
Fast Detection of Database System Abuse Behaviors 
Based on Data Mining Approach 

 
Yubao Liu 

Sun Yat-Sen University 
Department of Computer Science of 

Sun Yat-Sen University 
Guangzhou, China, 510275 

liuyubao@mail.sysu.edu.cn 
 

Jingwen Yu 
Sun Yat-Sen University 

Department of Computer Science of 
Sun Yat-Sen University 

Guangzhou, China, 510275 

yjw831@163.com 

 
Jiarong Cai 

Sun Yat-Sen University 
Department of Computer Science of 

Sun Yat-Sen University 
Guangzhou, China, 510275 

kelvin2004_cai@163.com 

 
Zhilan Huang 

Sun Yat-Sen University 
Department of Computer Science of 

Sun Yat-Sen University 
Guangzhou, China, 510275 

santahzl@gmail.com 
 

Jian Yin 
Sun Yat-Sen University 

Department of Computer Science of 
Sun Yat-Sen University 

Guangzhou, China, 510275 

issjyin@mail.sysu.edu.cn 
 
 

ABSTRACT 
Recently, the mining of system log datasets has be widely used in 
the system security application field such as the detection of 
abuse behaviors. At present, most of efforts concentrate on the 
network or operating system level. There are few works 
concentrated on database system application. In this paper, we 
present the concept of access profile to represent the user 
behavior characteristics of accessing database system and study 
the problem of mining maximal access profiles for fast detection 
of database system insider abuse behaviors by legitimate users. 
Based on the existing FP-tree structure, a new mining algorithm 
MMAP is presented for our problem. A new constraint of relation 
distance, which is based on the foreign key dependencies of 
relations, is also presented to reduce the mining algorithm search 
space. An anomaly-based detection model is build based on 
MMAP algorithm for performance experiments. The experimental 
results show that our approach works efficiently for detecting the 
abuse behaviors of database system. 

Categories and Subject Descriptors 
H.2.8 [Database Applications]: Data Mining 

General Terms 
Algorithms, Management, Performance, Security 

Keywords 
Data System Abuse Behaviors, Access Profiles, Maximal Access 
Profiles, FP-tree, Anomaly-based Detection Model 

1. INTRODUCTION 
Recently, the mining of system log datasets has be widely used in 
the system security application field such as the detection of 
abuse behaviors. At present, most of efforts concentrate on the 
network or operating system level [1-4][19][20]. There are few 
works concentrated on database system application.  

For database system, the auditing mechanisms are designed to 
record all system activities in great details and ensure that no 
intrusion evidence will be missed. So database system audit data 
is a kind of high-speed and high-volume data. The high-speed and 
high volume data requires the run-time execution of mining 
models be very efficient. The long delay in data analysis can not 
satisfy such run-time execution. 

In this paper, we present the concept of access profile to represent 
the user behavior characteristics of accessing database system (the 
definition is in section 2) and study the problem of mining 
maximal access profiles for fast detection of insider abuse by 
legitimate users. Based on the existing FP-tree structure [6], a new 
mining algorithm called MMAP for the mining of maximal access 
profiles is presented. An anomaly-based detection model is build 
based on the proposed MMAP algorithm for performance 
experiments. The experimental results show that our approach 
works efficiently for detecting the abuse behaviors of database 
system. 

There are some related works to our problem. The DEMIS system 
[5] is also to detect the abuse user behaviors of database system. 
However, in DEMIS, the user profiles are defined as the set of 
attributes level of relation. Audit data build on such fine 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 
Conference INFOSCALE 2007, June 6–8, 2007, Suzhou, China. 
Copyright 2007 ACM 978-1-59593-757-5…$5.00. 
 

fezzardi
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom  use is  granted  without fee provided that copies  are not made or distributed for profit  or commercial advantage and that copies bear  this notice and the full citation on the  first page. To copy otherwise,  or  republish, to post on servers  or  to redistribute  to lists, requires prior specific permission and/or a fee. INFOSCALE 2007, June 6-8, Suzhou, ChinaCopyright © 2007  ICST 978-1-59593-757-5 DOI 10.4108/infoscale.2007.916



granularity will reduce the whole database system performance. 
Our behavior characteristics are defined on the higher data 
granularity such as relation. In addition, DEMIS uses SQL-based 
queries to implement the mining of user profiles for achieving the 
tight integration with database system, but that also reduces the 
detection speed in a certain extent. The existing ADMIT system 
[2] also presents some efficient solution for fast detection of real 
time application. However ADMIT system is based on the 
clustering of command-level data of operating system.  

