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ABSTRACT
Problem localization is a critical part of providing crucial system
management capabilities to modern distributed environments. One
key open challenge is for problem localization solutions to scale
for systems containing hundreds or even thousands of nodes, whilst
still remaining fast enough to respond to rapid environment changes
and sufficiently cost-effective to avoid overloading any manage-
ment or application component. This paper meets the challenge by
introducing two scalable frameworks applicable to a wide range of
existing problem localization solutions: one based on a summary-
driven, narrow-down procedure, the other through decomposing
and decentralizing the problem localization process. Both frame-
works, at their best, are able to achieve O(logN) problem local-
ization time and O(1) per node communication load. The contrast-
ing natures of both frameworks provide them with complimentary
strengths that make them suitable for different scenarios in prac-
tice. We demonstrate our approaches in simulation settings and
two real-world environments and show promising scalability bene-
fits that can make a difference in system management operations.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Performance attributes—Reliabil-
ity, availability, and serviceability; H.2.2 [Analysis Of Algorithms
And Problem Complexity]: Nonnumerical Algorithms and Prob-
lems—Sorting and searching

General Terms
Algorithms, Reliability, Performance

Keywords
Scalability, Problem Localization, Complexity, Decentralization,
Hierarchy, Distributed systems
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1. INTRODUCTION
In today’s complex distributed systems, user transactions can be

plagued with problems such as long response time or high trans-
action failure rates. Problem localization (PL) in distributed sys-
tems is the art of utilizing information gathered from (many) sys-
tem components to pinpoint those few which create difficulties and
further detailed, platform-specific root cause analysis should be fo-
cused on. It is a key building block of critical management actions
including resource provisioning and failure recovery, that ensure
the delivery of desired quality of service both in terms of perfor-
mance and availability.

In addition to the usual accuracy expectation, PL today is quickly
being confronted with a scalability challenge, as distributed appli-
cations continue to grow to the size of tens or hundreds of com-
ponents. Ambitious efforts such as those engineered by Google
[5] (e.g. the 15000-node Google clusters and possibly a Google-
wide Grid) will represent even more demanding tests. In order to
remain functional in these enlarging distributed environments, PL
solutions should maintain constant, or slowly degrading, costs as
their size increases (i.e. number of components considered) [11].
Existing PL solutions [7, 14, 2, 9, 13] often rely heavily on com-
parisons of component states. Their costs increase rapidly with the
number of components, thus failing the large-scale challenge. This
undesirable growth can already be problematic in relatively small
environments that use PL to direct frequent autonomic [8] manage-
ment actions.

The aftermentioned poor scalability is rooted in designs where
not only are the states of every component collected and analyzed,
but it is completed in a centralized and sequential way. The first
weakness can be alleviated using a narrow-down strategy. By ex-
amining summary statistics about groups of components, localiza-
tion efforts can be focused on suspicious ones only, thus dramati-
cally diminishing time and data communications wasted on unnec-
essary fine-grained investigation into those groups unlikely to lead
us to the true cause.

In the mean time, the locality of many PL procedures implies
that they can principally be decomposed into sub processes exe-
cuted locally in a distributed and concurrent fashion. For example,
a PL process that identifies the component (among nine) with the
greatest elapsed time is equivalent to: 1) identifying the most time-
consuming component for each of three “local” component groups
{C1, C2, C3}, {C4, C5, C6} and {C7, C8, C9} respectively, and
2) pinpointing the slowest (say C5) among the three components
(say, C3, C5 and C7) singled out “locally”. The complete inde-
pendence of the three “local” sub processes in step # 1 implies that
they have the potential to be executed “locally”, in a concurrent
and decentralized manner.
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This paper does not present any novel PL technique in itself.
Rather, it aims at enhancing the scalability of existing PL solutions
following the foregoing two paths:

• A summary-driven PL framework has been introduced that
cuts PL costs by using high-level statistics to selectively drill
down into suspicious components only.

• A decentralized PL framework has been devised that sheds
PL costs by parallelizing and distributing a particular school
of existing PL processes using their locality.

• Both frameworks have been optimized against PL cost mod-
els, circumventing application restrictions where needed.

• It has been shown in theory that both frameworks can of-
fer constant per-node PL communication cost despite system
growth, and limit PL time to logarithmic in system size.

• Comparisons have been drawn between the two proposed
frameworks regarding five practical issues both analytically
and in two real-world case studies, with the view of charac-
terizing their respective suitability for different scenarios and
guiding their best practices.

