair (X, F), where X is a set of points and F is 
a set of blocks of X. The classical definitions of cover-free 
families [12] can be written as follows. 

Definition 1. A set system (X, F) is called a r cover-free family 
(or r-CFF) provided that, for any r blocks 1 2, , , rA A A F∈  and 
any other block 0B F∈ , we have 

0
1

r

j
j

B A
=

⊆ ∪                                 (1) 

Definition 2. A set system (X, F) is called a (r; d) cover-free 
family (or (r; d)-CFF) provided that, for any block 0B F∈  and 
any other r blocks 1 2, , , rA A A F∈ , we have 

0
1

\
r

j
j

B A d
=

>∪                            (2) 

The definition 2 states that the union of any r blocks contains at 
least d points that are not in it. Combinatorial designs can be used 
to constructed r-CFF. First we give the definition of a t-packing 
design as follows, and then other related definitions. 

Definition 3. A t-(v, k, λ) packing design is a set system (X, F), 
where |X| = v, |B| = k for every B F∈ , and every t-subset of X 
occurs in at most λ blocks in F. 

Definition 4. A tk v×  array A with entries from V is an 
orthogonal array with v levels and strength t (for some t in the 
range o t k≤ ≤ ) if every tt v×  subarray of A contains each t-
tuple based on V exactly once (we assume the index λ=1) as a 
column. We denote such an array by ( , , )OA t k v . 

Definition 5. A Latin square of order n is an n by n array 
containing symbols from some alphabet of size n, arranged so that 
each symbol appears exactly once in each row and exactly once in 



each column. 
If n is a prime or a prime power, then there exists a complete 

set of (n-1) mutually orthogonal Latin squares. 

4. PROPOSED SCHEME 

4.1 Network Assumptions and Main 
Notations 

We assume an ad hoc network where there are N nodes. 
Network nodes communicate with each other and require pairwise 
keys to secure their communication for group rekeying. Each 
node has a key-chain of k keys which are selected from a key pre-
distribution phase based on packing designs before the 
deployment. After that any two neighbor nodes find the common 
keys between their key-chains using cryptography 
homomorphism with secure shared key discovery (SSD) [8], and 
these keys are used to secure their communication. When a node 
joins or a member node leaves a group, the group key must be 
updated to enforce forward or backward secrecy. In addition, the 
pre-deployed keys need to be renewed. 

The notations in Table 1 will appear in the rest of this paper. 
TABLE 1. NOTATIONS 

N Number of nodes 

n Number of neighbor nodes 

P The key pool 

p A key in the key pool 

q A prime or a prime power 

( )kE msg  The encryption of message msg with key k  

( , )H x y  The function to compute keys of nodes 

{ }if  A family of pseudo-random functions [16] 

Ru The key-chain of node u 

m Number of keys in a key-chain 

4.2 Scheme Description 
The scheme consists of the following phases. 

 Initial Setup Phase The group controller (GC) selects 
parameters used in the scheme. 

 Key Pre-distribution Phase Prior to the deployment of 
the ad hoc network, all nodes obtain a distinct subset of 
keys from the GC, based on packing designs. 

 Shared-key Discovery Phase Nodes perform a protocol 
to discover their shared keys with their neighbors. Two 
nodes with shared keys are assumed securely connected. 
Next these keys are used as KEKs for delivering group 
keys. 

 Key Update After a node receives and verifies the group 
key K, it updates its own pre-deployed keys based on K. 

4.2.1 Setup Phase 
The key pool P and parameters q and m are chosen by the GC. 

The choice of these parameters will determine the security level, 
the number of keys that a node has to store and communication 

efficiency of group key setup. 
The number of keys in the key pool P is q. It is one-to-one 

mapping between the key pool P and the finite field GF(q) , that 
is , { }| ( )iP p i GF q= ∈ . 

4.2.2 Key Pre-distribution Phase 
From the above parameters, the GC constructs a t-packing 

design that involves the following steps. 
Step 1. construct mutually orthogonal Latin squares of order n 

according to the following theorem. 
Theorem 1[13]. Select a primitive element a from a finite field 

GF(n), then 
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, for 0,1, , 2i n= − , is a complete set of orthogonal Latin 
squares of order n. 