The mining of maximal frequent itemsets is also related to our 
work [7][8][13][14]. Different from these algorithms, our MMAP 
can further efficiently reduce the algorithm search space by the 
constraint of database objects contained in the access profiles. 
Among these algorithms, the Max algorithm [7] uses the depth-
first strategy to search the maximal frequent itemsets and also is a 
fast algorithm and used in our experiments.  

In addition, the traditional mining of frequent itemsets and 
association rules are also related to our work. For example, the 
generalized association rules mining [9][6], the constrained 
mining of frequent itemsets [11][12][15][16][18], top-k frequent 
itemsets [17] and integration of association rules and database 
management system [10] etc. 

The rest paper is organized as following: the definitions of basic 
concepts are in section 2, the mining algorithms are in section 3, 
the experiment results are in section 4, and the conclusions are in 
section 5. 

2. THE DEFINITIONS OF BASIC 
CONCEPTS 
For database system, the user’s access characteristics can be 
generalized as: who accesses what objects from where at when. 
For example, “Tom (i.e. who) reads some records from relation R1, 
R2 (i.e. what) at 10:30 (i.e. when) from IP address: 222.111.222.1 
(i.e. where).” These objects often are recorded in each database 
session of system audit dataset.  
We present a new concept of access profile to represent the user’s 
behavior characteristics. An access profile is a set of the 
combination of such characteristic objects (i.e. who, what, where 
and when). For example, the access profile {Tom, 222.111.222.1} 
represents the user ‘Tom’ accesses database system from the 
address ‘222.111.222.1’. 

Definition 1 (access profile): An access profile AP is a set of 
the combination of the values of characteristic objects who, what, 
where and when of database audit system. 

Example1. Assume that r and w denote ‘read’ and ‘write’ 
operations respectively. Then the following combinations are 
access profiles: AP1 = {Tom, r(R1), w(R2), 202.110.0.1, 12:30}, 
AP2 = {r(R1), w(R2))}, AP3 = {202.111.0.1, 12:30}, AP4={Jack, 
r(R2)}.  

Definition 2 (frequent access profile): Given an access profile 
AP of a session database, we say AP is frequent if support(AP)≥ 
min-support, where support(AP) is the number of database 
sessions in which all the objects in AP are contained together. The 
support threshold constraint, min-support, is generally specified in 
advance. 

Definition 3 (maximal access profile): Given a set of frequent 
access profile APS, we say x ⊆ APS is a maximal frequent access 
profile if there is no other frequent access profile y ⊆ APS such 
that x≠y and y⊂x. 

Example2. Assume that APS = {AP1, AP2, AP3, AP4} is a set 
of frequent access profiles, where AP1, AP2, AP3, AP4 are same to 
those in example 1. Then the maximal frequent access profiles are 
AP1 and AP4 since they are not contained in the other frequent 
access profiles. 

Definition 4 (the maximal access profiles mining): Given a 
session database SD, the maximal access profiles mining is to 
mine all the maximal access profiles from SD. 

Property 1.  If x is a frequent access profile, then any subset of 
x is also frequent. 

Proof. If x is a frequent access profile, then we have 
support(x)≥ min-support. For any set x’⊆ x, x is an access profile 
according to the definition of access profile. The amount of 
database sessions containing all the objects in x’ is not less than 
that of database sessions containing all the objects in x. So we 
have support(x’) ≥ min-support and x’ is also frequent. 

Property 2. If x is a non-frequent access profile, then any 
superset of x is also non-frequent. 

Proof. If x is not a frequent access profile, then we have 
support(x)< min-support. For any set x’⊇ x, x’ is also an access 
profile. The amount of database sessions containing all the objects 
in x’ is not larger than that of database sessions containing all the 
objects in x. We have support(x’) ≤ support(x) < min-support. So 
x’ is not frequent. 

Property 3. If x is a maximal frequent access profile, then any 
subset of x is also frequent. 

