
A Compositional Symbolic Verification Framework for
Concurrent Software ∗

Conghua Zhou
School of Computer Science and Telecommunication Engineering, Jiangsu University

No. 301 Xufu Road
Zhenjiang, China, 212013
chzhou@mail.edu.cn

ABSTRACT
For concurrent software systems state/event linear tempo-
ral logic SE-LTL is a specification language with high ex-
pressive power and the ability to reason about both states
and events. Until now, SE-LTL model checking algorithm is
still explicit. For SE-LTL we provide a SAT-based Bounded
Model Checking procedure. We also present a framework
for model checking concurrent software systems which in-
tegrates three powerful verification techniques, SAT-based
Bounded Model Checking, counterexample-guided abstrac-
tion refinement and compositional reasoning. In the frame-
work the abstraction and refinement steps are performed
over each component separately, and the model checking
step is symbolic.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation —Model checking , Formal methods

General Terms
Verification

Keywords
model checking, SAT, abstract, composition

1. INTRODUCTION
The specification logic SE-LTL[3] is a state/event deriva-

tive of LTL[5]. This allows us to represent both software im-
plementations and specifications directly without any pro-
gram annotations or privileged insights into program ex-
ecution. Chaki further showed how standard automata-
theoretic LTL model checking algorithms can be ported to
their framework at no extra cost, enabling them to directly

∗Supported by the National Natural Science Foundation of
China No.60603041, the Province Natural Science Founda-
tion of Jiangsu No.BK2006073

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Infoscale 2007 June 6-8, 2007, Suzhou, China
Copyright 2007 ACM 978-1-59593-757-5 ...$5.00.

benefit from the large body of research on efficient LTL ver-
ification. However, until now SE-LTL model checking algo-
rithm is still explicit.

Bounded Model Checking(BMC)[2] based on SAT meth-
ods has recently been introduced as a complementary tech-
nique to BDD-based symbolic model checking[6]. In this pa-
per for SE-LTL we provid its SAT-based BMC procedure.
Given an LKS M , an SE-LTL formula φ and a natural num-
ber k, our BMC procedure decides whether there exists a
computation in M of length k or less that violates φ, i.e.
M |=k E¬φ. Our BMC is performed by generating a propo-
sitional formula, which is satisfiable if and only if such a
computation exists.

We also present an efficient verification strategy which
combines SAT-based BMC, counterexample-guided abstrac-
tion refinement[1, 4] and compositional reasoning[7]: start-
ing with a coarse initial abstraction, our scheme computes
increasingly precise abstractions of the target system by an-
alyzing spurious counterexamples until either a real coun-
terexample is obtained or the system is found to be correct.

More precisely, given a system M composed of n concur-
rent components M1, . . . , Mn, and a SE-LTL specification
φ, the verification of M |= φ proceeds as follows:

(1) Abstract. Create an abstraction A such that all behav-
iors of A are preserved by M . This is done component-
wise without constructing the full state space of M .

(2) Verify. Verify whether A |=k E¬φ. If so, extract an
abstract counterexample C that indicates in which φ
fails in A. Otherwise check whether k ≤ CT . If so, let
k = k + 1, goto 2. Otherwise return M |= φ.

(3) Check whether C gives rise to a real counterexample
over A. If C corresponds to a genuine behavior of M
then report a failure along with a fragment of each
Mi that illustrates why M 6|= φ. If C is spurious, on
the other hand, refine A using C to obtain a more
precise abstraction and repeat from step 1. This re-
finement step, like the initial abstraction, is performed
component-wise.

Of the three steps in this abstract-verify-refine process
only the verification stage of our technique requires the ex-
plicit composition of a system. The other stages can be per-
formed one component at a time. To the best of our knowl-
edge, our strategy is the first SAT-based, counterexample-
guided, compositional abstraction refinement scheme to per-
form verification of linear time temporal specifications.

fezzardi
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. INFOSCALE 2007, June 6-8, Suzhou, ChinaCopyright © 2007 ICST 978-1-59593-757-5 DOI 10.4108/infoscale.2007.906

2. PRELIMINARIES

2.1 Labeled Kripke Structure

Definition 1. A labeled Kripke structure M is a 6-tuple
(S, s0, AP, Σ, L, R) where, S is a finite non-empty set of
states; s0 ∈ S is an initial state; AP is a finite set of atomic
state propositions; Σ is a finite set of events; L : S → 2AP is
a state-labeling function; R ⊆ S×Σ×S is a transition rela-
tion that must be total, that is, for every state s ∈ S there
is an event a ∈ Σ and a state s′ ∈ S such that R(s, a, s′)
holds.