Step 2. Over the complete set of orthogonal Latin squares of 
order n, an orthogonal array ( , , )OA t k v  can be constructed by the 
way that the elements of each square are written in order in a line.  

Step 3. In this step, suppose { }1 2, , , ks s s  is a column in the 

( , , )OA t k v . Define a block as { }1 2(0, ), (1, ), , ( 1, )ks s k s−  

accordingly. In this way, we can obtain a ( , ,1)t ks k−  packing 
design from the ( , , )OA t k v . 

After a t-packing design has been constructed, each node is 
loaded with the following information: 

1. Each node u is loaded with Ru, which contains keys 
computed from the equation (3), and these keys are used as KEKs. 
Specifically, for each node, the GC chooses a block 

{ }( , ) | 0,1,2, ; ( )B j i j q i GF q= = ∈  from the t-packing design 

upon the input of a node id. Next the block is used to calculate the 
corresponding keys according to the equation (3) . 

( , ),( , )j ik H j p j i B= ∈                            (3) 

2. Each node is loaded with the initial group key gk . 

Example1. We illustrate the proposed phase using an example 
below, involving the construction of a t-packing design. 

Step1. Assume that q＝5，GF(5)={0,1,2,3,4}. And the GC 
generates a key pool 0 1 2 3 4{ , , , , }P p p p p p= . 

Step2. Construct a complete set of 4 mutually orthogonal Latin 
squares of order 5 as follows. 
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Step3. We construct 6×25 OA(2,6,5) using above mutually 
orthogonal Latin squares. Note that how many Latin squares we 
apply will determine the number of elements that a block has, that 
is, the number of keys m that a node has. Assume here that we use 
all Latin squares and write in order the elements of each square in 



a line from the 3rd row of the array below. As a result, OA(2,6,5) 
is obtained as follows. 

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
0 1 2 4 3 1 2 3 0 4 2 3 4 1 0 4 0 1 3 2 3 4 0 2 1
0 1 2 4 3 2 3 4 1 0 4 0 1 3 2 3 4 0 2 1 1 2 3 0 4
0 1 2 4 3 4 0 1 3 2 3 4 0 2 1 1 2 3 0 4 2 3 4 1 0
0 1 2 4 3 3 4 0 2 1 1 2 3 0 4 2 3 4 1 0 4 0 1 3 2
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Step4. Finally the following 2－ (30,6,1) packing design is 
derived . 

(0,0) (0,0) (0,0) (0,0) (0,0) (0,1) (0,1) (0,1) (0,1) (0,1)
(1,0) (1,1) (1, 2) (1,3) (1, 4) (1,0) (1,1) (1,2) (1,3) (1,4)
(2,0) (2,1) (2,2) (2,4) (2,3) (2,1) (2, 2) (2,3) (2,0) (2, 4)
(3,0) (3,1) (3, 2) (3,4) (3,3) (3,2) (3,3) (3, 4) (3,1) (3,0)
(4,0) (4,1) (4,2) (4,4) (4,3) (4, 4) (4,0) (4,1) (4,3) (4, 2)
(5,0) (5,1) (5,2) (5,4) (5,3) (5,3) (5, 4) (5,0) (5, 2) (5,1)

⎛ ⎞
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⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠
 

After the packing design is completed, the GC selects each 
node’s, say u, block upon the input of its id. Suppose 
Bu={(0,0),(1,4),(2,3),(3,3),(4,3),(5,3)}. And the GC calculates its 
corresponding  key-chain distributed to node u as equation (4) 
according to the equation (3). 

 
{ }0 4 3 3 3 3(0, ), (1, ), (2, ), (3, ), (4, ), (5, )uR H p H p H p H p H p H p=    

 (4) 
 

Our scheme does not require a key pre-distribution phase for 
every instance of network formation. Indeed, there is no limit on 
how many times these pre-distributed keys can be used securely 
because our rekeying scheme updates these keys securely after 
every group rekeying. 

4.2.3 Shared-key Discovery Phase 
After the key pre-distribution phase is completed, each node is 

deployed in different places. Any two neighbor nodes, say u and 
w, will perform SSD scheme, which uses privacy homomorphism 
to find common keys between Ru and Rw. The SSD scheme allows 
two nodes to find out common keys in their key-chains, but not to 
leak out to the other side any information of the keys outside the 
common intersection of the two key-chains. 