The rest of the paper is organized as follows. Based on existing
PL techniques summarized in the sequel, Section 3 and Section 4
present two scalable PL frameworks and their optimizations. Their
practical strengths and weaknesses are compared in Section 5, and
are further mirrored in simulations and two case studies in Section
6. Section 7 reviews related work. Section 8 concludes and dis-
cusses future work.

2. PROBLEM LOCALIZATION
TECHNIQUES AND EXPENSES

There are two schools of approaches to problem localization that
may be applied to service-oriented environments. The first school
has its roots in the comparison of system component behaviors.
These methods either isolate components that have the most signif-
icant degree of local threshold/goal violation (i.e. most abnormal)
[9, 1], or identify ones that are the slowest [2, 13]. They are rela-
tively simplistic local-view strategies that do not explicitly consider
end-to-end QoS goals such as response time or transaction failure
rates. Herein, we reference two performance PL techniques of this
kind:

• Absolute Duration identifies the component that has the longest
elapsed time;

• Relative Delay finds the component with the greatest relative
delay to its elapsed time goal.

More recently, Global-view PL strategies that integrate the global
QoS goals into the localization process [7, 14] have emerged. They
are designed and implemented with the clear aim of finding compo-
nents that are most likely to improve end-to-end behaviors if fixed.
This category is embodied by our previous work [14]:

• Damage Score estimates the response time degradation caused
by different components using the duration, abnormality and
response time correlation of their elapsed times. The score is
computed as the difference of the actual end-to-end response
time and the projected response time had the component per-
formed normally according to its baseline (or threshold [1]).

Note that although the three specific techniques singled out to base
this paper on are designed to deal with response time problems,

most of them can be easily generalized for other problems such as
high request failure rate or low resource utilization. The localiza-
tion method described in [7] specifically addresses request failures.
It is not included in this study due to insufficient understanding
about its implementation, but is planned as part of further research.

Two PL expenses are of primary interest:

• PL Time - The time it takes to complete the entire PL process.
It is a key factor that decides whether the PL process can
still fit into demanding management processes that monitor,
localize and recover/tune at a high frequency.

• Per-node PL Communication Load - The worst-case or heav-
iest communication load on any entity (e.g. a management
server or application component) involved in the PL process
at any one point in time. It is a crucial indicator as to whether
any PL entity will become an overwhelmed bottleneck as the
system scales.

While less accurate due to the lack of global perspective, local-view
techniques do have the advantage of being relatively lightweight
taking O(N) time, whereas the global-view approaches take O(N 2)
time due to the end-to-end projection required for each component.
Both types of techniques require data from every component, re-
sulting in O(N) per-node load. It is evident that none of these
costs would allow the PL solution to realistically scale for systems
with large Ns. It is the goal of this paper to alleviate the acute
correlation of these costs with N .

3. SCALING THROUGH SUMMARIES
This section presents the details of a summary-driven scalable

PL architecture, SPL, that works with the localization techniques
outlined in Section 2. Section 5 elaborates on issues SPL must
consider in practice including such as accuracy loss and application
specifics.

3.1 A summary-driven problem localization
framework

The hierarchical architecture presented in this subsection exploits
the fact that outage in any component is likely to cause outright
behaviors when it comes to the group of components it belongs
to. Examining relatively high-level collective behaviors can often
more quickly lead us to the component(s) that is closely tied to the
root cause and worthy of detailed diagnosis.

As given in Definition 3.1, the scalable architecture we propose
takes the form of an X-ary rooted decision tree [12], where each
internal vertex has 1 to X children. The root represents the entire
application. Any other internal vertex is a lower-level component
group. The leaves are individual components. Figure 1 depicts a
3-ary PL tree constructed for 9 components.

DEFINITION 3.1. An X-ary Summary-driven PL (or SPL) tree
is a decision tree where each vertex contains 3 keys: a component
group ID, a metric data (e.g. collective elapsed time) pointer D,
and a pointer to a localization technique F (null for leaves).

The SPL process starts at the root vertex with an end-to-end
problem observation (e.g. a slow response time alert), and contains
multiple localization steps. A localization step involves taking a
branch in the PL tree and identifying a component group as the
problem-causing one among peer groups (calling upon a technique
in Section 2 through pointer F). This step is repeated for children of
the chosen component group only (i.e. not among any peer group),
and so on, until an individual component is reached. The high-
lighted path SGAPP − SG2 − C4 in Figure 1 is an example of a
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Figure 1: Example SPL procedure using Absolute Duration. Ti

is the elapsed time for component Ci.