Given an LKS M = (S, s0, AP, Σ, L, R) we write S(M),
s0(M), AP (M), L(M), Σ(M) and R(M) to mean S, s0,
AP, L, Σ and R respectively. A path π = s0, a0, s1, a1, . . .
of M is an alternating infinite sequence of states and events
subject to the following: for each i ≥ 0, si ∈ S, ai ∈ Σ and
R(si, ai, si+1) holds. For the path π = s0, a0, s1, a1, . . . we
use π(i) to denote the ith state si, use π(i, E) to denote the
ith event ai. We right Path(M) to denote the set of infinite
and finite paths whose first state is s0(M).

Definition 2. A path π is a (k, l)-loop, with l < k, if
(π(k), π(k, E), π(l)) ∈ R and π = u · vω, where u = π(0),
π(0, E), . . . , π(l-1), π(l-1, E) and v = π(l), π(l, E), . . . , π(k),
π(k, E). We call π simply a k-loop if there is an integer l
with 0 ≤ l ≤ k such that which π is a (k, l)-loop.

2.2 Abstraction
The notion of abstraction is central to our approach.We

list below the properties that we require of any abstrac-
tion scheme to be usable in our framework. Let M =
(S, s0, AP, Σ, L, R) and A = (SA, sA

0 , AP A, ΣA, LA, RA) be
two LKSs. We say that A is an abstraction of M , writ-
ten M ⊆ A iff AP A ⊆ AP , ΣA = Σ, for every path
π = s0, a0, s1, a1, . . . of M there exists a path π′ = s′0,
a′0, s′1, a′1, . . . of A such that for each i ≥ 0, a′i = ai and
LA(s′i) = L(si) ∩AP A.

2.3 Parallel Composition
Let M1 = (S1, s

1
0, AP1, Σ1, L1, R1) and M2 = (S2, s2

0,
AP2, Σ2, L2, R2) be two LKSs. M1 and M2 are said to be
compatible, i.e., that they do not share variables: S1 ∩S2 =
AP1 ∩ AP2 = ∅. The parallel composition of M1 and M2

is given by M1‖M2 = (S1 × S2, s
1
0 × s2

0, AP1 ∪ AP2, Σ1 ∪
Σ2, L1∪L2, R) where (L1∪L2)(s1, s2) = L1(s1)∪L2(s2) and
R((s1, s2), a, (s′1, s

′
2)) holds iff one of the following holds:

1. a ∈ Σ1 \ Σ2 and R1(s1, a, s′1) holds and s′2 = s2.

2. a ∈ Σ2 \ Σ1 and R2(s2, a, s′2) holds and s′1 = s1.

3. a ∈ Σ1 ∩ Σ2 and R1(s1, a, s′1) holds and R2(s2, a, s′2)
holds.

Let M1 and M2 be as above, and let π = (s1
0, s

2
0), a0, . . .

be an alternating infinite sequence of states and events of
M1‖M2. The projection π ↑ Mi of π on Mi consists of(possibly
finite) the subsequence of si

0, a0, . . . obtained by simply re-
moving all pairs (aj , s

i
j+1) for which aj 6∈ Σi. In other words,

we keep from π only those states that belong to Mi, and ex-
cise any transition labeled with an event not in Σi.

2.4 State/Event Linear Temporal Logic SE-LTL
Given an LKS M = (S, s0, AP, Σ, L, R), we consider linear

temporal logic state/event formulas SE-LTL over the sets
AP, Σ as follows:

• if p ∈ AP then p,¬p is an SE-LTL formula; if σ ∈ Σ
then σ is an SE-LTL formula.

• if f is an SE-LTL formula, then Xf, Ff, Gf are SE-
LTL formulas.

• if f, g are SE-LTL formulas, then f ∧g, f ∨g, fUg, fRg
are SE-LTL formulas.

Definition 3. (Semantics of SE-LTL) Let π = s0, a0, . . .
be an infinite path, πi stands for the suffix of π starting in
state si. π |= f is inductively defined as follows:

• π |= p if and only if p ∈ L(π(0)).

• π |= ¬p if and only if p 6∈ L(π(0)).

• π |= a if and only if π(0, E) = a.

• π |= f ∧ g if and only if π |= f and π |= g.

• π |= f ∨ g if and only if π |= f or π |= g.

