
MPUS: A Scalable Parallel Simulator for RedNeurons Parallel Computer
(Work-in-Progress)

Li Hui Wu Junming Chen Guoliang Sui Xiufeng

Department of Computer Science & Technology,
Anhui Province Co-Key Laboratory of High Performance Computing and Application,

University of Science & Technology of China
lihui@mail.ustc.edu.cn {jmwu, glchen}@ustc.edu.cn sxf@mail.ustc.edu.cn

Abstract
In this paper, we present a scalable parallel simulator ---
MPUS --- for verifying the design of our next generation
high performance parallel computer --- RedNeurons(RN)
parallel computer. The RedNeurons parallel computer is
based on CMP technology, and it adopts an advanced but
maybe some complicated architecture and topology. This
paper mainly describes the design and implementation of the
MPUS.

Categories and Subject Descriptors
C.5.1 [Computer Systems Implementation]: Large and
Medium (``Mainframe'') Computers – Super Computers

General Terms
Performance, Design, Experimentation, Verification

Keywords
Parallel Simulator, RedNeurons Parallel Computer, MPICH2

1. Introduction
It is extremely important that before the planned machine is
built, we should build a simulator to verify the design and
predict the performance of the planned machine.

To this end, we have built a simulator MPUS --- a simulator
for RN parallel computer --- to verify our design of the
parallel computer and even predict its performance. Our
simulator is a scalable parallel simulator, and it has the
ability to map multiple processors to one real processor.

2. RN Parallel Computer

This part mainly refers to [2].

The RedNeurons parallel computer is constructed upon the
basic unit named MPU16 (i.e., MPU4×4). The RN system is a
MIMD system that carries out message passing interface.
The memory modules are distributed, and cling to processors.
One kind of 2-core processors are used in our system. RN
MPU16 will use some I/O ports to provide an interface for
router, management network and I/O network.

3. MPUS
MPU4×4 is a nonswitch architecture, the close 4 neighbors
communicate via a 2-D torus network. In other words, each
process unit (PU) connects directly to 4 neighboring switch
units (SU), and vice versa each switch unit connects directly
to 4 neighboring process units. This architecture can
effectively reduce the network radius to 2. With the help of
such tight hardware coupling, we can exploit the high
scalability of application programs.

Figure 1 MPU4x4 architecture topology

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

3.1 MPUS Architecture
Figure 2 shows the architecture of the MPUS. Now we will
describe each module in detail.
MPI Application: application programs that based on the
standard MPI-2. We chose MICH2.

Infoscale 2007, June 6-8, 2007, Suzhou, China.
Copyright 2004 ACM 978-1-59593-757-5…$5.00.

fezzardi
Text Box
Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
INFOSCALE 2007, June 6-8, Suzhou, China
Copyright © 2007 ICST 978-1-59593-757-5
DOI 10.4108/infoscale.2007.919

MPICH2: our implementation surely results in the
modification to MPICH2. But here is a principle: there
should be as less modification to MPICH2 as possible, and

Figure 2 the architecture of MPU simulator

the modification should be transparence to programmers.

PU: PU is a process that simulates process unit. Its task
mainly is to simulate the interprocess communication in our
simulator architecture.

SU: SU is a process that simulates switch unit. Its task
mainly is to implements the routing function of switch units.
SU and PU consists our simulator’s hardware layer.

MPUM: MPUM is a manager of PUs and SUs. For the
number of PUs and SUs may be larger in future, and all
simulating processes reside on different nodes, MPUM can
help these processes to exchange messages and establish
connections.

3.2 Routing
When a PU communicates to other PUs, for there are
not any connections between PUs, there would be one
SU or two SUs and one PU involved according to the
source PU address and the destination PU address.

3.2 Simulating Environment
We choose a blade server with star topology as our
simulation platform. All blade servers connect to a
router. From the topology of the blade cluster, we
know that the communication between any two blades
needs one routing operation, and in fact at most one
time of routing operation. Because of the high speed of
the router, we can omit its effect. So we assume that all
blades are connected directly.

4. Experiment Results
The benchmark we adopted in our experiment is NPB which

has five core programs. We have tested the IS and EP [1]
program on our simulator. As in [1], we use
Mflop/s/processor as the metric of the performance and
scalability of our simulator.

PU PU

PU

PU

SU SU

MPICH2

MPI
Application

MPUM

MPICH2

MPI
Application

MPICH2

MPI
Application

MPICH2

MPI
Application

0

5

10

15

8 16 32

number of processors

M
f
l
o
p
/
s
/
p
r
o
c
e
s
s
o
r

IS

EP

Figure 3 the experiment results

The IS program is very sensitive to the communication
latency. Whereas the EP application is not sensitive to the
number of processors (Figure 3). Considering the cost of
running PU or SU on every node, we can conclude that our
simulator, or in other words, our planned machine, can work
correctly, and that our simulator has a good scalability.

5. Future Work
In future we will use our MPUS to construct and simulate an
integrated RN computer. There will be a lot of work need to
do.

In the current version of our simulator, we have not
paid much attention to the network contention issue.
So in future, we will get the network contention model
involved.

6. ACKNOWLEDGMENTS
This work is supported by the National Natural Science
Foundation of China under the Grant No.60533020, the
National High Technology Research and Development
Program of China (863 Program) under the Grant
No.2005AA104031.

7. References
[1] Yuan Wei et al. Performance Analysis of NPB
Benchmark on Domestic Tera-Scale Cluster Systems.
Journal of Computer Research and Development, 2005,
Vol.42, No6, pp.1079-1084.
[2] Alex Korobka et al. RedNeurons MPU Beta
System Design. RedNeurons Ltd. Technology
Document.

	1. Introduction
	2. RN Parallel Computer
	3.1 MPUS Architecture
	3.2 Routing
	3.2 Simulating Environment
	4. Experiment Results
	5. Future Work
	6. ACKNOWLEDGMENTS
	7. References

