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ABSTRACT

We present a system called “OntoZilla”, which combines
ontologies and P2P systems, with a vision of improving the
process of information searching and facilitating greater in-
tegration as well as interoperability. In OntoZilla, peers sup-
porting the same concept are grouped into the same cluster,
and the relationships between clusters are modeled accord-
ing to the concepts they specialize in. Therefore, a query
belonging to a specific concept can be routed to the suitable
group of peers in a systematic way, thus supporting efficient
concept search.

Categories and Subject Descriptors

C.2.2 [Network Protocols]: Routing protocols; H.3.5 [Online
Information Services|: Web-based services; 1.2.4 [Knowledge

Representation Formalisms and Methods]: Semantic
networks

1. INTRODUCTION

Information technology offers us fast channels of commu-
nication and huge volumes of information. Current keyword
search methods can retrieve irrelevant data that contain cer-
tain terms with different meanings. However, they may miss
relevant data that contain different terms with the same
meaning as the desired content [G]. Besides, the links among
data commonly offer little information. As a result, we have
to spend a lot of time identifying the similarities, differences,
and relationships among pieces of knowledge, which is te-
dious and time consuming. This may be attributed to the
fact that computers can only aid in information searching to
a limited extent, because information is mostly represented
in formats that machines cannot understand well. Ontolo-
gies [, which express knowledge and the relationships in
the knowledge with clear semantics, can make knowledge
machine-interpretable and thus improve the process of in-
formation searching.
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Moreover, the information world has evolved from a single
isolated scheme to loosely-coupled networks. Heterogeneous
information sources need to be integrated to share knowl-
edge. Services and services, plus agent programs, need more
interoperability to achieve maximum synergy. To make these
tasks scalable and maintainable, automatic processing of
information becomes necessary. Automatic processing re-
quires machine-interpretable representation of information
semantics. Ontologies are again a key technology that smooths
the way to greater integration and interoperability.

Search flexibility and interoperability must be founded on
a network infrastructure that facilitates distributed infor-
mation sharing. Among various network schemes, P2P sys-
tems have emerged to be the most promising candidate, e.g.,
Gnutella [8], SETI@home [I3], and Freenet [3]. In a P2P sys-
tem, peers are organized into an overlay network to share
resources. With an aggregation of resources at peers, P2P
systems have presented overwhelming superiority over tradi-
tional centralized systems. Pitifully, the lack of semantic ca-
pability hinders the advancement of P2P systems and makes
them only adopted in several fields, such as file-sharing ap-
plications.

We believe that combining ontologies and P2P systems
will make them benefit from each other and thus result
in synergy. In a P2P system combined with ontologies,
users can annotate their resources with ontologies, and easily
share the resources with each other via the overlay network.
Since the resources are described in machine-interpretable
formats, computers can help us precisely retrieve the de-
sired content. These intelligent forms also enable users as
well as computers to better utilize the resources. On the
other hand, a wide variety of services can also benefit from
the combination of ontologies and P2P systems. This is
because by semantically annotating services and organiz-
ing them in a P2P network, the services can dynamically
discover each other and select the suitable ones, achieving
better automatic service execution, composition, and inter-
operation.

Many researchers have focused on a combination of on-
tologies and P2P systems. The work in [4] uses a clustering
strategy to group peers with identical or similar content, im-
proving the search performance in P2P networks. However,
its query routing still relies heavily on unsystematic broad-
casting. Note that clustering has also been used to improve
search in P2P |2]. Without ontologies, however, peer re-
lationship cannot be fully utilized to explore the network.
The work in [IJ is based on structured networks, which of-
ten exploit Distributed Hash Tables (DHTs) [12, [[4] to of-
fer efficient exact match search while ensuring scalability.
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However, using bit vectors to represent information may re-
quire some compromises with respect to the use of semantic
knowledge. Besides, maintaining a hash table at distributed
nodes would not be an easy task, especially when nodes may
join and leave the network frequently. Moreover, as peers
may not be willing to accept arbitrary connections or con-
tent from others [, the rigid topology that requires peers
to manage dedicated resources would restrict peer auton-
omy [B [7]. Finally, some research [I0] leverages central-
ized mechanisms to build a network that supports flexible
and expressive queries. Unfortunately, the use of central-
ized mechanisms makes systems vulnerable to attacks and
failures, and must assume the existence of powerful and en-
thusiastic super-peers. All these drawbacks highlight the
need for a robust design that also meets the requirement of
flexibility.