• π |= Xf if and only if π1 |= f .

• π |= Ff if and only if for some i ≥ 0, πi |= f .

• π |= Gf if and only if for all i ≥ 0, πi |= f .

• π |= fUg if and only if there is some i ≥ 0 such that
πi |= g and for all j ≤ i− 1, πj |= f .

• π |= fRg if and only if for all i ≥ 0, πi |= g or there is
some i ≥ 0 such that πi |= f and for all j ≤ i, πj |= g.

Definition 4. M |= f if and only if for all path π of M ,
π |= f . M |= Ef if and only if there is a path π of M such
that π |= f .

3. SAT-BASED BOUNDED MODEL CHECK-
ING FOR SE-LTL

Bounded model checking based on SAT methods has been
introduced as a complementary technique to BDD-based
symbolic model checking. The main idea of bounded model
checking is to search for an execution of the system of some
length k, which constitutes a counterexample for a verified
property. To perform bounded model checking on SE-LTL,
we first define a bounded semantics for SE-LTL, which is an
approximation to the unbounded semantics. Second we re-
duce bounded model checking to propositional satisfiability.
Third we discuss the completeness threshold for bounded
model checking on SE-LTL.

3.1 Bounded Semantics for SE-LTL
In bounded model checking a crucial observation is that

the prefix of a path is finite, it still might represent an infinite
path if there is a back loop from the last state of the prefix to
any of the previous states. If there is no such back loop, then
the prefix does not say anything about the infinite behavior
of the path. Thus when we define bounded semantics for
SE-LTL we must consider whether a finite path represents
an infinite behavior.

Definition 5. (Bounded Semantics for a Loop) Let π be a
k-loop. Then an SE-LTL formula f is valid along the path
π with bound k (in symbols π |=k f) iff π |= f .

Definition 6. (Bounded Semantics without a Loop) Let
π be a path that is not k-loop. Then an SE-LTL formula
f is valid along π with bound k (in symbols π |=k f iff
π |=0

k fwhere

• π |=i
k p iff p ∈ L(π(i)); π |=i

k ¬p iff p 6∈ L(π(i)).

• π |=i
k a iff a ≡ π(i, E).

• For all other cases, refer to [2].

We use the notation M |=k Ef to represent that there exists
a path π of M such that π |=k f .

Theorem 1. Let AP be a set of propositions, M be an
LKS over AP , π be a path of M , f be an SE-LTL formula,
and k be a bound. Then π |=k f implies π |= f .

If π is a k-loop then the conclusion in Theorem 1 follows by
the definition. In the other case we can prove the conclusion
by induction over the structure of f straightly.

Definition 7. For every LKS M and an SE-LTL property
f , the natural number k called a CT of f if and only if the
following condition holds: if there is no counterexample to
f in M of length k or less, then M |= f .

Theorem 2. Let AP be a set of propositions, M be an
LKS over AP , π be a path of M , f be an SE-LTL formula,
and k be a natural number. Then M |= Ef implies there

exists a bound k ≤ |M |× 2|f | such that M |=k Ef . In other

words, |M | × 2|f | is a CT of f .

3.2 Translation
In the previous section we defined the semantics for bounded

model checking. We now show how to reduce bounded model
checking to propositional satisfiability. This reduction en-
ables us to use efficient propositional SAT solvers to perform
model checking.

Given an LKS M , an SE-LTL formula f and a bound
k, we will construct a propositional formula [M, f]k. Let
s0, a0, . . . , sk, ak be a finite sequences of states and events
on a path π. Each si represents a state at time step i
and consists of an assignment of truth values to the set of
state variables. Each ai represents an event at time step
i and consists of an assignment of truth values to the set
of event variables. The formula [M, f]k encodes constraints
on s0, a0, . . . , sk, ak such that [M, f]k is satisfiable iff π is
a witness for f . The definition of formula [M, f]k will be
presented as three separate components. We first define a
propositional formula [M]k that constraints s0, a0, . . . , sk, ak

to be a valid path starting from the initial state. We then
define the loop condition, which is a propositional formula
that is evaluated to true only if the path π contains a loop.
Finally, we define a propositional formula that constrains π
to satisfy f .

Definition 8. (Unfolding the Transition Relation) For the

bound k, we define [M]k := I(s0)∧
k−1V
j=0

R(si, ai, si+1), where

I(s0) is true if and only if s0 is the initial state.

The translation of an SE-LTL formula depends on the shape
of the path π. We define the propositional formula lLk to
be true if and only if there is a transition from sate sk to
state sl.