SPL process that works on top of Absolute Duration, where com-
ponent C4 is eventually identified as the slowest component with
C1, C2, C3 and C7, C8, C9 skipped entirely.

3.2 Cost models and optimality
As was discussed previously, SPL is composed of O(H) local-

ization steps, where H is the height of the tree. Localization tech-
nique F is applied in each of these iterations to up to X compo-
nents. As a result, the time cost of the algorithm is O(X) ×O(H)
for local-view PLs and O(X2) × O(H) for global-view PLs (see
the end of Section 2). In addition, at each SPL step, a constant
O(X) data is communicated from the X components being inves-
tigated at this stage to the management entity, regardless of what
basic PL technique is used (see Section 2). It is obvious that an
architecture with a short H can reduce the PL time cost. From
literature [12], we have:

PROPOSITION 3.1. A balanced X-ary tree has the lowest height,
O(logXN), among all X-ary trees.

We therefore perform the first optimization to the scalable archi-
tecture by confining a PL tree to one that has the best height as
follows:

DEFINITION 3.2. An X-SPL tree is a balanced X-ary SPL tree.
PL using this tree is called X-SPL.

Table 1 summarizes the costs of PL in an X-SPL tree when used
with both the Local-view PL and Global-view PL strategies. We
express the costs in complexity terms, as it is very difficult and
often unnecessary to model these quantities precisely. Note that
even for large N , variable X is arguably ineligible in these com-
plexity terms. The reasons are two-fold: 1) X is in the range of
[0, 1, 2, . . . , N ] and has the potential to become linear to N (e.g.
X = N

2
when a two tier hierarchy is used) 2) these complexity

terms model the most significant piece of the corresponding PL
cost, and every effort should be made to minimize them.

Time Per-node Comm. Load
with local-view O(X · logXN) O(X)

with global-view O(X2
· logXN) O(X)

Table 1: SPL costs with different basic techniques.

As a consequence, a second optimization can be undertaken by
identifying the branching factor X that minimizes the time and
communication costs.

THEOREM 3.1. Used with a local-view technique, 3-SPL is the
optimal scalable PL architecture; Used with a global-view tech-
nique, 2-SPL is optimal.

Proof: The time cost of local-view techniques, O(X · logXN),
is at its minimum when X = 3. The time cost of global-view
techniques, O(X2 · logXN), is at its minimum when X = 2.2

3.3 Building an X-SPL tree
An X-SPL tree can be built from a random list of the compo-

nents, L, in a simple divide-and-conquer fashion. As is outlined in
Figure 2, the tree-building algorithm starts by examining the size
of list L. We then simply divide the list L into X sublists, each
with N/X elements (whenever possible); and simply call the al-
gorithm recursively with each of those sublists. Figure 1 happens
to be a 3-PL tree that can be constructed from 9 components using
this algorithm.

INPUT: Branching factor X and a list of components L

OUTPUT: Problem localization tree V

N = size(L); //Initialization

LL[D] = newList(X);
FOR ALL Xi ∈ SplitList(X,div(N, X), L);

LL[i] = Recursive Call with L = Xi

V = fork(new(SG), LL);

Figure 2: Basic X-SPL tree building algorithm.

Nevertheless, the measurement of group summaries such as cu-
mulative elapsed time and total request failure rates usually relies
on instrumentation that is restricted by the application workflow.
For example, the time spent on a component group consisting of
three sequentially executed components C1, C2 and C3 (see Fig-
ure 3) can be obtained by subtracting the time stamp captured pre-
cisely after component C3 terminates and the time stamp taken im-
mediately before component 1 starts. The same convenience is not
enjoyed by a group containing component C1 and C3, which are
separated in the workflow. The elapsed time and failure rate for a
component group can be directly measured if the members of the
component group are adjacent to each other under the same work-
flow composition operators.

Otherwise, summaries will only be available at added (computa-
tional) expenses. It is therefore important to balance between meet-
ing the workflow constraints and building an optimal SPL tree. It is
possible to construct a near optimal PL tree that meets the workflow
constraints, by restructuring the tree representation of a workflow
to approach an X-SPL tree whenever possible. The transformation
can be accomplished in two steps:

1. Find all subtrees T1, T2, . . . , Tn in the workflow tree that
have at least two compositions of the same type, and collect
all the children of Ti into a list Li;

2. Apply the algorithm presented in Figure 2 to each list Li

produced by step 1) and replace the subtree Ti with the tree
generated by the algorithm.