In the Example1, after the deployment, u and w become 
neighbor nodes which are respectively assigned key-chains as 
follows.  

{ }10,34,37,35,87,79uR =  

{ }30,51,29,93,19,79wR = . 

Then based on SSD scheme they derive their shared-key 
{79}。 

4.2.4 Node Join 
In this section, without losing generality, suppose a new node u 

wants to join an existing group. For example, the GC may 
introduce new nodes into the system to compensate for revoked 
nodes. To enforce forward secrecy, the following steps will be 
adopted. 

Step 1. The GC generates an new group key '
gk , and broadcasts 

the message '( )
gk gE k  to the network. 

Step 2. Every node, say v, updates every key ki in Rv as 
' (0)

ii kk f= . We denote the updated set of keys as '
vR . 

Step 3. After the key update operations, every node erases the 
old group key gk . 

Step 4. Finally, the GC determines u’s key set Ru based on its 
node id. Then it loads node u with current version of Ru 
and the current group key over a secure channel. Such a 
confidential and authentic channel can be established if 
user physically goes to the GC or the keys can be 
protected by a simple blinding technique [14]. 

4.2.5 Node Revocation 
In this part, we are going to describe the key update operations 

when a node leaves a group. The leaving action may happen 
voluntarily or when a compromised node is detected and expelled 
from a group. Either way, the keys must be updated to enforce 
backward secrecy. Let u be the node to be revoked. The following 
steps will be adopted. 

Step 1. The GC determines l keys { }1 2, , , lk k k , which are the 
non-compromised keys that are possessed by the 
remaining nodes in the network, and these keys are used 
as KEKs. The GC then generates an new group key '

gk . 
Then it broadcasts a node revocation message as 
equation (5) to the network.  

GC :→∗  uID ，
1 2

' ' '{ ( ), ( ), , ( )}
lk g k g k gE k E k E k ， ' (0)

gk
f        (5) 

Step 2. The nodes that possess one of the l keys { }1 2, , , lk k k  

can compute the new group key '
gk  independently. 

Otherwise, they can obtain it over the shared-keys with 
their neighbors. Node u will not receive '

gk  even though 
it can impersonate a non-revoked node v by claiming 
node v’s id, because none of the keys in Ru are used. And 
node u also can not derive '

gk  from its neighbors, since 
the node revocation message involves its node id.  

Step 3. After every node receives the new group key '
gk , it 

verifies the correctness of '
gk  by checking if ' (0)

gk
f  

equals to that in the node revocation message. If equals, 
every node, say v, updates every key ki in Rv as 

' (0)
ii kk f= . We denote the updated set of keys as '

vR . 
Step 4. After the key update operations, every node erases the 

old group key gk . 
In step 1, the l keys chosen by the GC can be the non-

compromised keys that are possessed by the maximum number of 
nearby remaining nodes of the GC in the network. When a node 
possesses none of the l keys, it can obtain the group key over the 
shared-keys with its neighbors. As long as the key-sharing 
connectivity of nodes is high, the group key will be efficiently 
distributed to the remaining nodes in the network. 

5. ANALYSIS 
In this section, we first analyze the security and the key-

sharing connectivity of our scheme, then discuss the tradeoff 



between security, connectivity and storage cost, finally compare 
the properties of our scheme with that of some other schemes. 

5.1 Security Analysis 
Except for forward and backward secrecy, the security of our 

group rekeying scheme is mainly two-fold. 
Defending against Collusive Attacks From the above 

statement, the proposed scheme based on t-packing designs yields 
CFF properties. 

Theorem 2. If there is an ( , , )OA t k v , then there is a t－(kv, k, 

1) packing design that contains tv  blocks. 
Proof. Suppose that there is a ( , , )OA t k v  with entries from the 

set {0,1, , 1}v − .Define {( , ) | 0 1,0 1}X x y x k y v= ≤ ≤ − ≤ ≤ − . 
For every column 0 1 1( , , , )ky y y − in the orthogonal array, define 
a block B= 0 1 1{(0, ),(1, ), ,( 1, )}ky y k y −− . Let F consist of the 

tv blocks thus constructed. It is easy to check that (X,  F) is a 
( , ,1)t kv k−  packing design. 