Proof. It is easy to know from the definition of maximal 
frequent access profiles and property 1. 
From property 3, it is known that any frequent access profiles are 
contained in the maximal access profiles (i.e. upward closed). So, 
it is sufficient to discover only all maximal frequent access 
profiles but all the frequent access profiles while detecting such 
abuse behaviors. 

3. THE MINING ALGORITHMS 
3.1 The Pre-processing 
The goal of pre-processing is to generate the session database 
from the original system audit data.  

First, we omit some information unrelated to access profiles, such 
as the CPU spending etc. According to the attribute of connection 
id of database system audit logs, we group the same connections 
into the same database sessions. Notice that the values of time 
stamp are generalized in the pre-processing. For example, the 
value of “10:30” is generalized as “am” and the value of “17:40” 
is generalized as “pm”.  

The purpose of generation is to avoid generating redundant access 
profiles. For example, the time stamps “9:30” and “9:31” have the 
near time stamp and represent almost the same meanings, that is, 
the database is accessed about 9:30. After the generalization, there 
possibly exist some duplicated records and then the redundant 
records are removed in the pre-processing.  



Each session is associated with “session id” and “access profiles”. 
Table 1 shows an example of session database generated by the 
pre-processing in which ui, hi (1≤i≤2) denotes the coded database 
users and host respectively. 

Table 1. An example of session database 

Session ID Access Profiles 

S1 am, u1, r(R2), w(R2), h1 

S2 am, u2, r(R2), w(R1), h2 

S3 pm, u1, w(R1), h1 
 

3.2 The FP-Tree of Session Database 
An FP-tree (frequent pattern tree) is a variation of the trie data 
structure, which is a prefix-tree structure for storing crucial and 
compressed information about frequent patterns.  

 
It consists of one root, a set of item prefix subtrees as the children 
of the root, and a frequent item header table. Each node in the 
item prefix subtree consists of four fields: item-name, count, 
node-link and parent-link, where item-name indicates which item 
this node represents, count indicates the number of transactions 
containing items in the portion of the path reaching this node, 
node-link links to the next node in the FP-tree carrying the same 
item-name, or null if there is none, and parent-link links to the 
parent of this node.  

Each entry in the frequent item header table consists of three 
fields: item-name, item-count and head of node-link. The head of 
node-link points to the first node in the FP-tree carrying the item-
name. It is noticed that the items in header table is sorted in the 
descending order of support count. The FP-tree structure is an 
efficient data structure for constructing the mining algorithm of 

frequent itemset without generating any candidate itemsets. In our 
study, we directly call the construction procedure of FP-tree for 
building the FP-tree of the session database.  

The FP-tree for an transaction database can be constructed in the 
following steps: [6] 

(a) Scan the transaction database D once. Collect the set of 
frequent items F and their supports. Sort F in support 
descending order as L, the list of frequent items. 

(b) Create the root of an FP-tree T. For each transaction Trans in 
D do the following. Select and sort the frequent items in each 
transaction according to the order of L. Let the sorted 
frequent itemset list in Trans be [p|P], where p is the first 
element and P is the remaining list. Call insert-tree([p|P], T), 
which is performed as follows. If T has a child N such that 
N.item-name = p.item-name, then increment N’s count by 1; 
else create a new node N, and let its count be 1, its parent 
link be linked to T, and P is nonempty, call insert-tree([p|P], 
T) recursively. 

Similarly, for our session database, we can also construct an FP-
tree. An example of FP-tree of the session database in table1 is 
given in fig.1. 

3.3 The MMAP Algorithm 
The MMAP algorithm is constructed through the modifications of 
the existing FP-Growth algorithm.  

 
 

 

According to the definition of maximal access profile and the 
construction of FP-tree, we observe that the maximal access 
profiles only exist in the sets of frequent access profiles which are 
generated through the conditional pattern bases (a ‘subdatabase’ 
which consists of the set of prefix paths in the FP-tree co-
occurring with the suffix pattern) of FP-tree. So we can directly 
output the maximal access profiles but generating all the 
combination of different objects in a single path of FP-tree, which 
is done in FP-Growth algorithm to generate all the frequent 
patterns.  

The description of MMAP algorithm is given in fig.2. The inputs 
of MMAP are the FP-tree of session database and the minimal 
support threshold constraint. The maximal frequent access profile 
set MAP is the output. 