In contrast to the above approaches, we design a system
called OntoZilla, to utilize the synergy between ontologies
and P2P systems, with a vision of improving the process
of information searching and facilitating greater integration
as well as interoperability. In a P2P system, a peer may
have interests in some kinds of information, or concentrate
on providing particular expertise or services. This charac-
teristic can be viewed as the Special Interests of a peer.
Peers in our system are organized according to their rela-
tionships, which are based on their special interests. Peer
relationships can be modeled with ontologies. For exam-
ple, a peer with the knowledge of “programming languages”
and another peer with the knowledge of “object-oriented
languages” can be related by a hierarchical relationship; a
peer providing the service of “hotel reservation” and another
peer providing the service of “travel agent” can be related by
a cooperative relationship. Using semantic links to reflect
the relationships among peers, queries can be routed to the
peers with suitable information or services in a systematic
way. Thus, our system can avoid blind flooding, which is
often adopted by unstructured P2P networks.

On the other hand, since peers may join and leave the net-
work constantly, their relationships have to be updated as
the network evolves. In our system, each peer describes itself
with a peer description, which is represented with an ontol-
ogy language (e.g., OWL [9]). By exchanging peer descrip-
tions periodically, peers can become acquainted with each
other. As a result, they can evolve their relationships by
referring to peer descriptions and then establishing seman-
tic links with more suitable peers. Therefore, our system is
more flexible than P2P networks based on rigid structures.

The rest of this paper is organized as follows. Section
presents our system design. Section Bl presents the detailed
construction and maintenance algorithms. Conclusions and
future work are offered in Section Hl

2. ONTOZILLA
2.1 System Overview

Special Interest Groups

In a P2P system, a peer may have interests in some kinds
of information, or concentrate on providing particular ex-
pertise or services. This characteristic can be viewed as
the Special Interests of a peer. Peers’ special interests can
be categorized into groups, referred to as Special Interest
Groups (SIGs). Peers with identical or similar special inter-
ests are grouped into the same SIG. The categorization of
special interests can refer to the first-level classes of some
classification systems, for example, the ten main classes of
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Figure 1: A Sketch of OntoZilla

the Dewey Decimal Classification system and the main cat-
egories of the Yahoo! Directory. In this paper, we use “Mu-
sic”, “Business”, and “Computers” as the sample SIGs for
illustration.

Clusters and Semantic Links

Within each SIG, peers employ some classification systems
to hierarchically classify their special interests into concepts,
or classes. Each class can be created as a cluster that further
groups peers supporting the same concept. Peers in the net-
work are organized according to their relationships, which
are based on their special interests and supporting concepts.
Peer relationships can be modeled with ontologies. We de-
sign several kinds of links with semantics, or semantic links,
to reflect peer relationships. Peers that have an inheritance
relationship can connect with each other via parent links
and child links; peers in the same cluster can connect with
each other via twin links; peers in different SIGs can connect
with each other via SIG links; peers that have a coopera-
tive relationship can connect with each other via partner
links. As a result, peers supporting the same concept form
a cluster, and all clusters in the same SIG form a hierar-
chical tree. Moreover, the communication channels between
different SIGs are established. Fig. [l shows a sketch of our
system. Each color in this figure represents a different SIG.
The semantic links among peers can direct queries to the
peers with suitable information or services, thus enabling
efficient query routing.

Classification Systems

The number of the classification systems used in a SIG is
not limited. For simplicity, however, we assume that peers
in a SIG use only one classification system. In a classifi-
cation hierarchy, each class is associated with at least one
node of the hierarchy. The link between a parent node and
a child node denotes an “is subclass of” (is-a) relationship.
The classes that have direct is-a relationships with a lower
class are called its parent classes, whereas the classes that
have direct is-a relationships with a higher class are called
its child classes. The classes that have indirect is-a rela-
tionships with a lower class are called its ancestor classes,
whereas the classes that have indirect is-a relationships with
a higher class are called its descendant classes. Parent and
ancestor classes are all called super-classes, whereas child
and descendant classes are all called subclasses. For simplic-



ity, we only consider the single inheritance scenario. There-
fore, a class can have only one parent class, but have multiple
child classes.

The class associated with the root node of the classifica-
tion hierarchy is the root class of the SIG, and its class name
follows the name of the SIG. The name of its subclass fol-
lows the name of the associated node in the hierarchy, and
so on. For the purpose of familiarity and illustration, we
assume that peers in the “Computers” SIG use the ACM
Computing Classification System (CCS) to classify informa-
tion and services. Hence, in this SIG, the name of the root
class is “Computers (0)”, and the names of its child classes
are “Hardware (1)”, “Computer systems organization (1)”,
“Software (1)”, “Computing methodologies (1)”, etc. Each
number in parenthesis denotes a cluster’s hierarchical level
in the CCS.