A t-packing design is an r-CFF for certain value of r. We 
obtain the following construction. 

Theorem 3[12]. If there exists a t-(v, k, 1) packing design 
having b blocks, then there exists a (r; d)-CFF(v, b), where 

( 1) ( 1)r k d t= − − −⎢ ⎥⎣ ⎦ . 

In PDGRS, q is a prime or a prime power, and there exists a 
complete set of (q-1) mutually orthogonal Latin squares. Using 
definition 1 and the above lemmas, we can easily obtain the 
following result. 

Corollary 1. For any prime power q and any integer t < q, 
then there exists an OA(t, q+1, q), such that a 

( , ,1)t kq k− packing design with qt blocks exists, and hence there 

exists a 1( , ) ( , )
1

tk d d CFF qk q
t
− −⎢ ⎥ −⎢ ⎥−⎣ ⎦

,where 1k q≤ + . 

Given 1k q= + , we have the following. 

2( , ) ( , )
1

tq d d CFF q q q
t
−⎢ ⎥ − +⎢ ⎥−⎣ ⎦

                    (6) 

Corollary 2. In the scheme PDGRS, when the number of 
colluding nodes is less than r, other secret keys used by any other 
nodes can not be completely covered. 

For example, we choose q＝113, d＝2 and the number of keys 
stored in a node m is 114, then the result r=111 is obtained. That 
is, at least two keys of any other legitimate nodes are secure, 
when the number of simultaneously colluding nodes is less than 
111. 

In Fig.1 we compare the number of colluding nodes (denoted 
as w) that PDGRS and GKMPAN[10] can tolerate by varying the 
number of keys in a node. We can observe that the number of 
colluding nodes PDGRS resists increases with m, but GKMPAN 
inverses. In PDGRS, w and m are in direct proportion basically. 
While in GKMPAN, for a fixed probability 0.01% that a node is 
covered, the number of colluding nodes the scheme resists 
decreases with m. For example, for a group size of 10,000, when 
m=120, the coalition of only 20 nodes can lead to have keys to 
cover a legitimate node. Note other schemes [5,6] have a similar 
result like GKMPAN. 

Updating pre-deployed keys To further improve the resilience, 

our scheme also updates the pre-deployed keys as GKMPAN. It is 
critical in order to prevent more compromised and revoked nodes 
from launching a collusive attack in which they pool together 
their keys with the goal of jeopardizing other legitimate nodes. 
Without key updating, both the performance and security of the 
system will degrade greatly with the number of compromised 
nodes. That is, we only need to guarantee that the number of 
compromised or revoked nodes between two key refreshment is 
less than the threshold r, because the status of the system is 
reinstated to its original setting after every rekeying. 
Consequently, the security of our scheme can be strengthened 
largely. 

 
Figure 1.  The number of colluding nodes that PDGRS and 
GKMPAN can tolerate by varying the number of keys in a 

node 

5.2 Key-sharing Connectivity Analysis 
As we have just shown, to make it possible for any node to be 

able find shared keys with its neighbors to secure group 
communication, the key sharing graph needs to be connected. In 
order to efficiently deliver the group key, the probability(Pc) that 
the key-sharing graph is connected must be as high as possible. 

Using connectivity theory in a random-graph by Erdos and 
Renyi [15], we can obtain the necessary expected node degree d 
(i.e., the average number of edges connected to each node) for a 
network of size N when N is large in order to achieve a given 
global connectivity, Pc: 

( ) ( ) ( )( )1
ln ln ln c

N
d N P

N
−

⎡ ⎤= − −⎣ ⎦                       (7) 

Fig.2 illustrates the plot of the expected degree of a node, d, as 
a function of the network size, N, for various values of Pc. For 
example, we choose N=4000, to obtain Pc=0.999, the necessary 
expected node degree d is at least 16. 
For a given density of network deployment, let n be the expected 
number of neighbors within the communication range of a node. 
Using the expected node degree calculated above, the required 
local connectivity, Prequired, can be estimated as follows, 

required
dP
n

= . After we have selected values for q and m , the 

actual local connectivity is determined by these values. We use 



 
Figure 2.  Expected degree of a node for varying number of 

nodes  
Pactual to represent the actual local connectivity, which is the 
probability of any two neighboring nodes sharing at least one key.  
In our scheme, 

1 ( )
1 ( 1) 1actual

bk
k bk v kvP k

b v b q

− −
= ⋅ = =

− − +
                   (8) 

In order to achieve the desired global connectivity Pc, we  
should have Pactual ≥  Prequired , and make Pactual become as high as 
possible. According to equation (8), we observe that Pactual 

increases with k for fixed q. When k=q+1, Pactual＝1, namely, any 
pair of nodes can find at least a common key between them. 