Figure 4 shows how the transformation can be performed for the
workflow tree in Figure 3.

4. SCALING THROUGH DECENTRALIZA-
TION

This section presents an alternative framework to SPL, called
DPL, which attempts to achieve scalability through decentraliza-
tion of the basic PL process. Section 5 extensively discusses issues
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Figure 4: Transformation applied to the example illustrated in
Figure 3.

that can affect the practice of DPL, such as application overhead
and organizations adaptability.

4.1 A decentralized problem localization frame-
work

Local-view PL techniques such as Absolute Duration and Rela-
tive Delay (see Section 2) can be recursively decomposed into com-
pletely independent sub processes following a divide-and-conquer
strategy, enabling the sub processes to be executed in parallel and
with local communication only. Crucially, such concurrent execu-
tions may reduce the PL time and per-node PL load to an extent
that it is no longer linear to N . Note that the same decomposition
is not possible for a global-view technique like Damage Score (see
Section 2), as the score at each component requires data about all
other components to compute.

The above discussions hint at a bottom-up, multi-phased, decen-
tralized PL process (again) following a tree structure as is given in
Definition 4.1. Figure 5 depicts an example of an X-ary DPL tree
and how it can be used on top of Absolute Duration.

DEFINITION 4.1. An X-ary Decentralized PL (or DPL) tree is

an X-ary tree where each vertex contains 3 keys: a component ID,
a metric data (e.g. elapsed time) pointer D, and a pointer to a basic
localization technique with a local view F.

In a bottom-up fashion, local DPL can be performed on all ith-
level groups at the same time. At the ith level, each local DPL pro-
cess elects a problematic component from a local group of X + 1
(e.g. C1, C2, C3 and C4 for the first 1st-level local group in Figure
5). For best scalability, the IDs and metrics of components in each
local group are fed into a pre-defined component (which we term
the Decision Node) in the same group (e.g. C4, C8 and C12 for the
three 1st-level local DPL processes in Figure 5), which will carry
out the local DPL processes The local problematic components go
through to the next DPL round (2nd-level in Figure 5), and so forth.
Eventually, the most badly behaving component (e.g. C5 in Figure
5) is identified at the end of the top-tier local DPL process for fur-
ther investigation that would ultimately locate the root cause.

C12,D,F

PL Decision  nodes

Component nodes

C4,D,F

T1 T3

T12T2

C13,D,F Actual Communications

Level 1

Level 2 T5

C8,D,F

T2 T5 T7T6 T9 T11

C10

T10

T5

C11C9C6 C7C5C2 C3C1

Figure 5: Example DPL procedure for 13 components using
Absolute Duration. Ti is the elapsed time for component Ci.

The DPL tree is a concept structure distributed among applica-
tion components through configurations. Each application compo-
nent runs a DPL agent that maintains a pointer to a decision node
at the upper DPL level where it sends data to, and if the component
is a decision node itself, a list of components it listens to for data.
For example, C4 in Figure 5 keeps a pointer to C13 and listens to
C1, C2, C3. A simplistic way to perform these configurations is to
delegate them to a configuration server, which builds the DPL tree
structure and dispatches corresponding pointers to all DPL agents.
Although the presence of such a configuration server somewhat un-
dermines DPL’s decentralized nature, it is only needed once during
configuration. In other words, the actual PL process remains en-
tirely distributed. In addition, we contend that creating a tree struc-
ture (even for a very large number of elements) is not expensive for
a high-end configuration server. It may be possible to decentral-
ize DPL tree building and configuration through agents communi-
cating with each other. However, the process could be extremely
complex and remain a topic for future work.

4.2 Cost models and optimality
Each ith-level local DPL takes O(X) time, as it involves apply-

ing basic local-view technique to X children in the DPL tree. Since
these local DPLs are being conducted in a concurrent manner, the
overall PL time at this level is O(X). There are O(H) level of local
DPL processes to be exercised bottom-up one after another, with H
being the height of the DPL tree. It follows that the time cost of the
entire DPL procedure is O((X) ·H). The decision nodes are com-
ponents that will experience the heaviest communication load, re-
ceiving data from the other X components in the local group. The
per-component communication load of DPL is therefore O(X).

A revisit to Proposition 3.1 brings an optimization conclusion
almost identical to the one arrived at in Subsection 3.2: that a bal-
anced X-DPL tree will yield the best time cost.



DEFINITION 4.2. An X-DPL tree is a balanced X-ary PL tree.
PL using this tree is called X-DPL.