Ontology-based Descriptions

Each SIG is described with a SIG description. A SIG de-
scription contains the SIG name and some annotations
of the SIG. SIG descriptions are known by all peers in the
network. Similarly, each class is described with a class de-
scription. A class description contains the class name, the
SIG name, the classification hierarchy, and some an-
notations of the class. SIG and class descriptions are rep-
resented with ontology languages; therefore, the similarity
measures between SIGs or between classes can be intelli-
gently evaluated with semantic matching techniques. A sim-
ilarity measure is used to determine the semantic similarity
between two matters. If the similarity measure exceeds a
specific matching threshold, we can say that the two matters
describe the same thing.

Peers describe their special interests also with ontology
languages. Therefore, peers’ special interests can be com-
pared with SIG or class descriptions to evaluate their simi-
larity measures. Each peer joins the SIGs that are seman-
tically similar with its special interests, and further joins
the clusters that are semantically similar with its support-
ing concepts. A peer may join more than one SIG and more
than one cluster. For presentation purposes, we assume that
each peer joins only one SIG and one cluster. Therefore,
each peer joins the network first by selecting a SIG that
most matches its special interests. Then, it selects a cluster
that most matches its supporting concepts and joins that
cluster.

Ontology-based, Semi-structured, and Evolutionary Net-

work

Peers in the network use semantic links to reflect their rela-
tionships. Peers supporting the same concept form a clus-
ter, and all clusters in the same SIG form a hierarchical
tree, called the cluster tree. Moreover, the communication
channels between different SIGs are established. These de-
signs result in an ontology-based and semi-structured net-
work topology. According to the reflected peer relationships,
queries can be routed to the peers with suitable information
or services in a systematic way. Thus, our system can avoid
blind flooding, which is often adopted by unstructured P2P
networks.

On the other hand, since peers may join and leave the
network at will, their relationships have to be updated as
the network evolves. In OntoZilla, each peer describes itself
with a peer description, which is represented with an ontol-
ogy language. A peer description contains the peer’s SIG
name, SIG ID, class name, cluster ID, IP address,
along with some additional information that can be used
to judge the adequacy of the peer. The SIG ID is gener-

ated by the first peer, or creator peer, of the SIG. It is the
creation timestamp concatenated with the creator peer’s 1P
address. The cluster ID is generated in a similar way. SIG
IDs and cluster IDs are used to detect partition.

By exchanging peer descriptions periodically, peers can
become acquainted with each other. Consequently, they can
evolve their relationships by referring to peer descriptions
and then updating semantic links, resulting in an evolution-
ary network. In addition, when a peer needs to establish
semantic links to peers in a cluster or a SIG as its neigh-
bor peers, if there are several choices, it can flexibly select
one according to some neighboring criteria, such as phys-
ical distance proximity, availability, security, privacy, and
trust. Peers can establish semantic links with each other in
this flexible manner, thus enhancing the efficiency and ef-
fectiveness of the network. Therefore, our ontology-based,
semi-structured, and evolutionary P2P network, OntoZilla,
is more flexible than P2P networks based on rigid structures.

2.2 Semantic Links

A peer establishes semantic links to other peers by simply
adding their peer descriptions into its routing table. The
peers recorded in the routing table are called its neighbor
peers since it has direct links to them. Semantic links can
be categorized into three types:

e SIG links, which are used to connect the peers of
different SIGs. The link connecting peer x of SIG, to
peer y of SIG, is represented as * = y.

e Family links, which are used to connect the peers of
the same SIG. The link connecting x of SIG, to y also
of SIG, is represented as r — y.

e Partner links, which are used to establish a cooper-
ative relationship between peers. For example, if peer
x has to frequently retrieve information or acquire ser-
vices from peer y, then x can maintain this relationship
by establishing a partner link to y, thereby to speed
up subsequent accesses to y. The link is represented
as T --» y.

If two peers establish semantic links with each other, their
relationship can be represented with a bidirectional arrow,
eg,r Yy, r—y, and x «---» y.

In each SIG, peers establish family links with each other
to reflect the relationships within their SIG. Family links
can be further divided into the following four types:

e Twin links: Peers belonging to the same class are
grouped into a cluster. They connect with each other

via twin links. We use — to denote a twin link.
The topology in a cluster is not restricted to any spe-
cific structure. However, we require the structure of a
cluster to be connected to support exhaustive search
within the cluster. Note that the size of a cluster is
typically small. Thus, if one wishes, he/she can simply
organize peers in a cluster as a complete graph.

e Parent links & Child links: A peer connects to
peers of its parent class with parent links, whereas it
connects to peers of its child classes with child links.