Algorithm MMAP  
Inputs: The FP-tree of session database T, the minimal 
support threshold min-support 
Outputs: The maximal frequent access profile set MAP 
Methods:  
1. begin 

2.      MAP=∅;  
3.      Call the procedure MFP(T, MAP, null);  
4.      return MAP; 
5. end. 

Header Table 

am:2 

r(R2):2 

u1:2 

w(R1):2 

h1:2 

root 

am:2 
u1:1 

r(R2):2 w(R1):1 

w(R1):1 

h1:1 
u1:1 

h1:1 

Figure 1.  An FP-tree of the session databases in table 1, 
where the min-support =2. 

Figure 2.  The description of MMAP algorithm 



The procedure MFP in MMAP is used to discover all the maximal 
access profiles whose last objects is x and put the mined maximal 
access profiles in the set MAP. The description of MFP is given 
in fig.3.  

 
 

Let’s take an example to show the process of MMAP algorithm. 
Provided that the min-support is equal to 2 and the FP-tree is 
shown in fig.1.  

Firstly MAP is set to ∅ and the MFP procedure MFP(root, ∅, 
null) is called. Due to the FP-tree of root does not only contain a 
single path, then the tenth line of MFP procedure is executed. 
Then ai is set to ‘h1’ and h= ai∪x=h1∪null=h1. The conditional 
pattern bases of h1 are: {am:1, r(R2):1, u1:1}, {u1:1, w(R1):1}. The 
conditional FP-tree of Th1 is constructed and it only contains a 
single path (i.e.{u1:2}, and the other objects whose supports are 
less than the min-supports are removed in the Th1 ) in which only 
the object ‘u1’ is included.  

Then the procedure MFP(Th1, MAP, h1) is recursively called.  The 
second line of MFP procedure is executed and the objects ‘u1’ and 
‘h1’are combined into a maximal access profiles, that is, {u1, h1}. 
Then the procedure MFP recursively return.  

Similarly, the rest objects of header table are chosen to generate 
the maximal access profiles and the final MAP={{u1, h1}, {am, 
r(R2)}}. 

3.4 Algorithm Complexity Discussion 
The MMAP is based on the existing FP-Growth algorithm and has 
the same algorithm framework with FP-Growth. So the 

correctness and completeness of MMAP is same to FP-Growth 
algorithm [6]. Due to MMAP only generates the maximal access 
profiles and removes lots of frequent access profiles, the MMAP 
algorithm is more fast.  

In addition, we can also further improve our algorithm by 
reducing the algorithm search space using the relation distance 
constraint.  

3.5 The Relation Distance Constraint 
Compared to the general itemsets, the access profiles consist of 
the special database semantics, which can be used to further 
reduce the algorithm search space. In detail, we use the relation 
distance constraint, which is based on the database semantics, to 
reduce the algorithm search space.  

The relation distance, which is based on the foreign key 
dependencies of relations, represents the close degree of relations. 

Definition 5 (relation graph): All the relations R = {R1, R2, …, 
Rn}in a database system are viewed as the graph nodes. For any 
two relations Ri, Rj∈ R, if they are related through foreign key 
dependencies, then there is one connected edge between nodes Ri 
and Rj in the relation graph otherwise they are not connected. 

Definition 6 (relation distance): Given a set of relations R = 
{R1, R2, …, Rn}, the relation distance rd(Ri, Rj) is defined as 
following: 

(1) rd(Ri,Rj) 

=
}∈R R,R |)R,stdist(RMax{shorte

)R,st(Rshortestdi

qpqp

ji , where 

shortestdist(Ri, Rj) means the shortest path between the nodes Ri 
and Rj in the relation graph. 
(2)     rd(Ri,Rj) is undefined if Ri and Rj are not connected in 
relation graph. 
(3)    In particular, for a given relation set R, we define rd(R) = 
Max{rd(Ri, Rj)| Ri, Rj ∈R and 1≤i, j≤n}, and rd(R)=0 if R only 
contains a single relation or R is ∅. 

We normalize the distance measure by the maximum shortest 
distance between any pair of relations in the database so that the 
value of distance measure falls in the range of 0 to 1.  