The costs of X-DPL are highlighted in Table 2, with the time
cost being O(X · H) = O(X · logXN/2) and the communication
cost at O(X) as discussed in the previous paragraph.

Time Per-node Comm. Load
local-view O(X · logXN/2) O(X)

Table 2: X-DPL expenses.

It follows that the following optimization conclusion holds. Fig-
ure 5 depicts an optimal 3-DPL architecture for 13 components.

THEOREM 4.1. 3-DPL provides optimally scalable problem lo-
calization through decentralization.

Proof: The X-DPL time cost, O(X · logXN/2), is at its minimum
when X = 3.2

4.3 Building a X-DPL tree
The DPL tree should be constructed such that the PL workload

is distributed across application components as evenly as possible.
Specifically, situations where a component serves as decision node
for multiple levels should be avoided. In these cases, the total load
on the component, albeit less disruptive than the O(X) one-time
load in Table 2, could become O(X · H). Like the algorithm for
SPL’s, the algorithm for creating a DPL tree that we propose uses
a divide and conquer strategy. As is outlined in Figure 6, the tree-
building algorithm starts by examining the size of list L. The next
step consists of dividing the tail of the list L into X sublists, each
with N/X elements (whenever possible); and simply calling the
algorithm recursively for each of those sublists storing each result
into a list of trees LL. Finally, we return a new tree V with the
head of L at the node and make the trees in LL the children of V .

INPUT: Branching factor X and list of nodes L with at least one element
OUTPUT: X-DPL tree V

N = size(L); //Initialization
LL[X] = newList(X);
FOR ALL Xi ∈ SplitList(X, div(N, X), tail(L))

LL[i] = Recursive Call with L = Xi;
V = fork(head(L), LL);

Figure 6: X-DPL tree building algorithm. It differs from the
X-SPL tree building algorithm in Figure 2 in that, instead of
creating a new group node as parent, a component node in the
group is elected as one (the DPL decision node). This algorithm
is not subject to application-specific constraints.

5. PRACTICAL ISSUES
SPL and DPL are founded on different principles and can exhibit

contrasting strengths and weaknesses. This section compares SPL
and DPL regarding several practical issues.

5.1 Adapting to different application architec-
tures

SPL is mostly suited for applications interested in transaction-
oriented metrics such as response time and request failure rates,
which enables the direct measurement of component group sum-
maries. In addition, it is subject to workflow constraints as ex-
plained in Subsection 3.3.

DPL does not rely on summaries at component group levels and
is free from such restrictions.

5.2 Fitting into existing management infras-
tructures

Most IT facilities are already organized into a structure con-
ducive to their current management or administration domains. Con-
sider a Grid consisting of 10 clusters and 50 machines in each
cluster. Management at the Grid tier might only be concerned
with identifying the problematic cluster, while the cluster tier man-
agement must take the responsibility of identifying the faulty ma-
chine(s). Those organizations not willing to adjust their structure
in the manner described in Section 3 can still realize benefits with-
out much difficulty by incorporating their existing structure into the
scalable SPL framework. This can be achieved by introducing sev-
eral PL stages, where each stage maintains a PL tree to deal with
entities at the same management tier. For instance, rather than map-
ping the entire Grid to a 3-SPL tree (it is possible as the workflow
is uniformly parallel), it may be worthwhile to adopt a top-level 3-
SPL subtree for the 10 clusters; and under each cluster node in this
tree, a 3-SPL subtree is employed.

In contrast, DPL represents a major shift away from traditional
centralized management. However, the agents or mechanisms pro-
viding per-node information in today’s infrastructures may still be
utilized to gather data for DPL.

5.3 General networking infrastructure costs
DPL has the potential to reduce the networking infrastructure

cost in traditional centralized PL, because most of the communica-
tion of DPL is between members of the same subtree and therefore
are likely to be on the same network segment (network segment
traffic is typically switched and has a less pronounced effect on the
overall network than routed traffic). The communication between
DPL decision nodes (depending on the number of decision nodes at
a particular point in the tree hierarchy) is more likely to be routed
but will not be overwhelming.

SPL can reduce this networking infrastructure cost even further
(to the number of SPL nodes at a particular point in the tree hierar-
chy), by using summary data to determine which subtree node data
is needed for PL.