We use = to denote a parent link, and use <, to
denote a child link.

e Ancestor links & Descendant links: Clusters in
a SIG may be created or destroyed as the network
evolves; thus, not all clusters of a SIG may exist in the



network. As a result, a peer may need to establish di-
rect connections with the peers of its closest ancestor
class (via ancestor links) or closest descendant classes

(via descendant links). We use 2, to denote an ances-
tor link, and use L, to denote a descendant link.

A cluster’s parent cluster and directly-connected an-

cestor clusters are called its direct higher clusters, whereas

a cluster’s child clusters and directly-connected de-
scendant clusters are called its direct lower clusters.

e Cousin links: Since not all clusters of a SIG may
exist, the cluster tree may be partitioned into several
subtrees without common nonempty superclass. To
connect these subtrees, peers in the root clusters of
disjoint subtrees establish cousin links with each other.

o -
We use — to denote a cousin link.

2.3 Evolution of Peer Relationships

Since peers may join and leave the network at will, peers
have to update their relationships as the network evolves.
This is done by peer gossip, which lets peers periodically
exchange their peer descriptions and thereby know the evo-
lution of the network. Family links are updated /replaced in
accordance with the family link priorities, as follows: For
each peer, the priority of parent links is higher than that of
ancestor links, and the priority of child links is higher than
that of descendant links. For example, suppose a peer in the
cluster “Distributed databases (4)” has established ancestor
links to its ancestor cluster “Computer-communication net-
works (2)”, but later on it finds that its parent cluster “Dis-
tributed systems (3)” has been created. As a result, it can
establish parent links to the parent cluster, and may then
drop its existing ancestor links.

Similarly, for all ancestor links of a peer, the closer the
ancestor class’s level, the higher the ancestor link’s priority.
Likewise, the closer the descendant class’s level, the higher
the descendant link’s priority. Moreover, if a peer finds that
its parent or an ancestor cluster has been created, it may
drop its cousin links since its own cluster is no longer the
root cluster. So the priority of parent and ancestor links are
higher than the priority of cousin links.

Finally, recall that our semi-structured property allows a
peer to flexibly select peers to establish semantic links, as
compared to a rigid structure imposed by DHT-based P2P
systems. Peer gossip also allows peers to learn of “better”
neighbors, so as to improve the efficiency and effectiveness
of our system.

3. CONSTRUCTIONAND MAINTENANCE

In this section, we present the construction and mainte-
nance algorithms of OntoZilla.

3.1 Join

A peer, z, first determines its own SIG, SIG., and class,
X, and then joins the network in accordance with the SIG
join process and the class join process. The goal of the SIG
join process is to have x establish SIG links with peers in
other SIGs, thereby opening the communication channels
between x and other SIGs. The class join process allows x
to join its own cluster and establish family links with other
peers in SIG,, thus enabling efficient routing within this
SIG.

3.1.1 SIG Join Process

To begin with, peer = randomly selects a peer, say v,
as the contact peer and connects to the network. Next, x

SIG| IP
Biz| b

SIG| IP

Music| a Y SGl P
Comp
c

Figure 2: A SIG Join Example

broadcasts SIG inquiry messages through y within the range
MAX_HOP_SIG_INQUIRY. Each SIG inquiry message contains x’s
SIG name and IP address. All the peers that receive the
messages and know peers of SIG, will reply to « with SIG
answer messages. Each SIG answer message contains some
IP addresses of peers in SIG.

If x receives SIG answer messages, it selects a peer, say z,
of the same SIG, and joins this existing SIG with the help
of z. Otherwise, x creates a new SIG that most matches its
special interests, and creates a cluster that most matches its
supporting concepts.

Then, x must exchange peer descriptions with other peers.
Peer x broadcasts peer join messages, which carry its peer
descriptions, within the range MAX_HOP_PEER_JOIN. All the
peers that receive the messages are informed of z’s partici-
pation in SIG,, and then send their peer descriptions to x.
Among those peers, the peers of different SIGs from SIG,
can add SIG links to x into their routing tables, establish-
ing the communication channels to SIG.. The peers of SIG
can establish family links to x or replace some of their ex-
isting family links with the new link to = according to the
family link priorities. The receiving peers can also replace
some of their existing neighbors with x if x is superior to
them.

On the other hand, after = receives peer descriptions for
its join messages, for each SIG that is different from SIG,,
x has to select some peers of that SIG according to some
given neighboring criteria, and then add SIG links to them
into its routing table. Also, x has to establish family links
with peers of the same SIG in the class join process.