According to the definition of relation distance, for the relation 
graph in fig.4, we have rd(R1, R2)= rd(R2, R1)=1/2=0.5, rd(R1, R3) 
=rd(R3, R1)=2/2=1, rd(R1, R4)= rd(R4, R1)=1/2=0.5 and rd(R3, 
R4)= rd(R3, R4)=2/2=1. Notice that the distance of two relations is 
smaller, and then they are closer and have higher possibility of 
being referenced together in a database session.  

Due to all the relations in a real system are not totally connected 
with each other, there possibly exist multi-relation graphs. For 
each relation graph, we call the Dijkstra’s algorithm to compute 
the shortest paths of any two nodes.  

The computation of relation distances can be done in our pre-
processing and the computed relation distance can be stored as a 
kind of background knowledge constraint. By specifying the 
relation distance constraint, the mining algorithm further reduces 
the search space and focuses on the interesting maximal access 
profiles.  

Procedure MFP (T, MAP, x) 
1. begin 
2.       if T only contains a single path P then  

3.             m={a1∪a2∪ ... ∪an|ai∈P}∪x;  
4.             m.support=an.support; 
5.             if m is not a subset of the sets in MAP then  

6.                     MAP=MAP∪m; 
7.                     Delete the subsets of m from MAP; 
8.             end 
9.       else 

10.            for each ai∈Htable of T do  

11.                  h=ai∪x; 

12.                  h.support=ai.support; 
13.                Constructing conditional FP-tree of h, 

 Th, with min-support and the 
conditional patterns bases of h; 

14.              If Th≠null then 
15.                      MFP(Th, MAP, h); 
16.      end 
17.end. 

Figure 3.  The description of MFP algorithm 



The mining algorithm with such constraint is easily constructed. 
In detail, we just prune what characteristic objects containing 
such relations whose distances are not satisfied with the specified 
constraint from header table. There is no need to modify the other 
parts of MMAP algorithm. 

 
 

 

4. THE EXPERIMENT RESULTS 
An anomaly-based detection model is build for the performance 
experiments. This model consists of two steps, that is, the learning 
of training dataset and detecting of testing dataset. In this model, 
two mining algorithms are implemented for performance 
comparison. One is our MMAP algorithm, and the other is Max 
algorithm [13] that is also a fast mining algorithm. The tested 
performance includes learning runtimes, detecting runtimes, true 
positive rate (TPR) and false positive rate (FPR). 

All experiments are conducted on a PC platform with an AMD 
1.6G CPU, 240M RAM, 40G Hard disk and Windows XP OS. 
The detection model is implemented using Java 1.4.  

Based on the audit system of Microsoft SQL server 2000, we 
generate two database session logs through our pre-processing. 
The first log is normal session database and consists of 1,000,000 
session transactions. The second log is abuse session database and 
consists of 400,000 session transactions. The maximal number of 
characteristic objects of each session transaction is set as 50. The 
total number of relations is set as 50. In order to increase the 
reliability of test results, the whole process is repeated for 10 
times and the average results are rounded and then reported. 

In the first set of experiments, the learning runtimes with different 
min-supports are tested. The learning runtimes of both algorithms 
are consumed to generate the normal access profiles are tested. 
The min-supports are varied from 5% to 20% with an interval 5% 
and the size of training dataset is set as 1,000,000 transactions. 
The results are given in fig.5. 

In the second set of experiments, the detecting runtimes with 
different min-supports are tested. The detecting runtimes of both 
algorithms are consumed to generate the current access profiles 
and check if the current access profiles are matched with the 
normal access profiles. We say a normal access profile AP1 and a 
current access profile AP2 are matched iff AP2⊆AP1. In this set of 
experiments, the set of normal access profiles is the one mined in 
the first set of experiments with min-support 5%. The size of the 
testing dataset is fixed as 100,000 transactions. The results are 
given in fig.6. 

In the third and fourth set of experiments, the learning and 
detecting runtimes with different sizes of datasets (DS) are tested. 
In the third set of experiments, the sizes of training dataset are 
varied from 100,000 to 400,000 with an interval 100,000. The 
min-support is fixed as 5%. The results are given in fig.7. In the 
fourth set of experiments, the detecting runtimes with different 
sizes of testing datasets are tested. The sizes of testing datasets are 
varied from 100,000 to 400,000 with an interval 100,000. The 
min-support is fixed as 5%. The results are given in fig.8. 