5.4 Guaranteeing PL accuracy
Due to the “speculations” at abstract component group levels,

sometimes SPL can take the wrong decision. It may favor a group
of components all mildly performing poorly (due to their aggregate
effect) over a group of components with a single highly poor mem-
ber. This limitation is particularly patent when SPL is used with
Absolute Duration. A group containing three 10-second compo-
nents will be wrongly opted for narrow-down over a group consist-
ing of one 20-second component and two 1-second components,
when the slowest (i.e. 20-second) component actually belongs to
the latter group. The problem is less serious when SPL is used with
Relative Delay, as there are normally far fewer components with
positive threshold violation (than components with positive elapsed
times) that can mislead SPL decisions.

Despite being decentralized, DPL makes PL judgments in the
same way as the basic PL technique it builds on, and does not com-
promise PL accuracy.

5.5 Causing application overhead
During the actual PL process, SPL loads the central management

entity with a majority of the PL activities, including metric compu-
tations (e.g. the delay in Relative Delay), data reception and stor-



age, and decision making. The application components are only
charged with negligible data reporting overheads.

DPL, on the other hand, dispatches the PL workload on the DPL
decision nodes, thus giving these application components an ex-
pense of a small overhead. However, given that the application is
already experiencing problems, the priority is to conduct PL and
restore normal service. In this regard, the application overhead
quoted above is trivial.

5.6 SPL vs. DPL: strengths and weaknesses
In Table 3, SPL and DPL are graded on a scale of poor, average

and good on the practical aspects discussed in this section, high-
lighting their respective strengths and weaknesses in practice. Re-
call that SPL and DPL architect equally scalable solutions (see Ta-
ble 1 and Table 2), and Table 3 can act as a point of quick reference
as to which framework to adopt in reality.

SPL DPL
Application adaptability Poor Good
Existing infrastructure fit Average Poor
Minimum network load Good Average

Minimum overhead Good Average
Accuracy guarantee Average Good

Table 3: SPL vs. DPL.

6. CASE STUDIES
Using a scalability benefit metric we design, this section serves

to demonstrate advantages of our scalable architectures in various
large-scale simulated settings as well as two relatively small real-
world applications: eDiaMoND and an Internet data center. The
reasons we chose those two environments were three-fold: 1) it
means we can exhaustively illustrate the entire PL process under
the scalable frameworks in graphical and text forms; 2) it confirms
that the scalability problem is already starting to surface even when
the environment is not large; 3) the scalability gain for large envi-
ronments has been principally shown in the simulations.

6.1 Scalability benefit
In practice, we are interested in how much benefit the scalable

solution brings. In general, the smaller the PL communication and
time complexity is for a system of size N , the better the PL solution
scales for this system. Therefore the following metric can be used:

DEFINITION 6.1. The Complexity Reduction Rate of a scal-
able framework is the ratio between the time or per-node load com-
plexity of the scalable solution and that of the basic PL technique
it builds on.

The definition is designed to be of particular value to system ad-
ministrators contemplating a possible switch from an existing PL
solution that does not scale for their environments to a scalable
one. The complexity reduction supports estimations like: “Em-
ploying X-SPL or X-DPL will reduce the network communication
overhead to 10% of its current level”, and aid autonomic manage-
ment software or administrators in making sensible decisions.

6.2 Simulations
We first empirically measured the scalability benefit of using

SPL and DPL in simulated environments consisting of 500 (rep-
resenting medium size campus Grids) to 50000 nodes (represent-
ing very large-scale environments like those used by Google [5]).
These nodes were simply random elapsed time number generators.

Both SPL and DPL were implemented using local-view technique,
Absolute Duration, but only SPL was coupled with Damage Score
due to DPL’s incompatibility with global-view techniques. The
simulations were written in Matlab and run on a dual 3.0 GHz CPU
Redhat Linux server with 1GB memory.

Table 4 lists the time complexity reduction rate results. Applying
SPL and DPL to local-view techniques achieved a promising 3% or
so reduction rate. The reduction rate rose sharply to around 0.06%
for very large environments. The time savings was even more im-
pressive when SPL with global-techniques was considered, already
reaching 0.02% for medium environments and increased rapidly to
far below 0.01% for very large environments. Similar trends can
be observed from the PL per node comm. load results in Table 5.

N 500 5000 50000

SPL (local-view) 3.39% 0.47% 0.06%

DPL (local-view) 3.11% 0.38% 0.06%

SPL (global-view) 0.02% < 0.01% << 0.01%

Table 4: Optimal PL time reductions.

N 500 5000 50000

SPL (local-view) 0.06% < 0.01% << 0.01%

DPL (local-view) 0.07% < 0.01% << 0.01%

SPL (global-view) 0.06% < 0.01% << 0.01%

Table 5: Optimal PL per-node comm. load reductions.