We illustrate the SIG join process with the following ex-
ample. First, peer a, whose SIG is “Music”, joins the net-
work and creates a “Music” SIG. Next, peer b, whose SIG
is “Business”, joins the network by using peer a as its con-
tact peer. Then, b broadcasts SIG inquiry messages through
a within the range MAX_HOP_SIG_INQUIRY. As b cannot find
the “Business” SIG, it creates a new SIG. Following that,
it broadcasts peer join messages through a within the range
MAX_HOP_PEER_JOIN. After a is informed of the creation of
the “Business” SIG, it sends its peer description to b, and
then adds a SIG link to b into its routing table.

On the other hand, after b receives the response descrip-
tion, it adds a SIG link to a into its routing table. As a
result, a and b establish SIG links with each other. Subse-
quently, peer ¢, whose SIG is “Computers”, joins the net-
work by using b as its contact peer. It then follows a similar
procedure to create a “Computers” SIG and establish SIG
links to b and a, each which will also establish a SIG link to
c. The result is depicted in Fig.

From this figure, we can see that each peer has SIG links
to all the other SIGs. However, as the network size grows,
peers in different SIGs may not reach each other immedi-
ately. In OntoZilla, each peer periodically broadcasts peer
gossip messages within a random range. Like a peer join mes-
sage, a peer gossip message also contains a peer description;



thus, peers can establish semantic links also by referring to
gossip messages. Through a chain of peer gossip, peers in
different SIGs can become acquainted and eventually reach
each other.

3.1.2 Class Join Process

In the SIG join process, x knows some peer z in its SIG
when it discovers an existing SIG it belongs to. Peer = can
then use z as a “guide peer” to join its class cluster in the
SIG. The class join process is divided into two stages: the
class finding stage and the family linking stage.

Algorithm 1 peer z.joinCluster()

if x can find its own cluster X then
(x Case 1 %)
joinThroughCluster(X);
else if = can find its parent cluster P then
(% Case 2 *)
create a cluster X;
joinThroughCluster(P);
else if = can find its ancestor cluster A then
(% Case 3 x*)
create a cluster X;
joinThroughCluster(A);
else if x can find its child cluster C then
(% Case 4 *)
create a cluster X;
joinThroughCluster(C);
else if x can find its descendant cluster D then
(% Case 5 *)
create a cluster X;
joinThroughCluster(D);
else
(x Case 6: x’s own cluster is disjoint with all existing subtrees
in this SIG x)
create a cluster X;
O «— selects the root cluster of a disjoint subtree;
joinThroughCluster(O);
end if

Class Finding Stage

In this stage, x has to find its own cluster. However, x may
be the first peer of its class to join the network. If  cannot
find its cluster, it finds the cluster that is closest to its hierar-
chical position, and joins the network through that cluster.
The process is as follows. First, x copies z’s routing table
to itself. Since peer relationships within a SIG are guided
by family links, x can find the closest cluster without the
need to flood the whole network. Through family links, =
can visit clusters in turn and approach its own cluster gradu-
ally. Then, z joins a cluster in accordance with Algorithm [l
This algorithm uses another algorithm joinThroughClus-
ter, which allows z to establish family links in the family
linking stage.

Family Linking Stage

In this stage, « has to establish family links with peers in the
same SIG. Before presenting the algorithms of this stage, we
first see an example of clusters depicted in Fig. In this
figure, peers belonging to the same cluster are enclosed with
a dashed line. Each cluster is also given a more meaningful
class name taken from the ACM CCS. Peers z1 and z2 are
in cluster X (of “Computer-communication networks (2)”).
Likewise, p1, p2, and p3 are in cluster P, which is the parent
cluster of X. Cluster X has two child clusters C; and C;.
X also has a descendant cluster D. Peers in D establish
ancestor-descendant links with X since the parent cluster of
D has not yet been created. Clusters C;, C;, and D are all
direct lower clusters of X, whereas X is the direct higher
cluster of them.

From Fig. Bl we can see that each peer has to maintain
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Figure 3: An Example of Clusters

some family links. First, peers in the same cluster connect
with each other via twin links. In addition, each peer has
to maintain parent links to its parent cluster, such as the
link connecting peer x1 to p1. Moreover, each peer has to
maintain child links to every child cluster. For example,
peer x2 has a child link to ¢;; in its child cluster C;, and
another link to peer c¢;, in its child cluster C;. Ancestor and
descendant links are maintained in a similar way. Hence,
all peers in cluster X have to maintain descendant links to
cluster D, whereas all peers in cluster D have to maintain
ancestor links to X. By connecting peers in this fashion, a
peer can reach at least one peer in its own cluster, in every
direct higher cluster, and in every direct lower cluster.