Definition 9. (Loop condition) For two integers k, l with
k ≥ l ≥ 0, let lLk := R(sk, ak, sl).

Depending on whether a path is a k-loop, we have two
different translations of a SE-LTL formula f . First we con-
sider the case where the path is a k-loop. We give a recursive
translation of an SE-LTL formula f for a k-loop path π. The
translation of f recurses over its subterms and the states in
π. The intermediate formula l[·]ik depends on three param-
eters: l, k and i. We use l for the start position of the loop,
k for the bound, and i for the current position in π.

Definition 10. (Translation of an SE-LTL formula on a
(k, l)-loop)

• l[a]ik := (a ≡ ai);

• For all other cases, refer to [2].

For the case where π is not a k-loop, the translation can be
treated as a special case of the k-loop translation. For LKS
with total transition relations, every finite path π can be
extended to an infinite one. Since the property of the path
beyond event ak is unknown, we make a conservative ap-
proximation and assume all properties beyond ak are false.

Definition 11. (Translation of an SE-LTL formula with-
out a Loop)

• [a]ik := (a ≡ ai)

• For all other cases, refer to [2].

Combining all components, the encoding of a bounded model
checking problem in propositional logic is defined as follows.

Definition 12. (General translation) Let M be an LKS,
f be an SE-LTL formula, and k be a bound. We define

[f]k := ([f]0k ∨
kW

l=0

(lLk ∧l [f]0k) and [M, f]k := [M]k ∧ [f]k

The translation scheme guarantees the following theorem,
which we state without proof.

Theorem 3. Let M be an LKS, f be an SE-LTL formula,
and k be a bound. Then [M, f]k is satisfiable if and only if
M |=k Ef .

Thus, the reduction of bounded model checking to SAT is
sound and complete with respect to the bounded semantics.

Corollary 1. Let M be an LKS, f be an SE-LTL formula,
and k be a bound. M |= Ef if and only if there exists an

integer k ≤ |M | × 2|f | such that [M, f]k is satisfiable.

4. COMPOSITIONAL SAT-BASED SE-LTL
VERIFICATION

We now discuss how our framework enables us to verify
SE-LTL specification on parallel compositions of LKSs in-
crementally and compositionally. When trying to determine
whether an SE-LTL specification holds on a given LKS, the
following result is the key ingredient needed to exploit ab-
stractions in the verification process.

Theorem 4. Let M and A be LKSs with M ⊆ A. Then for
any SE-LTL formula φ over M which mentions only propo-
sitions (and events) of A, if A |= φ then M |= φ.

Suppose now that we are given a collection M1, . . . , Mn

of LKSs, as well as an SE-LTL specification φ, with the
task of determining whether M1|| . . . ||Mn |= φ. We first
create initial abstractions M1 ⊆ A1, . . . , Mn ⊆ An. Then
we check whether A1|| . . . ||An |=k ¬φ. In the affirmative,
we are provided with an abstract counterexample π such
that π |=k ¬φ. We must then determine whether this coun-
terexample is real or spurious, i.e., whether it corresponds
to a counterexample in M1|| . . . ||Mn or not. In the nega-
tive, we check whether k ≤ CT . If so, then check whether
A1|| . . . ||An |=k+1 ¬φ. Otherwise return that M1|| . . . ||Mn |=
φ.

This counterexample validation check can be performed
compositionally, as follows. The counterexample is real iff
for each i, the projection π ↑ Ai corresponds to (the pre-
fix of) a valid behavior of Mi . To this end, we ‘simulate’
π ↑ Ai on Mi. If Mi accepts the path, we go on to the
next component. Otherwise, we refine our abstraction Ai ,
yielding a new abstraction A′i with Mi ⊆ A′i ⊆ Ai and such
that A′i also rejects the projection π ↑ A′i of the spurious
counterexample π.

Let us return to our SE-LTL specification φ, and let us fix
throughout Pφ to be the set of all atomic state propositions
appearing in φ. Consider any of the M ′

is. An abstraction of
Mi is entirely determined by a Pφ-respecting partition ≈i

of the set of states of Mi: such an abstraction is denoted
Mi/ ≈i.