From the results of fig.5-fig.8, we can see that: (1) The learning 
runtimes and detecting runtimes of MMAP obviously outperforms 
Max in which the relation distance is not used. It is because the 
relation distance constraint can efficiently reduce the MMAP 
algorithm search space. (2) Both runtimes are decreased with the 
increased min-supports. It is because more maximal access 
profiles are filtered with higher min-supports. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R4 

R1 R2 R3 

Figure 4.  An example of relation graph in which four 
relations R1, R2, R3 and R4 are included. 

0

5

10

15

20

5% 10% 15% 20%

min-support

r
un
t
i
me
(
se
c
)

Max

MMAP

Figure 6. The detecting runtimes vs SP.

0

10

20

30

40

50

60

100M 200M 300M 400M

size of training

datasets, 1M=1000

r
un
t
im
e(
s
ec
)

Max

MMAP

Figure 7.  The learning runtimes vs DS. 

Figure 5. The learning runtimes vs SP.

100

110

120

130

140

150

160

5% 10% 15% 20%

min-support

ru
nt
im
e
(s
ec
)

Max

MMAP



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the fifth set of experiments, we test the TPR and FPR with 
different min-supports. Both the sizes of testing and training 
dataset are 100,000 transactions. The min-supports are varied 
from 10% to 25% with an interval 5%.  The results are given in 
fig.9. 

In the sixth set of experiments, we test the TPR and FPR with 
different sizes of testing datasets. The sizes of datasets are varied 
from 100,000 to 400,000 with an interval 100,000. The min-
supports are fixed as 5%.  The results are given in fig.10. 

From the results of fig.9 and fig.10, we can see that MMAP 
outperforms Max in the aspects of TPR and FPR. We also find 

that TPR is more sensitive to the min-support but the size of 
testing dataset. It is increased with the increase of min-supports, 
whereas it is steady with different sizes of testing datasets. 
Though the changing of FPR is relatively small, it is seen that the 
FPR is also more sensitive to the min-support but the size of 
testing dataset. Actually, MMAP algorithm generates more 
maximal access profiles with smaller min-supports, and that can 
provide finer comparison about the current and the normal access 
profiles for TPR and FPR. 

5. CONCLUSIONS 
Recently, the mining of system log datasets has be widely used in 
the system security application field such as the detection of 
abuse behaviors. At present, most of efforts concentrate on the 
network or operating system level. There are few works 
concentrated on database system application. 

For database system, the auditing mechanisms are designed to 
record all system activities in great details and ensure that no 
intrusion evidence will be missed. So database system audit data 
is a kind of high-speed and high-volume data. The high-speed and 
high volume data requires the run-time execution of mining 
models be very efficient. The long delay in data analysis can not 
satisfy such run-time execution. 

In this paper, we present the concept of access profiles to 
represent the user behavior characteristics of accessing database 
system and study the problem of mining maximal access profiles 
for fast detection of database system insider abuse behaviors. 
Based on the existing FP-tree structure, a new mining algorithm 
called MMAP is presented. A new constraint of relation distance 
is also presented to reduce the mining algorithm search space. The 
experimental results based on the anomaly model show that our 
approach works efficiently for detecting the abuse behaviors. 

In future work, we plant to integrate the anomaly model into a 
data mining tool which will be used for the analysis of real 
database system abuse behaviors.  

6. ACKNOWLEDGMENTS 
We would like to thank the anonymous reviewers for the helpful 
comments.  

This work was supported by the National Natural Science 
Foundation of China (60573097), Natural Science Foundation of 
Guangdong Province (05200302, 06104916), Research 
Foundation of Science and Technology Plan Project in 
Guangdong Province (2005B10101032), Research Foundation of 
Disciplines Leading to Doctorate degree of Chinese Universities 
(20050558017), and Program for New Century Excellent Talents 
in University of China. 

7. REFERENCES 
[1] Lee, W., Fan, W. Mining System Audit Data: Opportunities 

and Challenges. SIGMOD Record 4 (2001), pp.35-44. 
[2] Sequeria, K., Zaki, M. ADMIT: Anomaly-based Data 

Mining for Intrusions. In: Proc. KDD 2002, pp.386-395.  
[3] Wang, K., Stolfo, J.S. Anomalous Payload-based Network 

Intrusion Detection. In: Proc. RAID 2004, pp.203-222.  