In Fig. 3 we compare the Pactual of PDGRS and GKMPAN by 
varying m, the number of keys in a node. In PDGRS, q=113. And 
the key pool size of the two schemes is equal. We can observe 
that the Pactual of them increases with m, but PDGRS outperforms 
GKMPAN. That is, the Pc for PDGRS is much higher than that of 
GKMPAN with m. 

From the above analysis, however, we see that the actual local 
connectivity depends on the amount of space available on a node 
for storing keys, therefore, when the node resource is limited, we 
will improve the Pc by directly increasing the node degree d. 
PDGRS uses the following two ways to increase d. The first is 
that a node u can use its neighbors which have shared keys with u, 
to establish a secure channel with other nodes in u’s one-hop 
communication range. We take node a (in Fig. 4(a)) as an 
example. In node a’s one-hop communication range, node b has 
common keys with node a and node c respectively, but no 
common key exists between node a and node c. In this case, when 
node a wants to establish shared keys with node c, it can ask node 
b to act as a proxy. Suppose node a shares a key kab with node b, 
node c shares a key kbc with node b. To forward a key k to node c, 
the following steps are taken. 

: ( )
abka b E k→ ， : ( )

bckb c E k→                     (9) 

The second way is to use two-hop neighbors. A two-hop neighbor 
of node u is a node that can be reached via one of u’s one-hop (or 
direct) neighbors. To send a message to a two-hop neighbor, u 
needs to ask its direct neighbor to forward the message. We also 
take node a (in Fig. 4(b)) as an example. Node b has common 

keys with node a and node c respectively. Node c is similar to the 
case above, except that node c is out of node a’s one-hop but in 
two-hop communication range. Therefore node a asks node b to 
act as a proxy, not only to establish a secure channel with node c 
but also to forward messages to node c. For node d, it is also out 
of node a’s one-hop communication range, but has common keys 
with node a. So, in this case node b only needs to forward 
messages. Suppose node a shares a key kad with node d. To 
forward a message msg to node d, the following steps are taken. 

: ( )
adka b E msg→ ， : ( )

adkb d E msg→                  (10) 

6. CONCLUSIONS 
Secure group rekeying has become an important component of 

many applications in ad hoc networks. In this paper, we have 
presented PDGRS, a new t-packing design based group rekeying 
scheme for ad hoc networks, which focuses on key distribution 
and update for secure group communication. Different from the 
previous approaches, we use Latin squares to construct orthogonal 
arrays in order to quickly obtain t-packing designs, which are 
adopted in key pre-distribution phase, and then the pre-deployed 
keys are used for group rekeying. The proposed scheme achieves 
cover-free family properties. The collusion-resilience as well as 
the key-sharing connectivity of networks improves with 

 Figure 3.  Comparison of the connectivity of the proposed 
scheme with the existing scheme 
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Figure 4.  Establishing shared keys with more nodes (a) in 
one-hop communication range (b) in two-hop 

communication range 



increasing the number of the keys in a node. Moreover, updating 
pre-deployed keys further enhances the security of the new 
scheme. 

In order to increase the key-sharing connectivity and enhance 
the security, it is necessary to increase the number of keys each 
node stores. However, from the viewpoint of storage, resource of 
node in ad hoc is smaller. Due to these conflicting requirements, 
the common parameter number of keys should be selected based 
on the application under consideration. In addition, recall that 
PDGRS uses a key pool, but the GC does not directly select keys 
distributed to nodes from the key pool. In order to satisfy the 
needs of a large network, a function is used to generate more keys 
for a number of nodes, by which PDGRS can reduce the overhead 
of the GC to store keys and update the pre-deployed keys. 
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