6.3 Slow response time in eDiaMoND
Figure 7 shows a typical scenario in the eDiaMoND Grid [6],

an OGSA-enabled federated database of annotated mammograms,
where the image list service (IL) acts on a radiologist’s behalf to
retrieve mammograms assigned to him/her for comparison. On
this occasion, the image list service gets the IDs and locations of
two images assigned to the radiologist from the work list service
(WL). Suppose one image is stored on local site L and the other
on remote site R. Two simultaneous requests are then issued to
the image retrieve service on both sites (IRL, IRR) which in turn
acquires the image through an on-site ogsa dai (database) service
(DBL, DBR).

DBRIRR

DBL,D,F 

IRL,D,F 

WL,D,F 

IL

IL

WL

IRL

DBL

IRR

DBR

Figure 7: Applying 2-DPL to eDiaMoND.

In our experiment, these services were hosted by four AIX ma-
chines with two 3.0 GHZ dual core CPUs and 2GB memory and
two separate 3.0 GHZ dual core CPUs of a Redhat Linux server
with 1GB memory. Extra routing was imposed between WL and
IRR on calls to IRR through request forwarding to emulate a con-
nection to a remote site.

Absolute Duration was used with DPL to identify the slowest
service (e.g. to add capacity on) in the eDiaMoND scenario. It was



repeatedly executed using a sliding window (e.g. one day) of data
collected at short intervals on eDiaMoND (through [15]), each time
using one data point. The service labeled the slowest by DPL the
most times was isolated.

As was described in Section 4, SPL is unsuitable for this task as
its use tends to undermine the accuracy of Absolute Duration, and
a 2-DPL process as is illustrated in Figure 7 (right) was adopted
with an aim to reduce overall PL time. The elapsed time compar-
ison among two groups of services was conducted locally within
each service group in parallel, with the local and remote image locator
services chosen to be the slowest respectively after repeated local
Absolute Duration processes. Further comparison at the second
DPL phrase revealed that the remote image locator is where
capacity should be added. It was the concurrency in phrase one
that led to the reduction in PL time as is manifested in Table 6.
The gain in time is substantial enough to make a difference in self-
management processes that are carried out every few seconds.

Architecture Scalable Non-scalable
Time measured (seconds) 1.8906 2.8125

Table 6: PL time in eDiaMoND.

6.4 Abnormal request failures in Internet data
centers

Internet services for popular web sites are powered by large data
centers that may draw together computing facilities from differ-
ent sites. Figure 8 (top) depicts the topology of a commercial
data center setup designed for hosting large, high-profile events.
Workloads imposed by users are distributed across three locations
by a global load balancer. Each site is typically equipped with a
tiered web application environment possibly consisting of 27 HTTP
servers, 27 application servers, and a database server. Once for-
warded to a certain site, a user request traverses, in turn, one of
the HTTP servers, one of the application servers and the database.
The HTTP/application server handling the request was chosen by
local load balancers sitting in front of corresponding tiers. Manage-
ment and monitoring applications (like the IBM Enterprise Work-
load Manager [9]) can be used in these environments to enable the
periodic gathering of request elapsed time numbers on the tiers of
web components both individually and collectively.

Suppose we apply the methodology behind Relative Delay to re-
quest failure counters, to find the component that sees the most
abnormally high number of failed requests. We refer to this new
technique as Relative Failures. In an environment like the data cen-
ter setup in Figure 8, Relative Failures can often effectively single
out the problem-causing component, despite the fact that request
failure counters measured on a certain component do not directly
reflect its state. For instance, it is true that a problem with applica-
tion server AS1 can also lead to all affiliated HTTP requests to fail
and all the counters on the HTTP servers to rise. Nevertheless, the
increase on the HTTP servers is likely to be less evident than the
increase on AS1 itself, as a majority of the HTTP requests are for-
warded to the other properly functioning applications servers and
succeed. Hence examining the abnormality of failure counters in
this case will still disclose the true cause AS1.

SPL rather than DPL should be employed in this case, since the
data center is likely to be heavily loaded most of the time and the
per-component overhead DPL may impose can prove unaffordable.
The SPL process is shown in Figure 8 (bottom). It is founded on
the best possible PL tree complying with the data center workflow.

The per-node PL cost using Relative Failure and SPL on top of
it, at an estimated 50K per report per component, is listed in Table
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Figure 8: Applying 3-SPL to a data center. Branches not
touched in the SPL process are not displayed. As highlighted,
the single database server on each site can not be grouped with
other components due to the workflow.