3.1.3 Fault Tolerance

In OntoZilla, each peer in a SIG has to maintain family
links to its own cluster, direct higher clusters, direct lower
clusters, and cousin clusters. The minimal number of links
that a peer needs to connect to each cluster is referred to as
MIN_LINK_TO_CLUSTER.

Consider the following scenario. As discussed in Sec-
tion 23] when a peer z finds that its parent cluster P is newly
created, it may drop its ancestor links since the priority of
parent links is higher than that of ancestor links. However,
if the creator peer of P later leaves the cluster before other
peers join P, peers in z’s cluster have to re-establish ances-
tor links to their ancestor cluster. The problem becomes
more evident if the creator is the only peer in the cluster
and joins and leaves the network very often. To cope with
this problem, we enhance fault tolerance with the following
rule.

RULE 1. Only when the number of links a peer uses to
connect to a specific cluster is greater than or equal to
MIN_LINK_TO_CLUSTER, can the peer drop its links to another
cluster with a lower family link priority.

Fault tolerance can be further enhanced by the following
rule:

RULE 2. When the number of peers in a specific cluster is
less than MIN_LINK_TO_CLUSTER, all the peers that have links
to the cluster have to establish links to another cluster with
a lower family link priority.
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3.1.4 Algorithms of the Family Linking Stage

We now present the algorithms of the family linking stage.
According to Algorithm [M in the class finding stage, peer x
may encounter six cases. In the family linking stage, the
way to establish family links in Cases 2 and 3 are similar.
Also, the way to establish family links in Cases 4 and 5 are
similar. Hence, we present only the algorithms of the family
linking stage in Cases 1, 2, 4, and 6.

Case 1 (z joins through its own cluster). The case con-
cerns the situation in which = can locate its own cluster X
in the class join process. For illustration, Fig. Bl shows a
sample network before x joins.

As discussed in Section BZITT] after = joins/creates a SIG,
it must exchange peer descriptions with other peers. To do
so, x first selects at least MIN_LINK_TO_CLUSTER peers from
cluster X, and then broadcasts peer join messages through
these peers within the range MAX_HOP_PEER_JOIN. As a result,
some peers in cluster X, in X’s direct higher clusters, and in
X’s direct lower clusters, can receive the join messages. In
addition, peers in other SIGs may also receive the messages.
All of the peers that receive the messages are informed of z’s
participation in SIG, and X. They reply to z’s join messages
by sending their peer descriptions to x. Then, according to
their relationships with z, they can add semantic links to =
or update their existing semantic links. Specifically, among
those peers, the peers in X can add/update their twin links;
the peers in P can add/update their child links; the peers in
X’s direct lower clusters can add/update their parent links
or ancestor links; the peers in other SIGs can add/update
their SIG links. All of the peers can select their neighbor
peers according to some given neighboring criteria.

On the other hand, through the received peer descrip-
tions, x can establish family links to peers in SIG, as fol-
lows. First, x selects at least MIN_LINK_TO_CLUSTER peers
from its own cluster to establish twin links to them; at least
MIN_LINK_TO_CLUSTER peers from its parent cluster to estab-
lish parent links to them; and for each child cluster, x selects
at least MIN_LINK_TO_CLUSTER peers from the cluster and es-
tablishes child links to them. Also, if cluster X has descen-
dant clusters, such as D in Fig. Bl x has to establish descen-
dant links in a similar way. As usual, in the above = can
select its neighbor peers according to some given neighbor-
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Figure 6: An Example of Case 2: After x joins

ing criteria. Fig. Blshows the network after the join process.
The differences from Fig. Bl are colored with orange.

Case 2 (= joins through its parent cluster). This case
concerns the situation in which z cannot find its own clus-
ter, but can find its parent cluster P. Fig. Bl shows a sam-
ple network before x joins. In this example, z’s class X is
“Computer systems organization (1)”; however, the corre-
sponding cluster has not yet been created. The root cluster
P has some direct lower clusters. Class C; is class X’s child
class, but class C; is not. (C;’s parent class is “Software
(1)?). In addition, D; is X’s descendant class. According to
Algorithm [l = creates a cluster X, and then joins through
its parent cluster P. Then in the family linking stage, =
sends a peer join message to an arbitrary peer in P to inform
it of the creation of X. The peer then broadcasts z’s peer
join messages throughout cluster P. The messages are also
broadcast throughout the clusters of X’s child and descen-
dant classes (i.e., C; and D; in the example).