0

10

20

30

40

50

60

100M 200M 300M 400M

size of testing

datasets,1M=1000

ru
nt
im
e(
s
ec
)

Max

MMAP

Figure 8.  The detecting runtimes  vs DS. 

0%

20%

40%

60%

80%

100%

5% 10% 15% 20%

min-support

r
at
i
o

TPR_Max

TPR_MMAP

FPR_Max

FPR_MMAP

Figure 9.  The true/fase positive rate vs min-support.  

0%

20%

40%

60%

80%

100%

100M 200M 300M 400M

dataset sizes,1M=1000

r
a
ti
o

TPR_Max

TPR_MMAP

FPR_Max

FPR_MMAP

Figure 10.  The true/fase positive rate vs sizes of testing 
datasets.



[4] Mahoney, M., Chan, P. K. Learning Nonstationary Models 
of Normal Network Traffic for Detecting Novel Attacks. In: 
Proc. KDD 2002, pp.376-385. 

[5] Chung, Y.C., Gertz, M., Levitt, N.K. DEMIDS: A Misuse 
Detection System for Database Systems. In: Proc. IFIP IICIS 
1999. pp.159-178. 

[6] Han,J., Pei, J., and Yin, Y. Mining Frequent Patterns without 
Candidate Generation. In: Proc. SIGMOD 2000, pp.1-12. 

[7] Grahne G, Zhu, JF. High performance mining of maximal 
frequent itemsets. In: Proc. SIAM Workshop on High 
Performance Data Mining (HPDM 2003), pp.135-143. 

[8] Burdick, D., Calimlim, M., Gehrke, J. Mafia. A maximal 
frequent itemset algorithm for transactional databases. In: 
Proc. ICDE2001, pp.443-452. 

[9] Rakesh Agrawal, Ramakrishnan Srikant Fast Algorithms for 
Mining Association Rules in Large Databases. In Proc. 
VLDB 1994, pp.487-499. 

[10] Sunita Sarawagi, Shiby Thomas, Rakesh Agrawal. 
Integrating Mining with Relational Database Systems: 
Alternatives and Implications. In Proc. SIGMOD Conference 
1998, pp.343-354. 

[11] Roberto J. Bayardo Jr., Rakesh Agrawal, Dimitrios 
Gunopulos. Constraint-Based Rule Mining in Large, Dense 
Databases. In Proc. ICDE 1999, pp.188-197. 

[12] Ke Wang, Yu He, Jiawei Han. Pushing Support Constraints 
Into Association Rules Mining. IEEE Trans. Knowl. Data 
Eng. 15(3): 642-658 (2003). 

[13] Bayardo R. Efficiently mining long patterns from databases. 
In: Haas LM, ed. Proc. of the ACM SIGMOD Int’l Conf. on 
Management of Data. New York: ACM Press, 1998. 85−93. 

[14] Gouda K, Zaki MJ. Efficiently mining maximal frequent 
itemsets. In: Proc. of the 1st IEEE Int’l Conf. on Data 
Mining. 2001. 163−170. 

[15] Jian Pei, Jiawei Han, Laks V. S. Lakshmanan. Pushing 
Convertible Constraints in Frequent Itemset Mining. Data 
Min. Knowl. Discov. 8(3): 227-252 (2004). 

[16] Yin-Ling Cheung, Ada Wai-Chee Fu. Mining Frequent 
Itemsets without Support Threshold: With and without Item 
Constraints. IEEE Trans. Knowl. Data Eng. 16(9): 1052-
1069 (2004). 

[17] Raymond Chi-Wing Wong, Ada Wai-Chee Fu. Mining top-K 
frequent itemsets from data streams. Data Min. Knowl. 
Discov. 13(2): 193-217 (2006). 

[18] Ke Wang, Yu He, Jiawei Han. Mining Frequent Itemsets 
Using Support Constraints. In Proc. VLDB 2000, pp.43-52. 

[19] Ke Wang, Gabriela Cretu, Salvatore J. Stolfo. Anomalous 
Payload-Based Worm Detection and Signature Generation. 
In Proc. RAID 2005, pp.227-246. 

[20] Jian Pei, Shambhu J. Upadhyaya, Faisal Farooq, Venugopal 
Govindaraju. Data Mining for Intrusion Detection: 
Techniques, Applications and Systems. In Proc. ICDE 2004, 
pp. 877. 

 