Architecture Scalable Non-scalable
Per-node data load (Kilobytes) 150 8250

Table 7: Per-node PL comm. load for a data center.

7. The gain resulted from using the scalable solution is obvious,
for plain Relative Failures required every server to send data to a
central management entity (at any one time): 3 ∗ (27 + 27 + 1) ∗
50K = 8250K, whereas only data from three components were
reporting data in the scalable solution (at any one time): 3∗50K =
150K.

7. RELATED WORK
Most existing problem localization efforts [2, 13, 7, 14], whilst

effective in their own rights, make no attempt to address the issue
of scalability. These works have been summarized in Section 2.

Some recent approaches have in some way contributed to tack-
ling the scalability problem. McKnight et. al. [9] describe a
top-down strategy with resemblances to SPL, where primary sys-
tem counters are first examined to find ailing subsystems within a
server, before detailed analysis is conducted on these subsystems
to locate root causes. However, unlike the architecture we put for-
ward, this top-down process is not generalized to a multi-layer hi-
erarchy or optimized in any way, nor does it consider practical con-
straint like application workflows that might hinder the solution.

Other attempts such as Astrolabe [11], Yemanja [3] and that
made by Aridor et. al. [4], that feature hierarchical, scalable de-
signs, where lower-level events are aggregated and used to trigger
higher-level ones. Astrolabe is a general management framework
thriving on gossips [11]. Yemanja [3] tackles problem localization
in networks. While such a bottom-up mechanism is somewhat sim-
ilar to the one used in DPL, their event-based frameworks will not
apply to problems (e.g. slow response time) that require comparing



quantified states (e.g. elapsed time) of different components to de-
termine. None of these works has the concept of decentralization
or concurrent PL execution. Optimization and application-specific
issues, again, are overlooked.

8. CONCLUSIONS AND FUTURE WORK
This paper has presented two optimally scalable problem local-

ization frameworks for facilitating efficient management of rapidly
enlarging, complex distributed environments. The summary-driven
framework, SPL, utilizes summary statistics to implement a top-
down approach that steers the problem localization process clear
of innocent components as early as possible. The decentralized
framework, DPL, leverages the locality of some problem localiza-
tion methods to boast a bottom-up process that is highly concurrent
in execution and confined in data communication.

Shaping the frameworks with a balanced tree structure and fixing
branching factor X to a optimal (constant) value by Theorem 3.1
and 4.1, both SPL and DPL have O(logN) (logarithmic) PL time
and O(1) (constant) PL per node communication load. In practice,
it has been analytically concluded and empirically confirmed that

• SPL is superior to DPL in distributed environments that re-
quire PL with global QoS goals built in, that are less tolerant
of extra overhead imposed on application components, and
that would wish to preserve existing centralized management
infrastructure; whereas

• DPL is more suitable than SPL when it comes to systems
where there is no notion of transactions, where the workflow
is complicated and where highly accurate problem localiza-
tion is essential.

The approaches proposed here can be generalized and applied in
wider contexts in the following ways: 1) The theorems and algo-
rithms described in this paper can be employed for problem local-
ization in any multi-component systems (distributed across multi-
ple servers or not, transaction-oriented or not) to improve localiza-
tion efficacy (even . For transaction-oriented systems whose com-
ponent paths are dynamic (e.g. through service-oriented discovery
and binding [10]), it is assumed that the dynamism will be cap-
tured by the underlying basic PL techniques via end-to-end request
tracing [15]. 2) Both SPL and DPL work with a wide range of ba-
sic PL techniques, including those not explained in detailed in this
paper.3) As was preliminarily demonstrated in Subsection 6.4, the
proposed approach is effective against problems concerning other
metrics than response time, providing that according basic PL tech-
niques are available. 4) Both SPL and DPL, if coupled with ac-
cording cost models, may also be utilized by general management
infrastructures such as Astrolabe [11] and Yemanja [3] to minimize
its inter-tier communication overhead. These topics will only en-
tail moderate changes to the present work. Progress made in these
areas may well become part of a significant step towards providing
self-managing, self-optimizing capabilities to complex computing
systems.

It will also be interesting to explore possibilities of building a hy-
brid framework that harvests the strengths of both SPL and DPL.
Efforts are also being made to gain access to relatively large sys-
tems to enable thorough evaluation of the scalable frameworks against
real-world workloads.
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