As a result, all peers in P, C;, and D;, and perhaps some
peers in other SIGs, will receive x’s peer join messages. All
of the receiving peers then exchange peer descriptions with
z and evolve their semantic links. Fig. @l illustrates the net-
work after x joins. According to Rule [ of fault tolerance,
as cluster X grows, the ancestor-descendant links between
P and C;, and the ancestor-descendant links between P and
D;, can be dropped.
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Case 4 (z joins through its child cluster). The case con-
cerns the situation in which z cannot find its own, parent, or
ancestor clusters, but can find its child clusters. Fig.[dshows
a sample network before x joins. In this example, x’s class
X is “Computer-communication networks (2)”; however, the
corresponding cluster has not yet been created. Class C; is
X’s child class. In addition, D; is X’s descendant class, but
D, is not. As clusters C;, D;, and D; have neither parent nor
ancestor cluster, they must be the root clusters of disjoint
subtrees. Thus, peers in these clusters establish cousin links
with each other.

After z finds a child cluster, say, C;, it creates a cluster, X,
and then sends peer join messages to an arbitrary peer in C;
to inform it of the creation of X. The peer then broadcasts
x’s peer join messages throughout C;. The messages are also
broadcast throughout all the cousin clusters of C; (i.e., D;
and Dj in the example).

As a result, all peers in C;, D;, and Dj, and perhaps some
peers in other SIGs, will receive x’s peer join messages. All
of the receiving peers then exchange peer descriptions with
x and evolve their semantic links. Fig. Billustrates the net-
work after x joins. Through z’s peer join messages, peers
in D; find that X becomes the new root cluster of the dis-
joint subtree. Therefore, they establish cousin links to .
As X grows, peers in C;, D;, and Dj, may drop their original
cousin links.

Case 6. If = cannot find its own, parent, ancestor, child,
or descendant clusters, its cluster must be disjoint with all
the existing subtrees in this SIG. The root clusters of dis-
joint subtrees in the same SIG are connected with cousin
links. Each peer in these root clusters has to maintain at
least MIN_LINK_TO_CLUSTER cousin links to every other root
cluster.

3.2 Query Routing

Queries in OntoZilla are represented with ontology lan-
guages. Therefore, they can be classified into specific SIGs
and classes with semantic matching techniques. Then, they

are routed in accordance with the intra-SIG routing and the
inter-SIG routing.

Intra-SIG Routing. Queries that request resources belong-
ing to a peer’s own SIG are routed according to the intra-SIG
routing. If a peer receives a query that requests resources
belonging to its super-classes, it forwards the query to higher
clusters. On the contrary, if it receives a query that requests
resources belonging to its subclasses, it forwards the query
to lower clusters. Moreover, if a peer receives a query that
requests all resources belonging to its own class, it broad-
casts the query throughout its cluster via twin links.

If the querying peer is not satisfied with the number of
answers, it may issue a query that requests resources belong-
ing to a class including its subclasses, since the resources of
subclasses can be viewed as a part of the resources of their
super-classes. Still, if the querying peer is not satisfied the
number of answers, it may adjust the class of the query to
a higher level.

Inter-SIG Routing. Queries that request resources outside
a peer’s own SIG are routed according to the inter-SIG rout-
ing. If a peer needs resources outside its own SIG, it looks
up its routing table and forwards the query to a peer in the
suitable SIG via SIG links. If its routing table does not con-
tain any peer in the suitable SIG, it broadcasts SIG inquiry
messages, which are also employed in the SIG join process,
within the range MAX_HOP_SIG_INQUIRY to find peers in that
SIG. After the peer finds a peer in that SIG and sends the
query to it, the query is then routed according to the intra-
SIG routing. Therefore, each peer in the network can serve
as the window that receives queries dedicated to its own
SIG.

3.3 Stabilization

The correctness and efficiency of query routing in our sys-
tem rely on the semantic links among peers. However, peers
recorded in a routing table may be unavailable since peers
may fail or leave the network unpredictably. Besides, due to
propagation delay and failures, peers’ views of the network
may be inconsistent. We present two methods to improve
the stability of the network.

Peer Probe. In OntoZilla, each peer regularly sends peer
probe messages to its neighbor peers to probe their avail-
ability, and then drops those semantic links to unavailable
peers. Lost semantic links can be recovered actively or pas-
stvely. In the active approach, a peer recovers the unavail-
able links by copying equivalent links (i.e., semantic links
with the same SIG or class as the unavailable links) from its
neighbors’ routing tables. In contrast, when the number of
links from a peer x to a given cluster is still greater than zero,
the passive approach allows = to defer the recovery action
until it is acquainted with some other peer in the cluster,
for example, when some new peer informs z of its join into
the cluster and exchanges with x its peer description.