The initial abstraction Mi/ ≈1
i is the coarsest possible:s ≈1

i

iff L(Mi)(s) ∩ Pφ = L(Mi)(s
′) ∩ Pφ. Suppose now that we

are handed πi ∈ Path(Mi/ ≈k
i) (i.e., πi is either a lasso or

a finite path of Mi/ ≈k
i). We must determine whether πi is

a real or spurious counterexample component, i.e., whether
πi gives rise to a valid path of Mi or not. Moreover, in the
latter case, we want to refine our partition ≈k

i into ≈k+1
i so

that πi is rejected by Mi/ ≈k+1
i .

The validation/refinement step is similar to that originally
proposed by S. Chaki et al.[3]. Our validation/refinement
step proceeds as follows. For any set Q of states of Mi and
event a, let Succ(Q, a) = {s′|∃s ∈ Q, (s, a, s′) ∈ R} denote
the set of a-successors of Q in Mi. Let us first suppose
that πi = s0, a0, s1, a1, ..., am−1, sm, am is a finite path of
Mi/ ≈k

i . Start with the set Q0 = {s0(Mi)}∩s0 and compute
successively Qj+1 = succ(Qj , aj)∩ sj . If, upon reaching the
end of π, Qm+1 is non-empty, then clearly π is a valid finite
path of Mi. Otherwise, let Qj+1 be the first empty set thus
generated. Refine the partition ≈k

i by splitting sj into Qj

and sj−Qj , yielding a new partition ≈k+1
i . It is then easy

to see that Mi/ ≈k+1
i will reject πi.

In case π is a lasso, things are slightly more complicated.
If Mi rejects π, then the algorithm above will establish his
in the very same manner, by eventually producing an empty
set of states Qj+1. On the other hand, if π is accepted by
Mi then there will be sets of states Qj = Qj+p such that
Qj+p is obtained from Qj by following the loop part of π a
finite number of times. Since all state spaces involved are
finite the search will always terminate with one or the other
answer after a finite number of iterations.

The full algorithm for checking whether M1|| . . . ||Mn |= φ
is given in Fig. 1. Note that the abstraction, counterexample-
validation, and refinement steps are all performed one com-

ponent at a time.

Algorithm SE-LTL Model Checking (M1, . . . , Mn; φ)

for i := 1 to n: let Ai be the initial abstract of Mi;

for k := 1 to CT of M1 ‖ . . . ‖ Mn

{(1)decide whether [A1 ‖ . . . ‖ An,¬φ]k is satisfiable

if [A1 ‖ . . . ‖ An,¬φ]k is satisfiable, then suppose

π be path in A1 ‖ . . . ‖ An violating φ;

looking for i such that π ↑ Ai is spurious;

if no such i then

return M1 ‖ . . . ‖ Mn 6|= φ along with

the counterexample derived from π;

else refine Ai, yielding a new abstraction A′i
with Mi ⊆ A′i ⊆ Ai and A′i also rejects π ↑ A′i;

Let Ai = A′i, goto (1)

else if [A1 ‖ . . . ‖ An,¬φ]k is unsatisfiable

if k = CT then return M1 ‖ . . . ‖ Mn |= φ

else k := k + 1.}
Figure 1: The overall SE-LTL model checking al-
gorithm for a concurrent system M1 ‖ . . . ‖ Mn and
specification φ

5. CONCLUSION AND FUTURE WORK
In this paper, we presented a SAT-based Bounded Model

Checking procedure for the state/event linear time temporal
logic SE-LTL. We further provided a new verification strat-
egy for concurrent software system which integrates SAT-
based BMC, counterexample-guided abstraction refinement
and compositional reasoning. We are developing the tool for
implementing the new strategy. For future work we would
like to discuss other equivalent relations.

6. REFERENCES
[1] S. Bensalem, Y. Lakhnech, and S. Owre. Computing

abstractions of infinite state systems compositionally
and automatically. LNCS, 1254:319–331, 1998.

[2] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu.
Symbolic model checking without bdds. LNCS,
1579:193–207, 1999.

[3] S. Chaki, E. M. Clarke, J. Quaknine, N. Sharygina, and
N. Sinha. Concurrent software verification with states,
events, and deadlock. Formal Aspects of Computing,
17(4):461–483, April 2004.

[4] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and
H. Veith. Counterexample-guided abstraction
refinement. LNCS, 1885:154–169, 2000.

[5] E. M. Clarke, O. Grumberg, and D. Peled. Model
checking. MIT Press, MA, 1999.

[6] K. L. McMillan. Symbolic model checking. Kluwer
Academic Publishers, Netherlands, 1993.

[7] K. L. McMillan. A compositional rule for hardware
design refinement. LNCS, 1254:24–35, 1997.