Peer GOSSip. Peer gossip is the periodical exchange of peer
descriptions within some range to allow peers to update
their views of the network and to correct their family links if
needed. Another purpose of peer gossip is to allow peers to
discover more suitable neighbor candidates. By exchanging
peer descriptions periodically, peers can establish semantic
links with peers that better satisfy the neighboring criteria
than existing neighbors. Furthermore, peer gossip can de-
tect partition of clusters and SIGs, as shall be seen in the



next section.

3.4 Cluster Merging and SIG Merging
3.4.1 Cluster Merging

Due to concurrent join and propagation delay, disjoint
clusters of the same class in a SIG may be created by dif-
ferent peers. Cluster partition can be detected early in the
family linking stage, or later on through peer gossip. When a
peer discovers a cluster partition, it will notify some peers in
the partitioned clusters to start the cluster merging process.
Merging two partitioned clusters is rather simple. First of
all, the two clusters are compared by their IDs. The one
with a smaller ID is the winner, while the other is the loser.
The loser cluster will be merged into the winner, as the win-
ner is created earlier and so might have a higher chance of
containing more peers. Let 1 and x2 be two peers of parti-
tioned clusters that are aware of the partition, and assume
that x; is from the loser cluster. The cluster merging pro-
cess is as follows: x1 changes its cluster ID to that of xa,
and then establishes new twin links with 2. Following that,
x1 broadcasts cluster merging messages throughout the loser
cluster via its original twin links. Each message contains the
ID of the winner cluster so that each peer in the loser cluster
can change its cluster ID to the new one. After all peers in
the loser cluster have corrected their cluster IDs, the cluster
merging process then terminates.

3.4.2 SIG Merging

Like cluster partition, two SIGs of different IDs may be
created simultaneously due to concurrent join, propagation
delay, and the TTL limit. Still, partitioned SIGs can be
discovered through peer gossip as described before.

To merge two partitioned SIGs, the two SIGs are also
compared by their IDs, and the one with larger ID will be
the loser, which will then be merged into the winner SIG.
Let 1 and z2 be two peers from the SIGs that are aware
of the partition, and assume that z; is from the loser SIG.
To merge x1’s SIG into x2’s, 1 copies x2’s family links,
and packs them into a SIG merging message. Next, x1 uses
this message to traverse all clusters in its SIG, notifying
some peers in every cluster of the merging process. The SIG
merging message can traverse all the clusters in a SIG in the
way of Depth-First-Search or Breadth-First-Search.

Following that, all the peers that receive the SIG merging
message, along with x1, have to serve as the “pioneer peers”
of merging their clusters into the winner SIG. A pioneer
peer p proceeds as follows. Since the SIG merging message
contains some peer descriptions of the winner SIG, p can
select a peer in the winner SIG as its guide peer, and then
joins a cluster in the winner SIG as a new peer would join
that cluster. If p’s cluster does not exist in the winner SIG,
it has to create a new cluster in the winner SIG by itself.
Next, according to the process in the family linking stage, p
establishes family links with peers in the winner SIG.

After that, p broadcasts SIG merging messages throughout
its original cluster via its original twin links. Each message
contains the new cluster ID and the new SIG ID so that
each of p’s original twin neighbors can change its SIG ID
and cluster ID to the new ones. After all pioneer peers and
their original twin neighbors have corrected their SIG IDs
and cluster IDs, the SIG merging process then terminates.

3.5 Leave

Before a peer x leaves the network, it sends leave messages
to all its neighbor peers. Each leave message contains some
peer descriptions of x’s twin neighbors. Therefore, all the

peers that receive the messages and have semantic links to x
can replace their links to « with the links to its twin neigh-
bors. For peers that have semantic links to  but did not
receive z’s leave messages, they can still actively or passively
recover the links to x as discussed in Section

4. CONCLUSIONSAND FUTURE WORK

To conclude, OntoZilla combines ontologies and P2P sys-
tems, with a vision of improving the process of informa-
tion searching and facilitating greater integration as well as
interoperability. It organizes peers according to their re-
lationships, which are based on their special interests and
supporting concepts. The system can be applied to many
areas. For example, it can be used as a platform for concept
search. Since peers supporting the same concept are grouped
into the same cluster, and the relationships between clusters
are modeled according to the concepts they specialize in, a
query belonging to a specific concept can be routed to the
suitable group of peers in a systematic way. The full paper
will present experimental results to evaluate the system.
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